Towards Viable Certificate-based Authentication
for the Internet of Things

René Hummen~, Jan H. Ziegeldorf+, Hossein Shafagh+f, Shahid Razaf, Klaus Wehrle*

*Communication and Distributed Systems, RWTH Aachen University, Germany
Email: {hummen, ziegeldorf, shafagh, wehrle}@comsys.rwth-aachen.de
fSwedish Institute of Computer Science, Kista, Sweden
Email: {hossein, shahid}@sics.se

ABSTRACT

The vision of the Internet of Things considers smart ob-
jects in the physical world as first-class citizens of the digital
world. Especially IP technology and RESTful web services
on smart objects promise simple interactions with Internet
services in the Web of Things, e.g., for building automa-
tion or in e-health scenarios. Peer authentication and secure
data transmission are vital aspects in many of these scenar-
ios to prevent leakage of personal information and harm-
ful actuating tasks. While standard security solutions exist
for traditional IP networks, the constraints of smart objects
demand for more lightweight security mechanisms. Thus,
the use of certificates for peer authentication is predomi-
nantly considered impracticable. In this paper, we investi-
gate if this assumption is valid. To this end, we present pre-
liminary overhead estimates for the certificate-based DTLS
handshake and argue that certificates — with improvements
to the handshake — are a viable method of authentication in
many network scenarios. We propose three design ideas to
reduce the overheads of the DTLS handshake. These ideas
are based on (i) pre-validation, (ii) session resumption, and
(iii) handshake delegation. We qualitatively analyze the ex-
pected overhead reductions and discuss their applicability.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: General—

Security and protection (e.g., firewalls)

Keywords
Internet of Things; TLS; Authentication; Certificates

1. INTRODUCTION

To enable secure end-to-end communication for the Web
of Things (WoT) [19], lightweight variants of standard se-
curity protocols are currently being developed. Recent ap-
proaches and implementations predominantly favor symmet-
ric keys or raw public keys for peer authentication [1, 11, 12].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

HotWiSec’13, April 19, 2013, Budapest, Hungary.

Copyright 2013 ACM 978-1-4503-2003-0/13/04 ...$15.00.

We argue that certificates can solve a number of challenges
where particularly symmetric key-based solutions fall short.
Specifically, certificates allow authentication of objects and
services across network boundaries without the need for pre-
configured pair-wise state. Meta information encoded in a
certificate (e.g. group membership or service type) can be
used to authorize communication in the context of machine-
to-machine interactions. Moreover, compromised objects, or
objects and services that are no longer authorized to com-
municate with others can simply be excluded by announcing
these on pre-configured revocation lists. Finally, certificates
are an established method of authentication in large-scale
systems such as the Internet. Hence, the extensive amount
of infrastructure, tools, and expertise can be reused.

However, we also realize that new challenges arise when
using certificates on resource-constrained objects. These
challenges result from the limited available CPU, ROM,
RAM, and energy resources. Especially processing of long
certificate chains may be infeasible on a per-connection ba-
sis. Furthermore, the transmission of certificates as well
as checking of revocation lists increases radio transmissions
and, thus, energy consumption considerably. Lastly, certifi-
cate validation depends on further functionality that may
otherwise not be required, e.g., time synchronization.

In this paper, we present initial design ideas that aim at
making certificate-based authentication feasible for resource-
constrained objects. Our discussion focuses on Datagram
TLS (DTLS) [13]. Still, our observations and ideas also ap-
ply to other security protocols, e.g., IKEv2 or HIP. Specif-
ically, we propose to perform certificate pre-validation at
on-path network entities. Furthermore, we promote ses-
ston resumption as a mechanism to minimize processing and
transmission overheads. To this end, we extend the existing
DTLS session resumption mechanism for session resumption
without client-side state. Finally, we present a standard-
compliant procedure to delegate the security association es-
tablishment to more capable off-path devices.

The rest of this paper is organized as follows. Section 2
outlines the target network scenario, capabilities of the par-
ticipating objects, and our basic assumptions. We analyze
the overheads of certificate validation on smart objects in
Section 3. Our improvements to the DTLS handshake are
outlined in Sections 4 and 5. Finally, Section 6 summarizes
related work and Section 7 concludes this paper.

2. NETWORK SCENARIO

We assume an abstract network scenario consisting of
smart objects, gateways, and services. Smart objects are

WoT Domain

(O——
S—¥

Internet

WoT Domain

Figure 1: Network scenario with resource-
constrained objects (O and O*) that connect to
other objects or services (S) via a gateway (GW).
Arrows indicate specific communication paths.

IP-enabled and spread across WoT domains. Gateways con-
nect these objects to a backbone infrastructure such as the
Internet. Hence, objects can communicate internally within
the WoT domain, across WoT domains, and with services in
the local network or the Internet (see Figure 1).

Smart objects have limited computational power, mem-
ory, and energy. With respect to RAM and ROM, we dis-
tinguish between two classes of smart objects: i) class O
objects are equipped with about ten kilobytes of RAM and
several tens of kilobytes of ROM, whereas ii) class O* ob-
jects have tens of kilobytes of RAM and tens to hundreds of
kilobytes of ROM. This classification is similar to the clas-
sification into class 1 and class 2 objects in [3].

The resources at a gateway range from those of a commod-
ity router to a powerful network appliance depending on the
number of smart objects in the WoT domain. Likewise, ser-
vices run on server hardware or constitute Cloud services
with elastic resources. Finally, we assume that the RESTful
protocol CoAP [17] for resource-constrained objects is used
to transmit application data and that both, smart objects
and services, support the DTLS protocol.

3. CERTIFICATE-BASED DTLS

In this section, we discuss preliminary overhead estimates
of the certificate-based DTLS handshake with mutual au-
thentication of the communicating peers. Specifically, we
consider transmission overheads, processing time, as well as
RAM and ROM requirements at a smart object. We iden-
tify the minimum capabilities of objects required to perform
certificate-based DTLS handshakes in an end-to-end fash-
ion. Moreover, our analysis reveals aspects of the DTLS
handshake that demand for further optimization.

3.1 Transmission Overheads

A full DTLS handshake consists of up to six message
flights that may each include multiple messages (see Fig-
ure 2). Flights 1 and 2 serve as a return routability test
for Denial of Service (DoS) protection. Flights 3, 4 and 5
implement the negotiation of the security parameters, peer
authentication, and session key establishment. If certificate-
based authentication is used, certificate chains are exchanged
within flights 4 and 5. The Finished messages in flights 5
and 6 finalize the handshake and verify its correctness.

As shown in Figure 2, a full certificate-based DTLS hand-
shake consists of up to 15 messages. These messages may re-
quire fragmentation at the DTLS layer or below. For exam-
ple, even short certificates exhibit sizes above 220 bytes [6]
and constantly exceed the limited frame size of link lay-
ers such as IEEE 802.15.4 (i.e., 127 bytes). However, such

Client Server

Flight 1* ClientHello
l¢ HelloVerifyRequest Flight 2*
Flight 3 ClientHello
ServerHello
Certificate
ServerK Flight 4
CertificateRequest
¢ ServerHelloDone
D Certificate
ClientKeyExchange
Flight 5 CertificateVerify
[ChangeCipherSpec]
Finished
2 e [ChangeCipherSpec]
é D Finished }Flight 6
Y

Figure 2: Full DTLS handshake protocol. Messages
marked with * are optional.

fragmentation has been shown to potentially be harmful [7].
Additionally, fragmentation increases the actual number of
transmitted packets. This increase is especially critical as
DTLS defines a retransmission mechanism for lost packets
that operates on a per-flight basis. As a result, a single lost
packet causes the retransmission of an entire flight, thus fur-
ther increasing the DTLS network overhead.

Furthermore, the packet buffer at a receiving object must
be large enough to hold an entire DTLS message. Thus,
RAM constraints of an object may prevent the successful
reception of large certificates or long certificate chains.

Finally, additional network overheads result from the need
for a time synchronization protocol such as NTP and a cer-
tificate status protocol such as the Online Certificate Status
Protocol (OCSP). These protocols are required to verify the
validity period and revocation status of certificates.

3.2 Processing Times

CoAP defines TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 as
the mandatory cipher suite for certificate-based authentica-
tion. The smallest curve for this suite is NIST P-256 [10].
With this curve (but also for smaller curves), signature ver-
ification and the Diffie-Hellman key agreement denote the
dominating cryptographic operations with respect to the
processing time of the DTLS handshake.

To estimate these cryptographic overheads, we analyzed
the processing time for ECDSA and ECDH operations with
curve P-256 on a Tmote Sky mote using implementations
from the cryptographic library relic'. We performed 100
independent ECDSA signature generations and verifications
as well as ECDH key-pair generations and key agreements.

We found that a single signature verification, and thus the
verification of a certificate, requires about 6s. This overhead
grows linearly with the length of the certificate chain. Addi-
tional cryptographic overhead results from the authenticated
ephemeral Diffie-Hellman key exchange. Here, the genera-
tion of the Diffie-Hellman key-pair requires 2.1s, whereas
2.5s are needed to sign the public value. Furthermore, the
derivation of a shared secret requires 4.3 s.

To summarize, the cryptographic per-handshake overheads
add up to a considerable 15s for a certificate-based DTLS
handshake even with minimal certificate chains of length 2.
While these overheads may be acceptable during sporadic
configuration phases of a smart object, such delays are likely
to render certificate-based security solutions inapplicable if
performed on a per-connection basis.

"http://code.google.com/p/relic-toolkit/

| Functionality [PV][SR | HD |

Communication

DTLS handshake = -
Additional (NTP, OSCP) X - X
Computation

Signatures (generation & verification) = - X
Key establishment = - X
Memory

DTLS protocol = + -
Cryptography (ECC, SHA, AES) = = x
Certificates (ASN.1 Parsing) = = X
Additional (NTP, OSCP) X = X

Table 1: Qualitative improvements with pre-
validation (PV), session resumption (SR), and hand-
shake delegation (HD) categorized in additional (+),
unchanged (=), less (—), and removed overhead (z).

3.3 RAM and ROM Requirements

With respect to RAM and ROM requirements, we ana-
lyzed the tinyDTLS? implementation and the public-key li-
brary relic with the msp430-size and msp430-objdump tools.
We found that relic is the major contributor to the overall
ROM overhead with about 21 kB of ROM. Symmetric key
cryptography and the implementation of the cryptographic
hash function require about 5 kB. The DTLS protocol im-
plementation itself requires about 10 kB of ROM.

In combination with the code size needed for Contiki OS
with a simple CoAP server (41 kB), this overhead amounts
to about 77 kB. Likewise, static RAM requirements add up
to above 11 kB. Notably, these overhead estimates do not
yet consider program functionality for ASN.1 parsing, time
synchronization, and certificate status verification.

4. REDUCING END-TO-END OVERHEADS

The results presented in Section 3 indicate that end-to-
end certificate verification imposes non-negligible communi-
cation, computation, and memory overheads for smart ob-
jects. In this section, we propose mechanisms that reduce
these overheads for objects of class O* through on-path pre-
validation and session resumption. As the overheads may
prevent tightly resource-constrained objects of class O from
performing certificate verification themselves, we addition-
ally present a handshake delegation procedure in Section 5.

4.1 Pre-validation at the Gateway

If a smart object communicates with an object or service
outside its WoT domain, the DTLS traffic traverses the in-
terconnecting gateway. This gateway can be dimensioned
with the necessary computation and bandwidth resources,
depending on the number of attached objects, to act as a
gatekeeper to the WoT domain. Specifically, we propose
to delegate certificate chain status validation and crypto-
graphic certificate chain pre-verification to the gateway.

When a gateway observes a certificate-based DTLS hand-
shake, it verifies the status of the certificates in the inbound
Certificate message. To this end, it verifies that their va-
lidity has not yet expired and that they have not yet been
revoked, e.g, via OCSP. Additionally, it cryptographically
verifies the transmitted certificate chain against the config-
ured root certificates of the smart object located in the WoT
domain. These certificates could, e.g., be deployed at the

Zhttp://tinydtls.sourceforge.net/

gateway during configuration of the smart object. The ex-
act procedure, however, is future work.

The gateway only forwards the inbound Certificate mes-
sage to the smart object, if the certificate pre-validation was
successful. Otherwise, it sends a notification message to the
smart object informing it about the invalid credentials of the
peer. For this purpose, we propose a DTLS alert or an ICMP
message that conveys “invalid DTLS credentials” along with
the observed DTLS Session ID to the smart object.

With benign gateways, only valid certificates are sent to-
wards the WoT domain. This reduces the communication
overhead resulting from undesired handshakes. Furthermore,
pre-validation decreases the memory requirements at a smart
object along with network overheads as time synchronization
and certificate status validation are no longer performed in
the WoT domain (see Table 1). However, as a trade-off, a
malicious gateway could forward invalid certificates and im-
plicitly claim these to be valid. As a result, a smart object
would establish a DTLS session despite expired or compro-
mised certificates. Still, to exploit this fact in a Man-in-
the-Middle (MitM) attack, the gateway would need to be in
possession of the corresponding private key.

If a smart object would not re-verify the signatures of the
certificate chain when receiving a Certificate message, the
gateway could mount a MitM attack by replacing the leaf
certificate with an arbitrary certificate that certifies its own
public key. Hence, certificate parsing and cryptographic op-
erations cannot be omitted at a smart object if the gateway
is not completely trusted (see Table 1).

4.2 Session Resumption

As shown in Sections 3.1 and 3.2, transmitting and pro-
cessing of long certificate chains incurs considerable over-
head in a DTLS handshake. In order to decrease these over-
heads, we promote the extensive use of session resumption
mechanisms for DTLS-enabled smart objects.

The key idea behind session resumption is to only perform
expensive operations once during an initial handshake. The
peers then maintain minimal session state, even after session
teardown. This allows the peers to use the stored state to
authenticate each other and to re-establish the secure chan-
nel in subsequent handshakes without the need for certificate
transmissions and expensive cryptographic operations.

Two types of session resumption have been proposed for
TLS/DTLS. On the one hand, an abbreviated handshake
where both peers maintain session state across connections
is standardized in [4]. Such session resumption is advanta-
geous in scenarios with peers that have similar resource con-
straints. On the other hand, [14] specifies an extension of the
handshake that allows for server-side offloading of encrypted
session state towards the client during the initial handshake.
This state offloading trades off a minimized memory burden
on the server side with an increased memory overhead at the
client side. Hence, such a session resumption mechanism is
highly beneficial when a resource-constrained server in the
WoT domain is contacted by another object or service that
is equipped with more resources.

However, when a smart object initiates a handshake with,
e.g., an Internet service, the asymmetry in resources is con-
trary to the scenario for server-side state offloading. Hence,
in addition, we propose a session resumption mechanism
that affords client-side offloading of encrypted session state.
This mechanism is based on the signaling extensions and

Client Server
Flight 1 ClientHello (empty SessionTicket extension)

ServerHello (SessionTicket extension)

[ChangeCipherSpec] Flight 2
Finished

NewSessionTicket

Flight 3 [ChangeCipherSpec]
Finished

time

Y

Figure 3: Message flights for the abbreviated TLS
handshake with client-side state-offloading.

messages described in [14]. More concretely, the client and
the server first perform a full DTLS handshake that is similar
to the handshake depicted in Figure 2. However, in contrast
to the normal handshake, the ClientHello message con-
tains an empty SessionTicket extension that indicates the
client’s support for our session resumption mechanism. Like-
wise, the server’s ServerHello message contains an empty
SessionTicket extension indicating its own support. Fi-
nally, the client sends an additional NewSessionTicket mes-
sage containing its encrypted session state in flight 5.

The session resumption uses an abbreviated handshake
with three flights (see Figure 3). The ClientHello mes-
sage contains an empty SessionTicket signaling the client’s
support of the session resumption mechanism. The Server-
Hello message includes a SessionTicket extension contain-
ing the encrypted client-side state of the previous handshake.
Flight 3 additionally includes a NewSessionTicket message
with the encrypted session state of the client for the next
handshake. After the session resumption handshake com-
pleted, the peers have re-established the secure channel.

While the session resumption functionality causes a slight
increase in the memory footprint for the DTLS protocol,
the main improvements are the reduced communication and
processing overheads for both peers (see Table 1). The nego-
tiation of the appropriate session resumption strategy during
the initial handshake and the exact content of the offloaded
state for smart objects are future work in this area.

S. HANDSHAKE DELEGATION

As shown in Section 3, the overheads resulting from cer-
tificates may be excessive for tightly resource-constrained
objects of class O. Our ideas proposed in Section 4 allow
to reduce these overheads, but still require a complete ini-
tial handshake with a reduced set of certificate-related func-
tionalities. To make certificate-based authentication viable
in scenarios with clients of class O, we outline a process
that allows to delegate the initial handshake to the owner
of the object. This allows us to unburden the object from
all certificate-related overheads as well as most DTLS hand-
shake complexities resulting from, e.g., long packet flights.

The handshake delegation is based on the TLS session re-
sumption without server-side state [14]. It assumes that each
smart object O; has a unique identifier I Do, and a secret
key Ko,. The identifier of an object (e.g., its MAC address)
and the secret key may, e.g., be embedded in the object dur-
ing manufacturing. Furthermore, we assume the existence
of a lookup infrastructure for the network address of an ob-
ject in the WoT domain based on its identifier. The object
O; may, e.g., register to a CoRE Resource Directory [18]
when joining the WoT domain. We now briefly describe our
proposed delegation procedure (depicted in Figure 4).

1. Out-of-band shared-secret exchange: The smart
object O; and its owner exchange the object identifier I Do,

WoT Domain

[4) Session

: @ resumption — |
! 4

1

\ @ 3) State

\ e transfer

.S
1) Secret S [
exchange 2) Initial handshake

Figure 4: The handshake delegation procedure.

and the secret key Ko, via a secure side channel. For ex-
ample, the owner may obtain I Do, and Ko, by scanning a
QR-code inside the packaging of the object.

2. Certificate-based TLS or DTLS handshake: The
owner establishes a TLS or DTLS session on behalf of the
object O; with the desired service S or another object of
class O*. The peer object or service thereby authenticates
itself to the owner by means of certificates. The owner may
either use certificate-based authentication at the TLS/DTLS
layer or a username/password combination at the applica-
tion layer to identify herself to the peer depending on the
peer’s authentication requirements. In addition, the owner
requests a session resumption ticket from the peer within
the TLS/DTLS handshake. After a successful handshake,
the owner is in possession of the peer’s encrypted session-
state s that contains all necessary information for the peer to
re-establish the current session without the need for further
public key operations or certificate transmissions. At this
point, the owner terminates the connection with the peer.

3. Session-state transfer: The owner transfers the peer’s
encrypted session-state s along with its own stored session
state s’ to the smart object O; in order to enable the object
to resume the DTLS session. To this end, the owner encrypts
and authenticates both states with the secret key Ko, from
step 1, e.g., using AES with CCM: Encr, (s||s’) = c¢. Fur-
thermore, the owner requests the network address of the ob-
ject from the responsible CoRE Resource Directory based
on the object identifier /Dp,. She then transmits c to a
dedicated CoAP resource at the smart object O;. Upon re-
ceiving the state, the object verifies the authenticity of the
state and decrypts the contained information.

4. DTLS session resumption: During this final step,
the object O; uses the received session states in order to
resume the DTLS session that was established between the
owner and the peer. To this end, the object and the peer
perform a session resumption handshake. As the established
states of the certificate-based DTLS handshake are used in
the handshake to perform mutual authentication, neither
certificate-related functionality nor public key operations are
required at the smart object O;. Instead, the delegated state
binds the owner’s identity at the peer to the object O;.

To achieve handshake offloading in case of a constrained
server that is contacted by a more capable client, our pro-
posed session resumption mechanism without client-side state
could be used. The client would first connect to a pow-
erful session establishment server in an initial handshake.
Afterwards, the establishment server would transfer the en-
crypted client state to the constrained server as described
above and redirect the client to the constrained server. How-
ever, the details of such a procedure are future work.

While the transitive security of this approach is weaker
than the end-to-end security of DTLS, our delegation proce-
dure removes the need for all certificate-related functionality
on a smart object (see Table 1).

6. RELATED WORK

We focus our discussion of related work on approaches
that aim at i) enabling TLS/DTLS for smart objects, or
ii) reducing the overhead of certificate-based authentication.

In [6] and [8], the authors show that certificate-based au-
thentication with TLS/DTLS is feasible for constrained ob-
jects. However, their approaches either do not allow for
certificate-based authentication towards objects or rely on
hardware support (TPM) for computations and key storage.
Contrarily, our work focuses on design-level ideas to reduce
the DTLS overhead for constrained clients and servers.

The Server-Based Certificate Validation Protocol [5] en-
ables a client to delegate certificate validation to a trusted
server. However, this client-centric approach further in-
creases the communication overhead within a WoT domain
on a per-handshake basis. Still, its messaging structures and
policy representations could be reused in our pre-validation
approach to set up validation policies at the gateway.

In [15, 9, 16], the authors propose TLS extensions that
allow clients to cache static server information such as cer-
tificates. While caching enables to omit information during
the handshake, it typically imposes a higher processing and
memory burden than required for session resumption, espe-
cially as expensive cryptographic operations still need to be
performed on a per-handshake basis.

In [2], the authors propose to delegate the IKE session
establishment to the gateway. In contrast to our delegation
procedure, their approach inherently reveals the end-to-end
session keys to an on-path entity and does not consider the
case of secure communication within a WoT domain.

7. CONCLUSIONS

Certificates are assumed to incur excessive overheads for
many resource-constrained network scenarios and are dis-
missed as a means of authentication. In this paper®, we es-
timate transmission, processing, and memory overheads of
the certificate-based DTLS handshake protocol. Our results
indicate that certificates are indeed too heavy-weight for
tightly resource-constrained objects and even involve non-
negligible overheads for more capable objects.

To reduce these overheads, we propose three design ideas
for the DTLS handshake. First, certificate pre-validation at
the gateway effectively turns this on-path entity into a gate-
keeper for constrained objects. Second, we promote session
resumption as a complementary mechanism to reduce trans-
mission and processing overheads and present an extension
of existing mechanisms. Third, for objects that lack the
resources to perform a certificate-based DTLS handshake
themselves, we propose a standard-compliant handshake del-
egation procedure that enables the owner of an object to
perform the handshake on behalf of her object.

We are currently in the process of implementing and eval-
uating the certificate-based DTLS handshake for smart ob-
jects in order to derive detailed overhead results. After-
wards, our main goal is to implement and evaluate the mech-
anisms proposed in this paper and to proof their feasibility
and improvements. We strongly believe that mechanisms
beyond mere header or certificate compression are required
to cater for the tight resource constraints in many WoT sce-
narios and that our work offers first ideas in this direction.

3This work was partly funded by SensorCloud (01MD11049)
and CALIPSO (FP7-ICT-2011.1.3-288879).

3]

[4]

[5]

[6]

[7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

REFERENCES

O. Bergmann, S. Gerfes, and C. Bormann. Simple
Keys for Simple Smart Objects. In Workshop on
Smart Object Security, 2012.

R. Bonetto, N. Bui, V. Lakkundi, A. Olivereau,

A. Serbanati, and M. Rossi. Secure communication for
smart [oT objects: Protocol stacks, use cases and
practical examples. In Proc. of IEEE WoWMoM,
2012.

C. Bormann. Guidance for Light-Weight
Implementations of the Internet Protocol Suite.
draft-ietf-lwig-guidance-02 (WiP), IETF, 2012.

T. Dierks and E. Rescorla. The Transport Layer
Security (TLS) Protocol Version 1.2. RFC 5246,
IETF, 2008.

T. Freeman, R. Housley, A. Malpani, D. Cooper, and
W. Polk. Server-Based Certificate Validation Protocol
(SCVP). RFC 5055, IETF, 2007.

V. Gupta, M. Wurm, Y. Zhu, M. Millard, S. Fung,

N. Gura, H. Eberle, and S. Chang Shantz. Sizzle: A
standards-based end-to-end security architecture for
the embedded Internet. Pervasive and Mobile
Computing, 2005.

R. Hummen, J. Hiller, H. Wirtz, M. Henze,

H. Shafagh, and K. Wehrle. 6LoWPAN Fragmentation
Attacks and Mitigation Mechanisms. In Proc. of ACM
WiSec, 2013.

T. Kothmayr, C. Schmitt, W. Hu, M. Bruenig, and
G. Carle. A DTLS Based End-To-End Security
Architecture for the Internet of Things with T'wo-Way
Authentication. In Proc. of IEEE SenseApp, 2012.

A. Langley. Transport Layer Security (TLS) Snap
Start. draft-agl-tls-snapstart-00 (WiP), IETF, 2010.
D. McGrew, D. Bailey, M. Campagna, and R. Dugal.
AES-CCM ECC Cipher Suites for TLS.
draft-mcgrew-tls-aes-ccm-ecc-06 (WiP), IETF, 2013.
R. Moskowitz. HIP Diet EXchange (DEX).
draft-moskowitz-hip-rg-dex-06 (WiP), IETF, 2012.

S. Raza, S. Duquennoy, T. Chung, D. Yazar, T. Voigt,
and U. Roedig. Securing Communication in
6LoWPAN with Compressed IPsec. In Proc. of IEEE
DCOSS, 2011.

E. Rescorla and N. Modadugu. Datagram Transport
Layer Security Version 1.2. RFC 6347, IETF, 2012.

J. Salowey, H. Zhou, P. Eronen, and H. Tschofenig.
Transport Layer Security (TLS) Session Resumption
without Server-Side State. RFC 5077, IETF, 2008.

S. Santesson and H. Tschofenig. Transport Layer
Security (TLS) Cached Information Extension.
draft-ietf-tls-cached-info-13 (WiP), IETF, 2012.

H. Shacham, D. Boneh, et al. Fast-track session
establishment for tls. In Proc. of NDSS, 2002.

Z. Shelby, K. Hartke, C. Bormann, and B. Frank.
Constrained Application Protocol (CoAP).
draft-ietf-core-coap-13 (WiP), IETF, 2012.

Z. Shelby, S. Krco, and C. Bormann. CoRE Resource
Directory. draft-shelby-core-resource-directory-04
(WiP), IETF, 2012.

D. Zeng, S. Guo, and Z. Cheng. The web of things: A
survey. Journal of Communications, 2011.

