Towards Data Handling Requirements-aware Cloud Computing

Martin Henze, Marcel GroBifengels, Maik Koprowski, Klaus Wehrle
Communication and Distributed Systems, RWTH Aachen University, Germany
Email: {henze,grossfengels,koprowski,wehrle} @ comsys.rwth-aachen.de

Abstract—The adoption of the cloud computing paradigm is
hindered by severe security and privacy concerns which arise
when outsourcing sensitive data to the cloud. One important
group are those concerns regarding the handling of data. On
the one hand, users and companies have requirements how
their data should be treated. On the other hand, lawmakers
impose requirements and obligations for specific types of data.
These requirements have to be addressed in order to enable
the affected users and companies to utilize cloud computing.

However, we observe that current cloud offers, especially in
an intercloud setting, fail to meet these requirements. Users
have no way to specify their requirements for data handling
in the cloud and providers in the cloud stack — even if they
were willing to meet these requirements — can thus not treat
the data adequately. In this paper, we identify and discuss the
challenges for enabling data handling requirements awareness
in the (inter-)cloud. To this end, we show how to extend
a data storage service, AppScale, and Cassandra to follow
data handling requirements. Thus, we make an important step
towards data handling requirements-aware cloud computing.

Keywords-Cloud Computing, Data Handling Requirements,
Intercloud, Privacy

I. INTRODUCTION

In recent years, the emergence of cloud computing with
its vision of virtually unlimited, elastically scalable storage
and processing resources has led to a variety of new, cloud-
based services. The next iteration of this development is the
vision of the intercloud paradigm [1], [2], where multiple
clouds are used for providing a service in order to increase
reliability as well as Quality of Service and at the same
time reduce costs. Figure 1 illustrates a scenario where cloud
resources distributed all over the world are utilized.

This distributed usage of resources is unnoticeable for the
user. When moving sensitive data (e.g., customer records
or sensed information) to the cloud, security and privacy
concerns arise, which hinder the adoption of cloud-based
services [3]—[7]. Data might be i) accessed by or handed over
to third parties, ii) used for unintended purposes, iii) subject
to data protection laws or contracts regarding customer data
protection, and iv) not deleted once it is not needed anymore.
Importantly, addressing these challenges becomes even more
tremendous in an intercloud setting [8], [9].

In this paper, we discuss and address privacy concerns
regarding the handling of data that arise when utilizing the
cloud computing paradigm and especially the intercloud ap-
proach for outsourcing sensitive data. Users and lawmakers
often impose data handling requirements when outsourcing

Intercloud Scenario

Figure 1.

data, especially to the cloud. These requirements typically
restrict, e.g., how long and where a specific piece of data
might be stored. However, in current cloud offers it is
impossible to meet these requirements adequately [9], as
users cannot specify their requirements and cloud providers
thus remain completely oblivious of these requirements.
Even if they were willing to follow said requirements un-
conditionally, they are not able to do so. However, the ability
to follow data handling requirements would allow cloud
providers to enter new markets by addressing customers
which want or have to adhere to data handling requirements.
Our contribution aims at making cloud computing data
handling requirements-aware. First, we discuss data handling
challenges when outsourcing data to the cloud. We then
briefly present our vision of data handling aware cloud
computing [9]. Essentially, we enrich data with data handling
annotations before it is handed to the cloud. Based on this we
discuss how to formalize data handling annotations using the
PrimeLife Privacy Policy Language. Finally, we give insights
into adapting a cloud stack consisting of AppScale and Cas-
sandra to support data handling annotations and thus assist
users and providers to meet data handling requirements.

II. CLoUuD DATA HANDLING CHALLENGES

Users and companies have certain requirements how their
data should be handled. Companies, e.g., often want sensi-
tive customer data to be stored in the jurisdiction of their
headquarters. These preferences may either be intrinsic to
the user or company, or driven by statutory regulations.
The EU, e.g., demands that personal data of customers is
only stored and processed within the EU or countries with
comparable privacy laws (safe harbor principle). However,
when outsourcing data to the cloud, users and companies
essentially lose control over their data [4]-[6], [9].

In the following, we identify data handling challenges that
have to be addressed technically when outsourcing data to

the cloud. Addressing these challenges allows to mitigate
the anticipated loss of control over data. The two main
challenges are location of storage and duration of storage.

A. Location of Storage

Storing data outside certain legislative boundaries (often
even without noticing), raises severe concerns [4], [9].
One prominent reason for this is the enforcement of data
protection laws. As already mentioned, the EU forbids the
transfer of personal data to oversea jurisdictions with weaker
privacy laws. The only exception is the safe harbor principle,
which allows providers in countries with weaker privacy
laws to voluntarily follow the EU privacy law and thus
become eligible for receiving data. However, also other legal
requirements besides data protection have an impact on the
location of storage. In Germany, e.g., companies are not
allowed to store any tax relevant data outside the EU.

Meeting these requirements with today’s cloud services
is virtually impossible. This essentially results from a lack
of necessary information. In order to handle data compliant
with these regulations, all involved entities need information
where a specific data item is allowed to be stored and a way
to communicate these restrictions.

B. Duration of Storage

For the duration of storage, we differentiate between max-
imum as well as minimum storage duration requirements.
The maximum duration of storage specifies a point in time
at which the data has to be deleted. This is driven by the
perception of users who want their data to be deleted once it
is not needed anymore. Recently, this approach has also been
discussed as the “right to be forgotten” in the EU’s regulation
process [10]. The key challenge here inherently results from
the desired redundancy (for reliability and performance) as
well as the distributed nature of the cloud. If secure data
erasure or physical destruction of the whole storage device
are required, identifying and deleting all redundant copies
of a data item in the cloud becomes a tremendous task. If
the storage provider would know from the beginning when a
data item has to be deleted, it could leverage this information
in its storage allocation decision. Contrary, the minimum
duration of storage specifies a point in time before which
the data must not be deleted. Typical use cases origin from
the accounting and tax domain where in many countries
retention periods of documents have to be met. Thus, the
corresponding data has to be stored persistently at least until
the specified date. Again, in order to guarantee a minimum
duration of storage, it is crucial that the storage provider
knows in advance when the data should be deleted earliest.

ITII. DATA HANDLING REQUIREMENTS-AWARE CLOUD

We showed that lawmakers on the one hand and users as
well as companies on the other hand impose requirements
how data should be handled when it is transferred to and

3) Data -
@

User l

Saa$
4) Rqu ')5) Res) 6) m—,

PaaS L,
9) Req ')10)Res)n)—.‘_l__;,

IaaS]

Broker

12) Req

Figure 2. Data Handling Requirements-aware Cloud Stack

stored in the cloud. Now, we discuss first steps towards
meeting these data handling requirements in a cloud imple-
mentation. As we already proposed in earlier work [9], we
use cross-layer data handling annotations in order to signal
data handling requirements across the (inter-)cloud stack.

Figure 2 gives an overview over our envisioned architec-
ture, which we discuss in the following example. Consider
a user who uses a cloud service. Before she hands over
her data to the cloud service, she creates a data annota-
tion containing formalized data handling obligations. These
obligations specify data handling requirements which have
to be guaranteed by the cloud service (e.g., “delete after 30
days”). To prevent sending data to a cloud service that is
not able to fulfill the stated obligations, at first only the data
annotation is sent to the cloud service. Subsequently, the
cloud service matches the data handling obligations against
its data handling policies (i.e., data handling obligations it is
able and willing to follow). In case of a positive match, the
cloud service signs the data annotation and sends it back
to the user. The user now has a proof that the cloud service
will follow the stated obligations and can safely transfer the
data together with the data annotation to the cloud service.

Now, the provider of the cloud service is responsible
for following the data handling obligations. Additionally,
it might itself impose additional obligations. A prominent
example are data protection requirements in the EU, which
require certain data to not leave the legislative boundaries
of the EU. In our example, the cloud service adds another
annotation (“‘do not store outside the EU”). Especially in an
intercloud scenario, a cloud service often uses more than one
PaaS offer to realize its service. Thus, it has to select a PaaS
provider which is able and willing to follow the combined set
of data handling obligations. We propose to utilize already
existing cloud brokers [2] which determine the best provider
with respect to QoS, SLAs, and pricing. These brokers have
to be extended to also support matching of data handling
obligations against policies. As soon as the SaaS finds a
fitting PaaS offer, it will perform the previously described
annotation matching handshake with this PaaS provider. This
way, the SaaS provider also obtains a proof that the PaaS
pledged to follow the annotated obligations.

Similarly, the PaaS provider is now responsible for the
enforcement of the data handling obligations. Again, the
PaaS provider might realize its service utilizing multiple
TaaS providers, e.g., to decrease latency or costs. In order
to find a IaaS provider that is capable of fulfilling the
stated data handling obligations, it uses the services of a
broker (as described above). Finally, the annotation matching
handshake is performed and the PaaS provider receives a
proof from the IaaS provider.

The IaaS maps data onto real hardware and is ultimately
responsible for realizing the stated data handling obligations.
Thus, it has to consider the location of storage when
distributing data on hardware nodes. Additionally, it has to
take measures to meet the duration of storage requirements.

IV. FORMALIZING DATA HANDLING OBLIGATIONS

In order to formalize data handling obligations, we lever-
age and extend the obligations concept of the PrimeLife Pri-
vacy Policy Language (PPL) [11], [12]. PPL is designed as
an extension of the OASIS standardized eXtensible Access
Control Markup Language (XACML) [13] to provide both
access control and usage control functionalities in a data
provider/data receiver scenario. Similarly to our approach,
the actual data transfer should only happen after both sides
agreed upon the handling of the data by comparing their re-
spective data handling preferences (data owner) and policies
(data receiver, e.g., service provider). Within the language
schema, obligation elements enable the data provider to
specify in her preferences how a piece of data is required to
be handled by the receiver, e.g., “delete data within 7 days”.
The data receiver can in turn propose obligations that it is
willing to adhere to in its policy. In the context of matching
preferences against policies, a successful match requires the
obligations of the policies to be less or equally permissive
than those of the preferences.

Obligations in PPL are defined as a set of triggers and
an action element in a context of “do {action} when
{trigger}”. For example, we can define the obligation “do
{delete data} when {7 days passed}”. One obligation
can also have multiple triggers. Triggers are realized by
capturing and storing contextual information (e.g., time)
of the system. The interpretation and execution of actions
however is entirely up to the implementation of the policy
enforcement. Currently, PPL provides only a short, non-
exhaustive list of predefined actions and triggers which can
be combined to create obligation elements.

In the following, we discuss why PPL is a sensible choice
for realizing data handling annotations in a cloud setting.
For policy creation, evaluation and matching, PPL separates
the handling of the original XACML access control part
from the new obligation part, making the latter essentially an
independent component of the language schema. This allows
us to consider the PPL schema of obligations as a basis
for the expression of our data handling annotations. PPL

policies/preferences have a simple, human-readable syntax,
which allows developers and even private users to utilize
our approach. In terms of obligations and authorizations,
PPL is easily extensible and can thus support a great variety
of possible data handling use cases. PPL can be used by
both data providers and data receivers to express their data
handling preferences respectively policies in the same way,
allowing for automated matching without prior translation
of policies. This also facilitates the automated creation
of merged policies, which contain a pair of successfully
matched preferences and policies.

Now, we describe how we utilize the obligation concept
of PPL to address the challenges identified in Section II. The
trigger-based concept of obligations allows us to realize the
maximum duration of storage and thus a guaranteed deletion
of data, as it is, e.g., required by the right to be forgotten.
This approach is also easily adaptable to an obligation
defining a minimum storage duration. Although there is no
predefined obligation regarding the storage location, PPL’s
obligation concept was designed to be easy extensible to
include new obligations. We thus propose to extend the
PPL obligation schema by defining an obligation element
independent of the trigger/action-model, which specifies re-
strictions for the location of stored data. As the specification
of location is possibly ambiguous and matching requires
identical identifiers, this feature will be backed by a database
providing alternative identifiers for each possible location.
The location “Europe”, e.g., contains the range of applicable
IP addresses as well as countries, which can be accessed
during the matching process.

V. ADAPTING A CLOUD STACK

To validate and evaluate our proposed architecture, we are
adapting a cloud stack in order to enable it to interpret the
formalized data handling obligations and react accordingly.
As underlying scenario, we chose a cloud service offering
file storage and synchronization (similar to Dropbox). On
the bottom, we built upon a Cassandra [14] cluster. As PaaS
solution, we use AppScale [15] which utilizes Cassandra as
storage provider [16]. The top of our exemplary cloud stack
consists of a small, self-written program that runs on top of
AppScale and realizes the actual file storage cloud service.

The main challenges when addressing the above data
handling concerns involve the placement of data onto actual
hardware. We therefore adapt those entities in Cassandra
which handle the deployment and replication of data [14] to
include data handling annotations.

One of these entities is the snitch, which essentially maps
nodes to data centers as well as racks, and thus defines
how nodes are grouped together in the overall network
topology [17]. Cassandra itself provides several out-of-the-
box snitches, some of them coming close to our needs
regarding the deployment of data in specific locations. The
snitches designed for Amazon EC2, e.g., map a node to a

whole region (e.g., South America). Because these mappings
are determined and only changeable by Amazon, the existing
snitches do not provide the flexibility necessary for our
scenario. Our approach is a custom snitch which maps nodes
to racks and data centers on a country level. The custom
snitch needs a database with the mapping of IP to country
in order to address the challenges regarding the location
of storage. To address the duration of storage challenges,
the provider can add secure data erasure cycles or planned
disposal of the nodes’ hard disks to this database.

The other two data distribution components of Cassan-
dra we have to adapt are the partitioner and replication
strategy [17]. The system is designed to partition the data
first by assigning keys and computing tokens (the hash) of
the keys and then creating copies of the data and distribute
them among several nodes for reliability and fault toler-
ance. Again, Cassandra provides out-of-the-box partitioners
and replication strategies. For partitioning, we can choose
between an even distribution of data on the cluster (via
consistent hashing) and an (lexically) ordered distribution.
However, both are not feasible for addressing data handling
challenges. As even distribution yields more advantages over
an ordered distribution [17], we modify the even distribution
approach. Our custom partitioner evenly distributes the data
among those nodes of the cluster which are permitted by the
data handling obligations. For this, our partitioner generates
tokens which correspond to the data handling annotation by
including the derived country code as a part of the token
to determine the distribution. For the replication we adapt
an existing replication strategy of Cassandra. Our adapted
replication strategy randomly picks a certain number of
nodes which suffice the given annotation and do not already
store a replica of the data.

AppScale, which runs on top of Cassandra as our PaaS so-
lution, has to be adapted as well. The major task of AppScale
is to pass the annotations to Cassandra. For this, we extend
AppScale’s datastore API [15], [16] by adapting the put ()
command to pass down the annotation together with the data.
Additionally, we change the AppScale configuration files
for the datastores [16] to include our new storage entities.
Similarly, our custom data storage cloud service asks the
user for data handling annotations. It then compares the
annotated obligations against its own policies. If they match,
it receives the data, bundles it with the annotation, and hands
it over to our adapted AppScale instance.

With our custom data storage service and these adap-
tations to Cassandra and AppScale we are able to built
an early, functional prototype of a data handling-aware
cloud stack. This prototype will then allow us to evaluate
functionality, performance, and overhead of our approach.

VI. CONCLUSION AND OUTLOOK

Based on the identified data handling challenges, we
discussed first steps towards implementing a data-handling

aware cloud stack based on data handling annotations. We
showed how we can utilize the PrimeLife Privacy Policy
Language in order to formalize data handling obligations
and policies. Based on this, we discussed how to adapt
Cassandra and AppScale in order to interpret and effectuate
these annotated data handling obligations and policies.

In the future, we plan to extensively evaluate our prototype
cloud stack in order to justify functionality and overhead.
Preliminary results indicate a modest performance overhead
of our solution. Furthermore, we plan to further extend
our approach. Here, we will especially focus on security
as well as enforcing and tracing data handling obligations.
Regarding security, we aim at cryptographically securing the
annotation handshake process as well as binding annotations
to data, e.g., using sticky policies [18]. Our main approach
towards enforcement and tracking data handling is to create
more transparency in the involved processes in the cloud.

ACKNOWLEDGMENT

This work has been funded by the Excellence Initiative
of the German federal and state governments.

REFERENCES

[1] D. Bernstein, E. Ludvigson, K. Sankar, S. Diamond, and M. Morrow,
“Blueprint for the Intercloud - Protocols and Formats for Cloud
Computing Interoperability,” in Proc. ICIW, 2009.

[2] N. Grozev and R. Buyya, “Inter-Cloud Architectures and Application
Brokering: Taxonomy and Survey,” Software Pract Exper, 2012.

[3] R. Hummen, M. Henze, D. Catrein, and K. Wehrle, “A Cloud Design
for User-controlled Storage and Processing of Sensor Data,” in Proc.
IEEE CloudCom, 2012.

[4] S. Pearson and A. Benameur, “Privacy, Security and Trust Issues
Arising from Cloud Computing,” in Proc. IEEE CloudCom, 2010.

[5] D. Song, E. Shi, I. Fischer, and U. Shankar, “Cloud Data Protection
for the Masses,” Computer, vol. 45, no. 1, 2012.

[6] H. Takabi, J. Joshi, and G. Ahn, “Security and Privacy Challenges
in Cloud Computing Environments,” IEEE Security Privacy, vol. 8,
no. 6, 2010.

[71 M. Henze, R. Hummen, R. Matzutt, D. Catrein, and K. Wehrle,
“Maintaining User Control While Storing and Processing Sensor Data
in the Cloud,” IJGHPC, vol. 5, no. 4, 2013, in press.

[8] D. Bernstein and D. Vij, “Intercloud Security Considerations,” in Proc.
IEEE CloudCom, 2010.

[9] M. Henze, R. Hummen, and K. Wehrle, “The Cloud Needs Cross-
Layer Data Handling Annotations,” in Proc. IEEE SPW, 2013.

[10] J. Rosen, “The Right to Be Forgotten,” Stan. L. Rev. Online, vol. 64,
no. 88, 2012.

[11] C. A. Ardagna et al., “PrimeLife Policy Language,” W3C Workshop
on Access Control Application Scenarios, 2009.

[12] S. Trabelsi, A. Njeh, L. Bussard, and G. Neven, “The PPL Engine:
A Symmetric Architecture for Privacy Policy Handling,” W3C Work-
shop on Privacy and Data Usage Control, 2010.

[13] “eXtensible Access Control Markup Language (XACML) Version
3.0,” OASIS Standard, 2013.

[14] A. Lakshman and P. Malik, “Cassandra — A Decentralized Structured
Storage System,” SIGOPS Oper. Syst. Rev., vol. 44, no. 2, 2010.

[15] N. Chohan et al., “AppScale: Scalable and Open AppEngine Appli-
cation Development and Deployment,” in Proc. CloudComp, 2009.

[16] C. Bunch et al., “An Evaluation of Distributed Datastores Using the
AppScale Cloud Platform,” in Proc. IEEE CLOUD, 2010.

[17] “Apache Cassandra™ 1.2 Documentation,” DataStax, Inc., 2013.
[Online]. Available: http://www.datastax.com/docs/1.2/

[18] S. Pearson and M. Mont, “Sticky Policies: An Approach for Managing
Privacy across Multiple Parties,” Computer, vol. 44, no. 9, 2011.

