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ABSTRACT
Wireless low-power embedded devices are populating indoor
environments, where everyday activities drastically impact
communication. We explore a statistical approach to iden-
tify changes to the communication links state during system
operation. The long-term behavior of the link RSSI is mod-
eled with a normal distribution and compared against the
model of the most recent measurements. A Welch’s t-Test is
then employed to identify whether the short-term and long-
term link evolutions stem from the same distribution. Upon
significant divergence, the long-term model is updated and
a significant change in the underlying communication state
is inferred. We investigate this technique to efficiently store
a compressed fingerprint of the evolution of communication.
Considering the memory constraints of low-power embed-
ded systems, this approach allows to gather extensive in-
formation on the behavior of communication directly from
the deployed network. This fingerprint could then be used
to replay the network dynamics in simulation. We imple-
mented the introduced techniques to prove their feasibility.
In controlled experiments, we evaluate the reactivity and
sensitivity of the approach to changes in the environment,
as well as the accuracy of the resulting channel fingerprint.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless Communication

Keywords
sensor networks; IEEE 802.15.4; real-world measurements;
indoor testbeds; communication models

1. INTRODUCTION
In low-power embedded networks, the environment affects

the communication quality between devices. This holds in
particular in indoor scenarios, i.e., rapidly changing settings
where network quality suffers from events such as people
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Figure 1: Evolution of a single 802.15.4 link between
Sunday 22 and Tuesday 24, in April 2012.

crossing a wireless link and doors being opened or closed.
Figure 1 depicts the RSSI trace of a representative IEEE
802.15.4 [1] wireless link, as measured in an indoor testbed
at our department. During working hours, people activities
manifest in a variable and short-term impact on the observed
RSSI; during the weekend or nights, the link exhibits instead
a stable behavior. Interestingly, there is a clear difference
in the average RSSI between two consecutive nights, which
must have been caused by more structural changes in the
scenario, e.g., doors or windows.

Adaptive network algorithms try to cope with these ef-
fects by controlling parameters such as transmission power
or routing paths. Their effectiveness is dependent upon the
ability to accurately and rapidly characterize the link be-
havior. All the approaches from the literature (Section 2)
focus on specific, short-term dynamics of the communication
links. Moreover, these studies are typically done in con-
trolled environment; once deployed, continuously monitor-
ing the details of the communication behavior is considered
impractical. As a result, several dynamics, caused by the
environment in which the technology is immersed once op-
erational, are disregarded. These become visible only from
a long-term perspective, as shown in Figure 1 in the link
dynamics over two consecutive nights.

In this paper, we introduce a strategy to estimate the cur-
rent communication state and detect significant changes in
its development over time (Section 3). The work is based on
the long- and short-term evolution of the RSSI of a wireless
link. We exploit its normal distribution in stable links and
its high sensitivity to environmental changes to employ tra-
ditional statistical analysis techniques, which can be effec-
tively implemented on resource-scarce devices. By observing
online the RSSI of incoming links, a Welch’s t-Test reveals
if the short-term evolution statistics deviate from the long-



term ones. In this case, the recent model replaces the old
one, and this information is exposed to other network layers.

We executed several experiments to evaluate the approach
in a real indoor low-power wireless testbed (Section 4). The
results shows that environment dynamics can be followed
with a delay of 5 to 10 seconds, depending on the configura-
tion of the stability test and the sample size (Section 5). Fur-
thermore, we investigate the possibility to use the recorded
sequence of identified models as a compressed fingerprint of
communication over time, e.g., to replay wireless links in
simulation a posteriori (Section 6). Such an effective com-
pression of the incoming RSSI measurements, with limited
accuracy loss, will enable us to observe long-term behavior
of communication in deployed networks (Section 7).

2. RELATED WORK
This work relates to modeling wireless communication,

online computation of model states, and estimation of link
state in adaptive protocols.

Modeling wireless communication. Wireless commu-
nication can be described by different flavors of propaga-
tion models [4], and through experimental studies [11, 13]
With more complex environments, obstacles and materials
need also to be taken into account, adding complexity to
the resulting model [5]. While these models provide static
description of communication, its actual behavior manifests
a time dependent factor, mostly caused by the movement of
obstacles in the environment. In [2], the authors matches
different statistic distributions, e.g., Normal, Laplace, to
wireless measurements collected in indoor scenarios. The
authors then only envision the possibility of detecting on-
line the best fitting distribution. While these studies offer
great insights on the actual behavior of wireless communi-
cation, they provide off-line techniques that describe a pos-
teriori the evolution of the network. We aim, instead, at a
general channel fingerprinting method capable of identify-
ing changes in the communication state at runtime, without
prior knowledge. Moreover, we aim at a computationally
efficient solution that can be executed on embedded devices
with limited memory and computational requirements.

Resource-efficient online computation of models. The
computation of models online, based on current measure-
ments, is a promising technique that can be exploited in
a wide range of application scenarios. In [10], the authors
use derivative-based prediction to match light measurements
against a linear model and reduce the amount of data com-
municated to the base station. The work clearly demon-
strates the feasibility and effectiveness of employing mod-
eling techniques on constrained devices. However, while a
linear approximation is sufficient to fingerprint the evolu-
tion of light in road tunnels, it cannot be employed in our
scenario to model communication dynamics.

Online estimation of link quality state. The authors
of TALENT [8] try to combine long- and short-term quality
metrics in order to exploit bursty links, i.e., intermediate
quality links that exhibit times of high reliability. Bursty
links were initially explored in [3], where such links were ex-
ploited as shortcuts in multi-hop networks. Similarly, in [8],
the authors employ an online machine learning algorithm
for predicting short time intervals with high reliability. The
information about the predicted availability of such links
can then be exploited by the routing algorithm. These ap-

proaches exploit short-term behavior of the links and focus
on specific link characteristics.

3. MODELING COMMUNICATION STATE
In typical indoor settings, heterogeneous factors, e.g., peo-

ple walking and modifying the environment, produce very
different and unpredictable impact on individual wireless
link characteristics. In this section, we propose an approach
to model link states based on the observation of RSSI over
time. The simplicity of the approach allows an effective
implementation for resource-constrained devices, which can
then directly observe online the dynamics of communication.

3.1 Link State Model
As analyzed in [2], a stable link RSSI can be approxi-

mated with a normal distribution. By observing a specific
incoming link, we can take a sequence of measurements,
X = {Xt1 , . . . , Xtn}, at the time messages are received. It
is then possible to compute the sample mean, Xn, and the
sample variance, S2

n, over n observations and use them as
point estimators for the underlying normal distribution of
the measured link, N (µ, σ2). When an event in the environ-
ment happens, the wireless propagation characteristics may
change. The incoming link RSSI can then be newly sampled,
X′ = {Xt(n+1)

, . . . , Xt2n}, and the point estimators of the

current underlying distribution, N (µ′, σ′2), recomputed.
To analyze whether the actual properties of the link have

changed, the two distributions need to be compared and
significant differences need to be identified. The problem
is redolent of a hypothesis test. It could be interpreted as
testing two samples X and X′ as belonging to the same
underlying distribution. In the case they originate both from
the same period of stability, no difference should be found.
If one of the samples originates from a period in which the
RSSI distribution differs from the sample of the other period,
the difference should be detected.

3.2 Sampling RSSI
We define the history of a link RSSI as the sequence

Xt1 , . . . , Xtn of measurements for different points in time
t1 < . . . < tn ≤ t with t the current time and ti+1 − ti = c.
Most environmental events affect the link RSSI quickly; we
then use a fixed size sliding window over the immediate past
history, denoted as hshead with size s. Each time a measure-
ment is taken, it is added to the history, and the oldest
measurement is removed to maintain a fixed size s. The re-
moved entry is added to another history, htail, of variable
size, which captures the long-term evolution of the RSSI.

After updating the two histories their respective statistics
are compared through an affinity test. If the affinity test
succeeds, the short-term evolution (hshead) supports the sta-
ble long-term evolution (htail) and the next measurement is
taken. Otherwise, the two distributions N (µhead, σ

2
head) and

N (µtail, σ
2
tail) are different such that the stable long-term

evolution is not supported by the immediate past anymore,
forcing a model change. In this case htail is replaced by hshead
and the hshead has to be rebuilt from new measurements.

3.3 Affinity Test
For the affinity test, the Welch’s t-Test [12] can be chosen

as the statistics on the histories of stable links are normally
distributed. Let X1

1 , . . . , X
1
n1

and X2
1 , . . . , X

2
n2

be two sam-
ples of different size n1 6= n2, with unequal variances σ2

1 6= σ2
2



and Xk
i

i.i.d.∼ N (µk, σ
2
k), with 1 ≤ i ≤ nk, k ∈ {1, 2}. The

test in consideration is given by H0 : µ1 = µ2, and it can
be interpreted as testing if the samples being drawn orig-
inate from the same population. Both the means and the
variances have to be estimated from the samples; therefore,
µk := Xk and σ2

k := S2
k. The test statistic, then, becomes

T =
X1 −X2√
S2
1
n1

+
S2
2
n2

which is a normalized distance in terms of the combined
variance. It follows a Student’s t-distribution with parame-
ter ν:

ν =

(
S2
1
n1

+
S2
2
n2

)2
S4
1

n2
1(n1−1)

+
S4
2

n2
2(n2−1)

The hypothesis H0 on significance level α is rejected when
|T | > tν,1−α/2, where tν,1−α/2 denotes the quantile func-
tion of the t-distribution for quantile 1−α/2 and degrees of
freedom ν and it is commonly looked up in a table.

Therefore, for each of the two histories employed in our
specific scenario, the corresponding statistics can be com-
puted, and the Welch’s t-Test can be performed with hy-
potheses H0 : Xtail = Xhead and significance level α. The
test yields two outcomes of acceptance: the two histories
either stem from the same normal distribution (H0) or arise
from different normal distributions (H1). In the case H0

is accepted, no model change occurs, and the distribution
N (Xtail, S

2
tail) is updated incorporating the oldest measure-

ment form hshead. In the case H1 is accepted, a model change
is detected, changing the long-term link distribution param-
eters from N (Xtail, S

2
tail) to N (Xhead, S

2
head). The initial

time of validity of the new model is then assigned to be the
timestamp of the oldest entry in hshead. The higher network-
ing layers can then be notified that a model change occurred
with the information about the old and new model. The in-
formation consists of the statistics of the old model that is
outdated and the statistics of the new model, representing
the current communication state.

3.4 Implementation for Low-Power Devices
More complex solutions than the one introduced are pos-

sible, e.g., employing a different set of distribution models
to increase the precision of the acquired link description. As
envisioned in [2], we could try to identify at runtime the dis-
tribution model, e.g., Normal or Laplace, that best describes
the current observations. However, we target a method that
could be easily implemented on embedded devices, lacking
memory and processing capabilities; the realization of more
complex techniques would be then arguably infeasible.

To prove the effectiveness of our approach, we implemented
it in TinyOS [7], so to be executed on embedded platforms,
e.g., TelosB [9] featuring a CC2420 radio chip [6] as in our
own testbed. The history hshead is implemented as a fixed
sized ring buffer. Once full, it is updated by removing the
oldest entry and making room for a new observation. The
old measurement is then added to the history htail. For
the long-term history htail, only the statistics are necessary,
which are updated each time a measurement is added; this
is sufficient as the approach requires measurements only to
be added or the complete history to be replaced. For the
Welch’s t-Test, the estimators X and S2 for both histories
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Figure 2: Indoor testbed of 14 TelosB devices.

are calculated once a new measurement is recorded, the test
statistics are computed, and the value for a predefined α,
set at compile time, is looked up in a table. The look-up
table is built at compile time for a specific α. The required
computation is, therefore, restricted to compute few math-
ematical operations, i.e., average and standard deviation,
and to access simple data structures, i.e., ring buffers and
precomputed look-up tables.

4. EXPERIMENTAL SETUP
In this section, we introduce our testbed setup and the set

of experiments that we performed.

4.1 Experiments
The experiments were conducted in an indoor testbed at

our department, composed of 14 TelosB wireless sensor de-
vices distributed in a corridor and several offices as depicted
in Figure 2. Node #1 lies on a desk; all the other devices are
installed on the ceiling. The nodes are running the firmware
described in Section 3.4; they are also connected with a se-
rial back-channel to a machine logging the measurements.
The same machine acts as an orchestrator for a collision-free
communication schedule, selecting the node which is next to
perform a send of a packet over the radio. This allows to
generate traffic and measure link RSSI without the impact of
interference as caused by concurrent transmissions. This is
implemented through commands sent via serial connection
to the nodes in a round robin fashion with a fixed interval
of 50 ms, resulting in each link being checked every 700 ms.
We used a configuration for the firmware in which the sig-
nificance of the Welch’s t-Test is α = 0.005, and the size of
hshead is s = 15. The 802.15.4 radio channel was set to 11, a
channel free from concurrent 802.11 networks at the time of
the experiments; no radio duty cycling was employed.

To be able to trace single environmental effects, the ex-
periments were conducted at times without people in the of-
fices. The experiments conducted were closing and opening
a door (denoted as “reference door” in Figure 2) and open-
ing and closing a window (denoted as “reference window” in
Figure 2). We refer to each experiment scenario respectively
as Door and Window. These events were chosen in order
to examine the impact of environmental effects introduced
by changes at the perimeter (Window) and inside (Door)
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(b) Window size = 30 and α = 0.1

Figure 3: RSSI trace and derived models (average
and variance) for different configurations. A new
model describes the short-term history at the time
of a model change detection. An old model rep-
resents the long-term history as computed at the
time of a model change; its timestamp corresponds
to the one of the most recent sample in the long-
term history. Increasing window size and α results
in a decreased number of generated models and a
worse adherence to the link dynamics.

the network. The person running the experiments used a
single reference position during all the measurements.

In the Door scenario, the person running the experiments
(1) timestamped the beginning of the experiment, (2) walked
slowly to the already opened door, (3) traced the reach of the
door, and (4) closed the door slowly (in approximately 2 s);
finally, the user (5) walked back to the initial position, and
(6) recorded the end of the experiment. The same procedure
was repeated for opening the door few minutes afterwards.
A similar procedure was used in the Window scenario. To
trace the steps, a dedicated device, held by the person in the
experiments, was programmed so that, at the press of a but-
ton, a message was sent to the other nodes, timestamped,
and recorded at the data server via the serial back-channel.
The transmission power levels (in dBm) were chosen to be
pd ∈ {−25,−15,−10,−7,−5,−3,−1, 0} in the Door sce-
nario and pw ∈ {−15, 0} for Window. Each combination of
experiment and power level was executed three times.

4.2 Replaying Measurements in Simulation
The introduced technique presents several parameters: the

significance level α, the windows size s of hshead, and the
transmission power level p. A reasonable exploration of the
parameter space is infeasible through in-field experiments.
Furthermore, as the environment is not fully under con-
trol, the experiments might not be comparable due to un-
known effects that are introduced in between experiment
runs. Therefore, we implemented a simulator in charge of
replaying offline raw RSSI traces, collected as previously de-
scribed. In this way, while the transmission power p clearly
affects the measured RSSI signal (and therefore cannot be
simulated reliably), different α and s values can be explored
offline. This approach may introduce deviations due to the
different floating point precision between the simulation and
the implementation for embedded devices. We measured the
differences by comparing the simulated results for the same
parameter values used by our firmware during the exper-
iments, observing negligible deviations. In Section 5, we
then use simulation to explore the parameter space.

5. MODELING EVALUATION
Before discussing the use of the introduced technique for

link fingerprinting, we evaluate the approach in terms of
sensitivity and reactivity of the model change detection.

5.1 Metrics: Sensitivity and Reactivity
Figure 3 depicts the impact of different α and window sizes

on the generation of the link models for the same RSSI trace.
As it can be seen, a large window size and a high α corre-
sponds to a decreased number of generated model. Instead,
a lower α and a smaller window size are more susceptible
to marginal fluctuations in the measurements, with a better
adherence to the major deviations caused by real events hap-
pening in the environment. To better analyze these effects,
we introduce the sensitivity and reactivity metrics.

Sensitivity. The events happening in the environment dur-
ing the experiments, e.g., the door opening or the beginning
of the person movement, have reference timestamps. Ideally,
one single model change is produced for each event happen-
ing in the environment. In reality, it happens that models
are produced without a real event to which they can be
mapped (false positives), or, on the contrary, that events do
not have a corresponding model (false negative). We then
compute the number of false positives fp as

fp =
nmodels − nmappings

nmodels

where nmodels is the number of all computed model changes
and nmappings denotes the number of successfully mapped
events. We can similarly compute for the false negatives

fn =
nevents − nmappings

nevents

where nevents is the number of recorded events.

Reactivity. In each experiment run, six events are recorded.
We further characterize the behavior of the approach through
the delay between each event and a corresponding model
change. First, the model changes have to be mapped to
events with a constrained maximum delay. We therefore
match the closest model changemcm within a distance thresh-
old of dmax = 40 s to an event em. If the model change mcm
is situated between two events within the distance threshold,
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Figure 4: Sensitivity results for the Door scenario
with power level −7 dBm with α = 0.005.

it will be mapped to the closer one. If a model change mcm
is successfully mapped to an event em, it is not available for
further mapping to other events. The reactivity measure for
a matching is given by

rm = t(em)− t(mcm)

where t(em) denotes the timestamp of the event taking place.
The value of t(mcm), instead, denotes the time of the oldest
entry in hshead over which the model change was computed.

5.2 Filtering Unaffected Links
From the gathered measurements, it is evident that some

links are not affected by the occurrence of any event. For
these links, the model changes are triggered by noise. This
is due to the nature of the t-Test, which becomes more re-
sponsive to outliers for more stable statistics. The stability
can be measured through the variance of a model. In the
case of unaffected links, the long-term statistics exhibit a
small variance. Noise affects the short-term statistics to di-
verge from the stable long-term model, generating a model
change with almost unobservable magnitude. The difference
in the variance between unaffected and affected links is typ-
ically significant. Therefore, in the following discussion, we
analyze links exhibiting a variance higher than t = 4. Below
this value, noise was indistinguishable from real events.

5.3 Results
Figure 4a shows the statistics (average and standard devi-

ation) of false positives for different short-term history sizes.
It is possible to notice that for small short-term history sizes
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Figure 5: Reactivity results for the Door experi-
ments for power level −7 dBm with α = 0.005.

the average of the relative false positives is very high with a
low standard deviation. This is motivated by the fact that
noise in the RSSI traces affects the statistics for computing
model changes significantly more if the short-term history is
small. In fact, many more model changes are computed and
the mapping to events succeeds only for few of them.

When the short-term history becomes bigger, instead, the
average number of false positives decreases but the stan-
dard deviation increases. This effect can be explained by
the alignment of the model changes. If the remaining few
model changes are far away from the events, they become
false positives. If they are computed within the provided
limits for the mapping, they are matched to an event, de-
creasing the number of false positives. The overall opposite
trend is observable in Figure 4b, which shows the relative
number of false negatives for the same experiment.

For reactivity, the average distance of the mapped model
changes to the underlying events is shown in Figure 5a. It
can be seen that the average increases for increasing short-
term history size due to the alignment effect. This motivates
the use of smaller short-term history sizes. In Figure 5b, the
impact of different α values is depicted. Due to the clear
steps caused by the investigated events on the RSSI signal,
the significance of the Welch’s t-Test has little impact; the
new model distribution clearly differs from the old one.

We now look at the results from different transmission
powers for the Door scenario and focus on power levels −10
and −7 dBm, which present the major differences among all
the pairs of adjacent power levels. Figure 6 shows, however,
that the trend for different short-term history sizes is the
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Figure 6: Reactivity for different power levels with
α = 0.005 in the Door scenario.

same. The most noticeable differences are only small con-
trary changes for contiguous short-term history sizes. This
holds for all other power levels and results in the power level
having marginal effect on the behavior of the approach for
different short-term history sizes or significance levels α.

Lastly, we compare the Door and Window scenarios. In
Figure 7a, the distributions for the window experiment with
varying short-term history size, significance level α config-
ured to 0.005 and power level set to −15 dBm is shown.
For comparison, the plot for the door experiment with the
same settings is shown in Figure 7b. Minor differences in
the average and in the standard deviation can be identified
for small short-term history sizes. Nonetheless, the overall
trend is comparable. The same findings also apply to the
significance level α. Overall the behavior of the approach in
response to the different events does not differ significantly.

6. FINGERPRINTING COMMUNICATION
In the previous section, we analyzed the presented ap-

proach in relation to the events happening in the environ-
ment. This is the typical direction followed in the design of
adaptive network protocols, in charge of exploiting and re-
acting to changes in the communication characteristics. For
these specific mechanisms to be effective, it is mostly impor-
tant to reduce the delay in detecting significant variations
while minimizing the number of ineffective reconfigurations,
as caused by false or marginal model change detections.

We, instead, envision a different possible use for the in-
troduced approach. In particular, we consider a deployed
network in a typical indoor environment. Such system is

0 10 20 30 40 50 60

Window Size [# Measurements]

0

5

10

15

20

25

30

R
ea

ct
iv

it
y

[s
]

(a) Window scenario

0 10 20 30 40 50 60

Window Size [# Measurements]

0

5

10

15

20

25

30

R
ea

ct
iv

it
y

[s
]

(b) Door scenario

Figure 7: Reactivity for different scenario with
power level −15 dBm and α = 0.005.

subject to different combination of the events with which we
experienced in our study. Most importantly, these events
may cause the communication characteristics to bring the
system to a malfunctioning or failure. Little (if any) knowl-
edge is currently available on communication during long
periods of time in real scenarios where extensive and con-
trolled measurements can not be taken. This is even more
emphasized in the context of resource-constrained devices,
which are foreseen to densely populate indoor environments.

Therefore, we investigate the possibility to integrate the
proposed approach in the normal functioning of the system.
Each node could observe the incoming links and record the
information about the detected communication models, in-
stead of the raw RSSI observations. Upon failure or mal-
functioning, or even during normal system operation, these
fingerprints could be provided as information of the system
evolution and possibly be related to root causes of faults.

To evaluate the effectiveness of this fingerprinting tech-
nique, we measure the accuracy of the sequence of models in
closely describing the experienced link dynamics. To achieve
this, we generate in simulation an artificial trace by draw-
ing observations from the recorded models. Such artificial
traces are then compared with the originally measured ones
and the error computed. Figure 8 shows that the absolute
error is for most links around 1 dBm. Considering that the
measurement on real hardware do not have decimal preci-
sion, the replayed trace very closely follow the original one.

Finally, we compute the ability of the fingerprinting to ef-
fectively compress the raw measurement traces. Excluding
timestamps, a single RSSI sample requires 8 bits; each com-
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Figure 8: Average absolute error between replayed
simulated traces and original measurements. The
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Figure 9: Memory requirements for storing the link
models compared to storing the raw RSSI values.
Most of the signals can be compressed to finger-
prints of less than one forth of the initial size.

munication change detection provides information about the
new and the old model (average and variance) for a total of
128 bits. For the results collected in our experiments and the
models generated directly by the devices, the fingerprints
take in most of the cases less than 25 % of the memory re-
quired for the raw observations, as shown in Figure 9. This
allows to save 4 times more information about the evolution
of communication in the running system.

7. CONCLUSION AND FUTURE WORK
We proposed an approach to fingerprint wireless commu-

nication online in an operational network for indoor scenar-
ios. During normal human activities, periods of stability and
variability of RSSI typically alternate. Our technique de-
tects such state changes relying on statistical methods based
on a long-term model of the link RSSI history and a short-
term model of the immediate past RSSI measurements. A
Welch’s t-Test then states whether the short-term and long-
term link evolutions stem from the same distribution or the
short-term model deviates from the long-term one. In the
latter case, a communication model change is inferred.

We implement the technique for resource-constrained de-
vices, demonstrating the feasibility of the approach. In con-
trolled experiments, we analyze the behavior of the approach
under different conditions and configurations. Starting from
these results, we investigate the possibility to employ the
approach for communication fingerprinting. The final out-

come supports the idea of using the introduced approach to
compress the evolution of the incoming links directly on the
devices once deployed in their real environment.

We foresee different directions as future work.

Stability of models. When a new model change is de-
tected, the link might not be stable yet. By measuring the
stability of a new model, the link description could be fur-
ther refined. Higher layers could then avoid unstable links
or tune the radio parameters only once stability is reached.

Link correlation. Links in an area of an environmental
change may observe the same effect on the wireless channel.
The correlation of different link models can then be used as
an activation pattern for events. The activation pattern can
then fingerprint network states instead of individual links.

Multi-dimensional link modeling. Communication can
be measured through different metrics, e.g., LQI and SNR
for short-term estimation, or PRR for long-term estimation.
Those estimators could be combined in a multi-dimensional
fingerprint, increasing the precision of the link description.
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