Can P2P swarm loading improve the robustness of
6LoWPAN data transfer?

Marcel Bosling, Torsten Redmann, Jean Tekam, Elias Weingértner and Klaus Wehrle
RWTH Aachen University

Abstract—The recent arrival of 6LoWPAN, an IPv6 variant
for low-power wireless devices, allows for the development of IP-
based applications for low-power wireless networks like sensor
networks. As these networks often suffer from unreliable radio
channels or frequent node failure, the question arises how
6LoWPAN-based applications can be hardened against such
issues. In this paper, we examine if well-known concepts from the
research domain of P2P networks can be applied for increasing
the robustness of 6LoWPAN networks. For this purpose, we
design and implement a straightforward P2P system for data
sharing that is adapted to the low system capabilities of a
typical 6LoWPAN device. Our preliminary evaluation shows that
P2P mechanisms like swarm loading are able to improve the
robustness of a 6LoWPAN application.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) are changing more and
more from a mere research domain into a key technology
with a high commercial potential. Companies such as Philips,
Dust Networks and ArchRock (aquired by Cisco in 2010) are
developing or are already marketing sensor networks software
and hardware products. One important driving force behind the
rising commercialization of WSNs is 6LoWPAN [8], [11]. It
brings IP-based communication to embedded network devices
and WSNs and hence facilitates their integration into common
IP-based infrastructures, most notably the Internet.

In the meanwhile, peer-to-peer (P2P) [12] services for
VoIP (e.g. Skype) and for file-sharing (e.g. BitTorrent [2],
Gnutella [5]) have established themselves as important tech-
nologies for content delivery in the Internet of today. The
reason is that P2P mechanisms effectively distribute resources,
such as bandwidth capacities and storage, among participating
nodes. One major application for P2P systems in the Internet
is bulk data transfer.

The major advantage of P2P over client-server distribution
systems lies in the ability to download partial content from
different clients in parallel. This makes these schemes robust
against node failure and improves content availability. Admit-
tedly, transferring bulk data is less important for the execution
of sensor network applications. However, one exemplary ex-
ception are software updates over the air: Here, binary images
ranging in size from a couple of kilobytes to a few megabytes
need to be distributed to the WSN nodes. This data can be
considered bulky, as its size by far exceeds the capacity of a
network packet.

Given the resource constraints of WSNs, this leads to the
important question whether P2P mechanisms can be applied
to wireless sensor networks. Therefore, applying off-the-shelf

P2P protocols like BitTorrent or Gnutella for wireless sensor
networks directly, is difficult. Typical issues are too bulky
packet formats that exceed the frame capacity or the potential
use of cryptographic operations that are too costly to compute
on WSN hardware. In this paper, we address these challenges.
More specifically, the contributions of this paper are the
following:

o In Section II we present our ongoing work on a light-
weight P2P architecture for bulk data distribution in
wireless sensor networks. The design builds on top of
6LoWPAN and hence allows for the bulk data exchange
also in heterogeneous 6LoWPAN deployments with dif-
ferent MAC layers and sensor devices in place. We
also highlight different challenges related to the actual
implementation of P2P systems on sensor hardware.

o We present an overview over our corresponding imple-
mentation based on TinyOS 2.X and the BLIP 6LoWPAN
stack in Section III.

¢ In Section IV we evaluate the efficiency of our P2P
distribution system in a real-world WSN deployment. We
particularly investigate the effect of the swarm loading
feature, which enables the parallel download of bulk data
from multiple P2P sensor nodes, on the robustness of the
data transfer.

We briefly discuss related work in Section V before con-
cluding the paper in Section VI.

II. P2P OVER 6LOWPAN

We now discuss the general aspects and the design of a P2P
system for 6LoWPAN networks.

A. Short Introduction to 6LoOWPAN

IPv6 over Low power Wireless Personal Area Networks
(6LoWPAN) [11] is a specification for implementing IP based
communication over IEEE 802.15.4, a common PHY/MAC
layer for WSNs. The main challenge is the maximum MAC
frame size of 102 octets supplied by the IEEE 802.15.4
protocol in contrast to an MTU of at least 1280 octets specified
by IPv6 [9]. Further issues are the limited reliability of devices
in WSNs and the difference in functionality of full function
devices (FFDs) and reduced function devices (RFDs) which
may penalize link- and mac-layer security functions. The
challenges addressed by 6LoWPAN are widely discussed in
[10]. The main advantage of 6LoWPAN are the inherited
stateless auto configuration of IPv6 networks, the large address

Node 2 Node 3

el fafel

Node 4

[l

HERE

Node 1

Fig. 1. Swarm loading: downloading blocks of data from different peers in
the network.

space and the integration of WSNs into heterogeneous IPv6
networks.

B. A simple P2P protocol for 6LoWPAN

The main goal of P2P networks is the efficient use of all
communication partners for speeding up the distribution of
data throughout the network. In WSNs this is interesting for
(autonomous) distribution of new firmware images and other
bulk data. This can be accomplished by a technique known as
swarm loading (segmented downloading, multi-source down-
loading) where different blocks of data are retrieved from
different peers within the network as shown in Figure 1. In
order to enable swarm loading on WSNs a P2P logic has to
be implemented to coordinate the download of data blocks.
Our P2P logic is depicted in Figure 2. It relies on two distinct
communication channels, a designated command channel and
a separate data channel. An additional shell-based channel is
used for user control. The protocol itself operates as follows:

1) To signal a node that it should acquire a file, a Gather
command is sent over the shell. This command contains
the name of the file.

2) The requesting node will then send a Query to all
reachable nodes using multicast. The query message also
contains the file name.

3) All nodes that have the file answer with a Hit message
containing data about the file and what blocks they hold.

4) The requesting node then selects a source and sends a
Request for one block to the source node.

5) A UDP datagram containing the block and necessary
management information (e.g. a block CRC) is returned
to the requesting node.

This process is repeated until all blocks have been retrieved.
This assures that blocks that were not reachable at known
sources before, but have been acquired by those nodes since
then, will also be downloaded.

III. IMPLEMENTATION
We now describe important aspects and the architecture of
our 6LoWPAN-based P2P system.

A. Implementation environment

The application is built on top of TinyOS 2.X, an operating
system for wireless sensor networks based on components
and written in the nesC language. Our implementation builds

| 1| Gather command via shell

_| return Hit
£~ —E
&

o
&
5 | return block

Ol &~ o g
o &7 T

Fig. 2. Steps of the P2P protocol. 1.: A node receives a Gather command
over the user shell. 2.: The node sends a Query for the file using multicast.
3.: It will eventually receive Hit messages for blocks of the file from nodes
holding the file. 4.: The gathering node will then Request a block from
answering nodes. 5.: The node receives a requested block. 6.: If the file is
still incomplete it sends subsequent Queries for the file.

_| multicast Query

o7

[4] Request block
& &

_| multicast Query

on top of the Berkeley Low-power IP stack (BLIP) [1],
which implements 6LoWPAN for TinyOS. BLIP features a
dynamic, multi-hop capable topology. Because of apparent
stability issues with BLIP’s TCP implementation, we use its
UDP implementation for all communication tasks instead. In
addition, we rely on BLIP’s UDP shell functions to implement
the user shell, which is mainly used for instructing nodes to
gather a file.

B. System Architecture

NetworkManager

y

’ FileManager ‘

BlockStorage

Fig. 3. High-level architecture of our 6LoWPAN system: The functionality
is encapsulated into a small set of TinyOS components.

} RequestLogic ‘ } BLIP

Figure 3 depicts the high level architecture of our TinyOS
implementation. The following components are used to put
our P2P protocol into action on top of BLIP:

e The main component and focal point, connecting the
other components, is the NetworkManager. It parses all
incoming messages and composes all outgoing messages.
For this, it can access the other components to initiate
storage/retrieval of data, or to forward data from one
component to another.

o The FileManager handles everything pertaining to files.
Files are identified by their name (considered to be

unique) and have a size measured in blocks as well as
a CRC value for integrity checks. Regarding storage of
the actual file data, the FileManager only saves a single
address, pointing to the first data block in storage. Data
is accessed using the BlockStorage component, which
wraps around TinyOS’ own block storage implementa-
tion and extends it. We chose block storage because it
allows direct access to the flash memory by addresses.
Additionally, we chose a data model that complements
the swarm loading aspect even further, by partitioning the
files into the same blocks that are sent over the network.
Only the starting addresses of these blocks and their
length are used. We perform integrity checks on every
incoming block before it is saved, discarding corrupt
blocks entirely.

o All information from incoming Hit messages is handled
by the RequestLogic component. It stores data about
viable source nodes for a file and generates requests for
blocks that are missing.

IV. EVALUATION

We now investigate the performance of our P2P system for
6LoWPAN networks. The metric used in all evaluation runs
is the average completion time for the nodes to complete the
retrieval of a file.

A. Evaluation setup

We evaluated the performance of our swarm loading ap-
proach in a deployment of 12 TelosB nodes, with one of
them serving as the base station for BLIP. The tests were
conducted by loading a test file of 5.4 kilobytes (separated into
blocks of 64 bytes) onto one node and then setting a specific
number of randomly chosen nodes to start acquiring the file
simultaneously. For this purpose, we modified the program so
that the nodes themselves measure the time it took to acquire
the file. The nodes report these measurements back to the base
station. This way, there is no effect of the time needed to
send the command to the node or the answer back to the
base on the measurement. Additionally, as it was our intent
to test the performance of the swarm loading approach, the
measurements were made with two different settings for the
RequestLogic component. The first setting was a non-swarm
loading setting where nodes select only one source, but request
four blocks from this source at a time. The swarm loading
setting was configured so that nodes would request blocks
from a maximum of four source nodes with one block per
source at a time. This means that the amount of messages
generated by requesting nodes should on average be the same
for both settings, resulting in a comparable amount of network
traffic.

The routing tree maintained by BLIP changed often, provid-
ing a realistic simulation of a rather chaotic environment and
thereby enabling us to draw more generalized conclusions.

B. Experimental results

During our evaluation deployment, measuring loading times
turned out to be challenging, as the network became increas-

4 Without Swarm loading

100 I

Time (s)

1 2 3 4 5 6 7

Nodes loading simultaneously

Fig. 4. Data for individual measurements of the non swarm loading setting.
Values are slightly offset around their x-values to be discernable. The averaged
individual measurements are close together, however, the standard deviation
for each test is enormous, indicating bad performance.

ingly unstable with increasing number of active nodes. When
using more than seven nodes trying to load files simulta-
neously, routing breakdowns happened often. This resulted
in nodes becoming unreachable and therefore significantly
hindering the tests. We attribute this behavior to the broadcast
storm that is caused by a higher number of nodes if they are
instructed to gather files concurrently.

Performance without swarm loading: In Figure 4 we depict
the result for the non swarm loading tests. Times were aver-
aged over the different test runs. For an increasing number
of concurrently downloading nodes, the network becomes
unstable. In fact, it was not possible in our deployment to
perform reliable tests with more than seven loading nodes at
the same time: crashes were inevitable. This can be explained
by the overwhelming of bottleneck nodes: the sheer amount of
requests to a single source node seems to disrupt the messages
BLIP uses to build the routing tree, and therefore causes it
to drop routes to nodes. The measurements that could be
made consistently show a high standard deviation, meaning
that although average loading times are similar, the individual
times are very different, with some nodes taking many times
as long as others.

Swarm loading enabled: Figure 5 contains the result for
the swarm loading tests, showing that individual measurements
have small standard deviations. We can see that while the time
needed for all nodes to finish loading differs more if more
nodes are active, almost always all nodes finished roughly
at the same time. The file’s blocks propagate through the
network, becoming accessible from more nodes, which are
then selected as sources by other nodes. There is also a serious
improvement of the reliability of the network, making stable
test runs with at least ten nodes possible.

Comparison: Figure 6 compares both measurement runs,
with swarm-loading enabled and disabled, respectively. In both
cases, we now average over all values for one node count. We
clearly see that the standard deviation of the download only
slowly grows if swarm loading is enabled. If we disable swarm

100 - T T

A With Swarm loading

80 |-

B i
s aligl M—’M —
!

60

Time (s)
B
ja]
I
-t
|

200 A
&

0 \ \ \ \ \
0 2 4 6 8 10

Nodes loading simultaneously
Fig. 5. Graph showing the data for individual measurements of the

swarm loading setting. The diagram shows that for higher node counts, the
measurements differ greatly, but the values in that measurement do not.

T
100 n
2 50| 8
Q
£ % ; 2
H
0l -
—A— With swarm loading
- " | —— Without swarm loading
\ \ \ : —
2 4 6 8 10
Nodes loading simultaneously
Fig. 6. Time for loading the test file averaged over all measurements for

a specific setup. The graph clearly shows increased stability for the swarm
loading tests, making measurements with more nodes possible.

loading, however, we observe very high standard deviations
for measurements with more than 4 nodes, indicating a high
variance in the individual download times observed by the
nodes. We conclude from these measurements that enabling
swarm loading dramatically increases the performance and the
stability of our P2P file-sharing system.

V. RELATED WORK

To our knowledge, this is the first specific P2P system for
data sharing over 6LoWPAN networks. It is, however, not the
first P2P system for WSNs. TinyTorrents [7] is a BitTorrent [2]
based architecture for WSNs. TinyTorrents employs well-
established P2P mechanisms also found in our system, most
notably, the segmentation of bulk data into blocks and the
parallel transfer of such. In contrast to BitTorrent, which relies
on torrents to keep track of file distribution, our flooding-
based search strategy is reminiscent of Gnutella [3]. As both
BitTorrent and Gnutella are designed to operate on standard
IP networks, their native packet formats mostly exceed the
maximum transfer unit of the IEEE 802.15.4 standard; this
is an additional motivation behind our custom P2P system,

which shares some similarities with WSN data dissemination
frameworks such as Deluge [4] or MNP [6]. While these
approaches use similar mechanisms (e.g. parallel transmission
of blocks), they’re realized as native protocols on top of
the WSN’s MAC protocol. By contrast, our approach is
implemented on top of 6LoWPAN in order to investigate the
efficiency of P2P mechanisms for improving the robustness of
6LoWPAN networked systems.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have sketched the design and the imple-
mentation of a P2P system for block data transfer on top
of a 6LoWPAN network stack. To our knowledge, this is
the first P2P system to operate on 6LoWPAN that resembles
common P2P systems like Gnutella or BitTorrent. The main
motivation behind this endeavor is the question if classic
P2P mechanisms, in this case swarm loading, can improve
the performance of 6LoWPAN applications. Our preliminary
results show that swarm loading is able to increase the stability
of a BLIP-based file sharing service against issues such as
node failure or a disruptive network topology.

We consider the work presented in this paper as a pre-
liminary first step towards a more comprehensive analysis
of P2P mechanisms applied to 6LoWPAN-based network
architectures. Other important questions to be investigated in
the future include the operation of distributed hash tables on
such networks and studies of energy efficiency.

REFERENCES

[1] Berkeley IP implementation for low-power networks (blip). http://smote.
cs.berkeley.edu:8000/tracenv/wiki/blip (accessed Sept. 2011).

[2] B. Cohen. Incentives build robustness in bittorrent. In Proceedings of the
Workshop on Economics of Peer-to-Peer Systems, Berkeley, CA, USA,
2003.

[3] Gnutella Developer Forum. The annotated gnutella protocol speci-
fication. http://rfc-gnutella.sourceforge.net/developer/stable/index.html
(accessed Sept. 2011).

[4] J. W. Hui and D. Culler. The dynamic behavior of a data dissemination
protocol for network programming at scale. In Proceedings of the
2nd international conference on Embedded networked sensor systems,
SenSys ’04, pages 81-94, New York, NY, USA, 2004. ACM.

[5] T. Klingberg and R. Manfredi. The gnutella protocol specification v0.
6. Technical specification of the Protocol, 2002.

[6] S. Kulkarni and L. Wang. Mnp: Multihop network reprogramming
service for sensor networks. In Distributed Computing Systems, 2005.
ICDCS 2005. Proceedings. 25th IEEE International Conference on,
pages 7 —16, june 2005.

[71 C. McGoldrick, M. Clear, R. S. Carbajo, K. Fritsche, and M. Huggard.
Tinytorrents: integrating peer-to-peer and wireless sensor networks. In
Proceedings of the Sixth international conference on Wireless On-
Demand Network Systems and Services, WONS’09, pages 109-116,
Piscataway, NJ, USA, 2009. IEEE Press.

[8] G. Mulligan. The 6lowpan architecture. In Proceedings of the 4th
workshop on Embedded networked sensors, EmNets *07, pages 78-82,
New York, NY, USA, 2007. ACM.

[9]1 Network Working Group. RFC 2460: internet protocol, version 6 (ipv6)
specification. Technical report, IETF, 1998.

[10] Network Working Group. RFC 4919: ipv6 over low-power wireless
personal area networks (6lowpans): Overview, assumptions, problem
statement, and goals. Technical report, IETF, 2007.

[11] Network Working Group. RFC 4944: transmission of ipv6 packets over
ieee 802.15.4 networks. Technical report, IETF, 2007.

[12] R. Steinmetz and K. Wehrle. Peer-to-Peer Systems and Applications.
Lecture Notes in Computer Science. Springer, Oct. 2005.

