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Abstract—We discuss our approach to federating dissimilar
discrete event simulations, leveraging the strengths and design
goals of both, to produce a packet-level detailed network model
federated with a component-level detailed input-queuing router
model. All existing network simulation tools that we are aware
of incorporate a very simplistic model for the flow of packets
through a router. The simplistic model simply responds to a
packet receipt event by performing a route look-up and adding the
packet to the output queue of the next-hop output interface. This
is often simulated to take place in zero time, or with rudimentary
probabilistic models of delay within a router. However, modern
high-end routers are designed using a complex input-queuing
methodology and a sophisticated scheduling approach to move
packets through a crossbar switch from the input queue to the
output queue. We used the popular ns–3 network simulator to
create realistic packet-level models of network load, and the
Manifold computer architecture simulator to create a realistic
model of data movement through an input-queued router. We
federated the two by means of two alternative approaches: First,
two POSIX threads run within a single simulation process and
utilize the shared memory for both time synchronization and
packet exchange. Second, we used the well-known MPI message
passing library for the federation. Our results show that the
detailed router models can in fact produce somewhat different
packet delay and loss characteristics than the simplistic router
models at the expense of considerable computational complexity.

I. INTRODUCTION

Modern network traffic loads demand high performance
from the network, both in terms of throughput and delay.
Naturally, network simulation tools are used heavily to analyze
how a particular application of interest will perform on various
networks with varying capabilities and configurations. Using
the simulation results as a guide, network operators then design
a network with given link bandwidths, queuing methods,
queue sizes and other characteristics that will presumably
support the applications and provide the performance required.
With modern-day applications such as voice-over-IP, video
streaming, and music streaming, the network performance in
terms of loss, delay and jitter is paramount. The developers of
network simulation tools such as ns–3 [1] devote considerable
effort into making their simulation models realistic so that
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simulation results can be used to guide design parameters.
However, virtually all network simulators incorporate very
simplistic models of the flow of information within a router.
A typical router model simply responds to a packet receipt
event by performing a route look-up, and then adding the
received packet to the output queue of the next hop interface.
This simplistic model is easy to implement and easy to
understand. However, actual high-end Internet routers such
as those developed by Cisco, utilize much more complicated
approaches to responding to a newly arrived packet and routing
the packet data through the router to the appropriate output
interface. For example, the well-known iSLIP design [2] uses
a complex set of input-queues to store incoming packets, a
novel scheduling algorithm to request and reserve crossbar
switch circuits, and a set of output queues to store the packet
after successfully traversing the crossbar. It is clear to us
that routers utilizing this approach will exhibit considerably
different performance metrics with respect to delay and packet
loss than will the simplistic router model discussed above.

To address this issue, we chose to develop a detailed model
of the flow of information through a router using the iSLIP
scheduling algorithm, input-queued arrival processing, and a
crossbar approach for moving packets from inputs to outputs.
While we likely could have developed this model using the
ns–3 network simulator, we decided that this approach would
have meant using the network simulation in a way it was not
designed to be used, namely modeling hardware components
with clock-driven actions and low-level data flow between
components. Instead, we chose to use the Manifold architec-
ture simulator [3] which is in fact designed to do exactly what
we needed. Further, this approach also simplifies the extension
of the hardware model in a domain designed for this purpose.
The construction of the iSLIP model for Manifold was rela-
tively straightforward, requiring models for the input-queues,
the crossbar switch (implemented using Manifold components
with clock-driven actions), and the matching algorithm. Of
course, once we had the detailed router model in Manifold
and the detailed network model in ns–3, we then needed to
create a federated simulation using both simulators in concert.
Our approach to this federation is discussed in detail later.

The remainder of this paper is organized as follows. Sec-



tion II gives some details about ns–3, Manifold and iSLIP.
Section III discusses briefly some other works federating
dissimilar simulations. Section IV explains our approach to
federating the two simulators. Section V shows the results
of our federated simulation tool both in terms of measured
network performance and the run-time performance of the
simulator itself. Finally, Section VI summarizes the work.

II. BACKGROUND

This section gives some background information for ns–3,
Manifold and iSLIP, and describes our Manifold iSLIP model.

A. The ns–3 Network Simulator
The ns–3 network simulator is the result of a collaborative

effort between researchers at Georgia Tech, University of
Washington, INRIA France, and Bucknell University. This
work was begun in summer of 2006 as a result of a grant
from the U. S. National Science Foundation. The approach
proposed and used by the team was a complete redesign of a
new simulation tool, rather than any attempt to modify or adapt
older simulators such as ns–2 [4]. In addition, the design was
such that the ability to utilize distributed simulation methods to
increase scale and performance was inherent in the design. The
ns–3 simulator has seen continual development and enhance-
ment since 2006, with more than 40 developers worldwide
contributing models to the tool. Recent ns–3 releases have
been downloaded more than 5000 times per month.

The design of ns–3 uses a very novel event scheduling
mechanism that allows any member function with arbitrary
parameters on any C++ object to act as an event handler.
This approach greatly eases model development, as compared
to simple well-known event handler abstract classes. Further,
the ns–3 design makes considerable use of helper objects that
ease the burden on a simulator user when creating complex
topologies with applications and protocol stacks. Of particular
importance for our approach to federating ns–3 and Manifold
is the way network packets are modeled and managed in ns–3.
The underlying data representation for the model of a network
packet is simply an array of bytes, exactly as packets are
represented in real networks and real routers. The rationale
for this design decision was originally to ease the integration
of ns–3 with actual networks using network emulation.

Additionally, ns–3 was designed and implemented to sup-
port distributed simulation of larger network topologies. De-
tailed discussion of the design and implementation of the
ns–3 distributed simulation can be found in [5]. The approach
used to implement the distributed execution of ns–3 was to
utilize the well-known MPI message passing library for both
time synchronization and packet migration between logical
processes. As we discuss later, this design decision was
particularly beneficial to our ns–3 and Manifold federation.

B. The Manifold Architecture Simulator
The Manifold architecture simulator is a work-in-progress

by our research group designed to allow designers of large-
scale multi-core processing environments to model and ana-
lyze various techniques for connecting the multiple cores to

other elements in the computing environment. To date we have
an instruction emulation front-end based on the open source
QEmu emulator, a detailed model for on-chip interconnection
networks such as torus and grid networks, and models for
coherent caches and memory systems.

The design of Manifold supports various levels of abstrac-
tion in the hardware being modeled, as detailed as flip-flops
and logic gates, or as abstract as a memory system with
address selectors input, a read/write flag input and data output.
All models in the Manifold simulator consist of one or more
components (which might be a network interface or a logic
gate) that are connected together with Links that move infor-
mation from component outputs to the appropriate component
inputs. Naturally, links introduce delays as information is
moved from outputs to inputs. These delays can either be
specified in units of Clock Ticks or in seconds. Components
can be either synchronous and perform all state transitions
on rising-edge or falling-edge clock ticks, or they can be
asynchronous and perform state transitions whenever their
input state changes, or they can perform state transitions on
either of these events.

The Manifold simulator uses fairly standard discrete event
simulation techniques to handle the advancement of time in
the model, with the usual future event set (FES) and event
handler objects for each event. Additionally, it maintains a set
of clocks and regularly determines the next event by means
of both the clocks and the FES. Further, the design supports
distributed simulation, allowing components connected via
links to be modeled in separate logical processes. Both the
transmission of remote events and the time synchronization
activities are handled by using MPI calls. All data moved
between components is represented in an abstract, simple
array of bytes approach. Only the sending component and
the receiving component of any information are aware of
the semantics of the information. As we discuss later, the
use of MPI for time synchronization led to somewhat simple
integration with ns–3.

C. The iSLIP Router Design

The router and switch model we created in Manifold is
based on the iSLIP approach by McKeown [2]. This design
utilizes a set of input links for receiving incoming packets,
a set of Input Queues to store incoming packets temporarily
(described later), a crossbar switch that moves packets from
the input queues to the output interfaces, and a set of output
queues to store packets awaiting transmission to the next hop.
Without going into great detail about the iSLIP design, the
input queues are designed in a way preventing head-of-line
blocking, which results when a packet at the head of a single
FIFO input queue is to be moved to an output that is presently
busy, but packet(s) behind the head are to be moved to an
available output. Using k input queues (called Virtual Output
Queues) for each of k ports solves this problem.

In addition to the use of Virtual Output Queues, the iSLIP
design incorporates a simple but novel matching algorithm
for determining which inputs should be granted access to the
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Fig. 1. The iSLIP Model for a 2× 2 Router.

crossbar to move data to their desired outputs. This algorithm
guarantees fairness and guarantees no starvation for any input.

In studying the design of an iSLIP router, it was clear to
us that such a design will certainly affect delay and jitter
for packets being routed, especially in high-load conditions.
Equally clear was the fact that existing router models in
ns–3 are likely too simplistic for measuring delay and jitter
in high-speed networks under heavy load conditions. These
observations motivated our work towards modeling iSLIP
routers in Manifold and network traffic generation in ns–3.

We implemented a Manifold model of this iSLIP router as
shown in Figure 1. In general, this model consists of two com-
ponents. The Input Queue component holds a configurable set
of virtual output queues. On an incoming packet it determines
the correct queue, stores the packet, and informs the Crossbar
Switch component. The internal clock of this crossbar switch
defines the time-stamps to compute a matching between input
and output ports. A predefined time after the matching was
computed, the incoming packets are forwarded to the outputs
of the crossbar switch.

The model relies on packet sources and sinks. In the
federation with ns–3 the packet sources will be the ns–3 MAC
layer modules, and the sinks will be the output queues of ns–3.

III. RELATED WORK

There have been some prior published works describing
the integration of two or more independent simulation envi-
ronments. Indeed, the entire focus of the well-known High-
Level Architecture (HLA) is to facilitate exactly that goal. The
number of works discussing the use of HLA are numerous
and not enumerated here. Nevertheless, the HLA relies on the
simulators to be HLA compliant. Unfortunately, neither ns–3
nor Manifold maintains this feature.

In work by Yeung, Takai, Bagrodia, et al. [6], the QualNet
network simulator was integrated with the detailed physical
layer path loss models found in the Matlab tool-set. Qualnet
and Matlab exchange packet transmission and reception data
as packets move from senders to receivers, and the packet
reception probability is determined based on computed path
loss information in Matlab. This did in fact produce accurate
results, but the overhead imposed by the Matlab environment
resulted in an overall slowdown ratio of nearly 10,000.

In two separate works by Xu, Riley, Ammar, et al. [7],
[8] the ns–2 simulator was integrated with the GloMoSim
simulator. The intent of this work was to utilize the strengths of
each simulator, using ns–2 for the wired part of the simulated
network, and GloMoSim for the wireless part.

Although not directly related, in a similar work by Wu
and Fujimoto [9] the authors report on difficulties integrating
the commercial network simulator OpNet with itself. This
required the integration of some form of message passing
and time synchronization similar to what we needed in the
work here. At the time of that work, the chosen approach was
a locally developed Run-time Infrastructure Kit (RTIKit) for
these actions.

Excepting the work by Yeung et al., all of the above
works were attempting to integrate multiple simulators, but
the simulators were all network simulators. In our work we
are integrating a network simulator with a component-level
hardware simulator.

A similar approach to model the effects of hard- and
software detail into a network simulation is called network
emulation. Here, a network simulator is federated with physi-
cal nodes or virtual machines. NIST Net by Carson and Santay
[10] emulates a network in order to apply effects like delay or
packet loss on traffic arriving at the physical network links of
the simulating node. While this requires the simulator to work
in real-time, the SliceTime approach by Weingärtner et al. [11]
federates virtual machines with ns–3. The advantage of virtual
machines is the possibility to slow down the machine in a way
the software does not notice to avoid desynchronization. As
opposed to our approach NIST Net relies on the existence
of physical nodes, and SliceTime models details of network
software rather than hardware.

IV. FEDERATION OF THE SIMULATORS

In this section we describe the federation of ns–3 and
Manifold. First, we discuss the goals of our design in Sec-
tion IV-A. We took two different approaches to federate the
simulators. In Section IV-B we introduce a federation based
on POSIX threads. In Section IV-C we describe an MPI based
federation scheme. Both schemes share the same component
structure and modifications to the available ns–3 components
(see Section IV-D). Finally, we discuss selected issues on the
design in Section IV-E.

A. Design Goals

The primary goal of our design is to federate ns–3 and
Manifold in a way that a wide variety of router and switch
models can be applied on both sides. This means on the
ns–3 side that we do not require a certain network or MAC
layer protocol, but instead allow reusing the available protocol
models like IPv4 or IPv6. In Manifold we want to enable
model developers to create router models in arbitrary degree
of detail. Our example model implements the virtual output
queues connected to a crossbar switch that computes the
iSLIP matching in a predefined time interval. Nevertheless,
we designed the federation in a way such that a detailed
implementation of the arbiters, e. g., as FPGAs, would also be
possible to predict the time needed to determine a decision
in certain situations. Furthermore, our design enables easy
implementation of different matching algorithms or ways to
organize the input queues.
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We note that simulator performance is a secondary goal of
this work. We know that additional details cannot speed-up a
simulation, but will require more run-time. Nevertheless, we
tried to keep the synchronization overhead to a minimum.

B. POSIX Threads Based Federation

In general, there are two challenges in the federation of
dissimilar discrete event simulators. First, every simulator
usually maintains its own data structures. In the federation
of ns–3 and Manifold for the purpose of network simulation,
we only need to interchange network packets as described in
the following. Second, simultaneously running simulators need
to be time-synchronized in order to avoid that one simulator
receives an event to be executed before a recently committed
event.

Packet Exchanging: In ns–3 a packet is represented by
a data structure that models a byte array for the packet data
itself, and maintains tags to enable the user to store additional
data. In our Manifold iSLIP model we represent a packet
by a data structure that only holds the size of the packet
(rather than all the payload), the input and output port for
the crossbar switch to determine where the packet should
be sent, as well as a void pointer for arbitrary user data.
When a packet is to be transmitted from ns–3 to Manifold,
we create the corresponding Manifold data structure, and fill
in the corresponding fields. We utilize the void pointer field to
add a pointer to a data structure (in ns–3 memory) maintaining
information about the callback function and data as well as an
ns–3 smart pointer to the packet itself.

For the communication from ns–3 to Manifold we created
a queue in the shared memory (see Figure 2). A packet is
transmitted from ns–3 to Manifold by enqueuing the required
data. After the packet has passed the crossbar switch, it is
stored in another queue and finally dequeued and processed
by ns–3.

Time Synchronization: The thread based time synchro-
nization benefits from memory shared by the lightweight
threads. The time-stamp of the next event in the FES of
each simulator is maintained in this shared memory. In order
to determine whether it is safe to execute the next event, a
simulator therefore needs to compare the time of the next event
in its own FES to the time of the corresponding simulator.
Additionally, it is necessary to verify that there is no transient
message pending in the queues which might reduce the time-
stamp of the next event. If both of the queues are empty, the
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Fig. 3. The MPI based scheme utilizes two federation helpers communicating
via MPI messages for packet transmission and time synchronization.

simulator with the earlier event can proceed since we lock the
shared memory during dequeuing and time-stamp adaption.

C. MPI Based Federation

In order to achieve a high degree of code reuse we decided
to use the same interface between the simulators and the
federation engine for both schemes (see Figure 3). However,
for the MPI based scheme we have two federation helpers, one
for each simulator, that interchange MPI messages to provide
the required functionality.

Packet Exchanging: If simulator A transmits a packet
to the federation helper for transmission to simulator B, the
helper of A creates an MPI message including the relevant
data and transmits this message to the process running B.
The helper of B hands the incoming messages back to
the simulator core whenever the core requests dequeuing a
message. This is performed in the simulation main loop in
order to determine the next event to handle.

Time Synchronization: Unfortunately, in an MPI based
federation we cannot utilize shared memory since MPI pro-
cesses might run on different machines. However, instead
we can use MPI messages to exchange the necessary in-
formation. Both ns–3 and Manifold already maintain the
same time synchronization protocol based on the use of the
MPI Allgather collective which is designed to produce a
global minimum or maximum efficiently. Unfortunately, the
time synchronization data structures exchanged via MPI are
different, such that we could not reuse the implementation.
However, the reimplementation of the time synchronization
protocol was straightforward.

D. Component Structure

Both ns–3 and Manifold are based on a modular component
structure. We designed the federation to minimize the changes
made to the existing components, but instead add further ones.
This accords to the design goal to enable arbitrary ns–3 models
without requiring too many adaptions.

Figure 4 sketches the modules of an ns–3 IPv4 router (left)
as well as the modules of the iSLIP crossbar switch model
(right). On both sides we added two connector components
(colored black in the figure), one for packet reception, one for
packet transmission.

If the MAC layer module of ns–3 receives a packet from the
network layer to store in the output queue or transmit on the
channel, in the federated approach the ns–3 module transmits
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Fig. 4. We added 2 new components to each model for packet exchange, and modify the ns–3 MAC layer slightly.

the packet to the connector component instead. This requires
a slight modification of the MAC layer, implemented by
inheritance. The connector component now passes the packet
via the federation helper depicted in Figure 2 and Figure 3
to Manifold. By means of the information included in the
packet, the Manifold connector component needs to identify
the input queue in which the provided packet should be stored.
For this purpose, the ns–3 MAC layer module also needs to
piggyback its own identifier whenever it receives a packet from
the channel. The input queue component stores every received
packet in the respective virtual output queue. After the packet
has passed the crossbar switch, it is forwarded to the Manifold
connector component for transmission. This component again
utilizes the helpers to transmit the packet back to ns–3. Here,
we utilize the callback data referenced by the void pointer
in the packet to find the correct MAC layer object. Now, the
packet can be either stored in the output queue or transmitted
to the channel.

If the input queue object determines that the corresponding
virtual output queue is full, and the packet has to be dropped, it
tags the packet accordingly. After that, it bypasses the crossbar
switch and sends the packet back to ns–3 where the cleanup
can be performed.1

Effectively, our iSLIP model performs only two operations
on each packet: It either drops the packet at a full input queue,
or it adds additional delay introduced by input queuing and
crossbar switch transmission.

E. Discussion

In the following we discuss certain aspects of our system
design. We analyze the pros and cons of alternatives and justify
our decisions.

Zero Look-ahead: The integration of the iSLIP router at
the MAC layer of ns–3 comes with a significant disadvantage:
The messages exchanged between ns–3 and Manifold do not
include a delay. This means that the look-ahead between the
two logical processes (LPs) of ns–3 and Manifold is zero,
which completely defeats parallel execution. Nevertheless, we
stated the design goal to reuse the existing functionality of
both simulators. ns–3 provides a feature-full implementation

1Since the payload of the packet is not transmitted to Manifold, it needs to
be deleted by ns–3. Manifold only stores a void pointer that cannot be used
to release memory.

of different network layer protocols such as IPv4 and IPv6 as
well as MAC layer protocols. The only way to achieve look-
ahead between LPs is to define an LP border cutting a delayed
network link. However, this defeats the reuse of Manifold
crossbar switch models and ns–3 network layer models.

While we cannot achieve parallel speedup between ns–3
and Manifold we argue that it is still possible to split the
network into several LPs with look-ahead in between. This
partitioning can then be applied to both ns–3 and Manifold,
i. e., two routers reside in the same LP in Manifold if and
only if they reside in the same LP in ns–3. Defining an LP in
both simulations containing only a single router would then
allow the same degree of parallelism as if the router was com-
pletely implemented in Manifold with the only disadvantage
being the decomposition of one router into two LPs with the
corresponding overhead.

In this case, it is also possible to realize the federation
by means of POSIX threads while running different LPs on
different machines synchronized by MPI.

Packet Data Structure: When designing the iSLIP model
we also had to decide how a packet is represented in iSLIP. We
decided to use a simple data structure maintaining input and
output port, packet size, and a void pointer for user data. While
a representation of the packet as a stream of bytes like in ns–3
could have eased the implementation of the packet exchange
between the two simulators, we decided to use this approach to
avoid the unnecessary transmission of the payload. Further, a
byte stream does not inherently include the information about
input and output port which is required by the crossbar switch
matching algorithm. Instead, we keep the packet in the ns–3
memory and the iSLIP model only computes the delay.

Information Exchange Paradigm: There are two common
ways to federate two simulators. On the one hand every
simulator can constitute its own system process. On the other
hand the simulators can be linked into a single binary and
executed in a threaded way.

While a tighter coupling allows faster information exchange,
especially by the utilization of shared memory, linking two
simulators into a single binary might lead to the problem of
name clashes.

We decided to implement both approaches and compare
the performance in Section V. Indeed, name clashes were
not an issue since both simulators make strict use of C++
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name-spaces. However, due to the nature of the ns–3 build
system that copies all header files into a single directory prior
to compiling, we had to rename one Manifold header file to
avoid overwriting.

V. EVALUATION

In this section we discuss the experiments we ran to evaluate
the necessity of a detailed router model on the one hand as
well as the computational overhead on the other hand. We
first introduce the common evaluation environment before we
focus on the specific experiments and discuss their results.

A. General Evaluation Environment

In general, we chose to keep the design of the evaluation
environment simple. Although the interaction between multi-
ple routers might be important in the performance analysis of
larger networks, already a much simpler setup can show the
importance of a detailed router model.

Our simulated network therefore consists of a simple star
topology (see Figure 5) with one router in the center and
a variable number of nodes sending packets to each other
through that router. Every node has 10 independent UDP traffic
streams sending to random destinations. The traffic follows
an on-off-pattern with exponentially distributed on and off
times, both averaging in 50 ms. After each on-off-cycle a new
destination is selected randomly among all available nodes.
The full duplex network links feature a data rate of 1 Gb/s,
and a delay of 0.3 ms.

We ran all simulations on an Ubuntu 11.10 host system
equipped with a 2.8 GHz Intel Xeon quad-core CPU and a total
of 6 GB of RAM. We used the recent development versions
of both ns–3 and Manifold.

B. Necessity of a Detailed Router Model

First, we investigate whether it is actually important to
model a router in close detail. This is an essential question
since a detailed router model will obviously add computational
effort during the simulation as well as manual effort to build
the model. Certainly, the answer to this question will depend
on the scenario and the purpose of the simulation. There
are many applications like voice-over-IP and video streaming
where end-to-end delay, jitter and packet loss matters. Since
the delay and packet loss of the links is not affected by our
approach, we focus on the effects at the router.

We therefore applied the simple star topology model de-
scribed above, and connected 16 nodes to the router. During

the on-time, each of the 160 applications continuously sent
UDP packets with 512 B of payload at a net data rate of
100 Mb/s. On average, this results in a link utilization of about
50 %.

An important factor trading delay vs. packet loss is the
buffer size of the routers. There is no consent in the research
community of an appropriate buffer size [12]–[15]. Instead,
there are different rules of thumb. For this simulation we
applied the rule introduced by Appenzeller et al. in [12]. For
an RTT of 250 ms (see RFC 3439), and 10,000 simultaneous
flows (see [12]) the buffer capacity has to equal approximately
300 KB. For the abstract ns–3 router we therefore set the
output queue size to 640 packets (of 512 B payload each).

To create comparable results, it is important that the buffer
capacity of the abstract router equals the capacity of the
detailed router. We decided to equally split the 640 pack-
ets buffering capacity among input and output buffers. This
means, the size of each output queue was 320 packets. How-
ever, while we had 16 input queues that can transmit packets to
the possibly contended output link, only those which actually
do transmit add to the buffer capacity. The remaining buffers
stay empty. Unfortunately, we can not predict the number of
inputs creating the congestion on the output a priori. If all
inputs transmit to the same output, the buffer capacity of each
virtual output queue needs to be 20 packets (320 packets total
input capacity over 16 ports). If only a single input transmits
to one output queue, the comparable input buffer capacity is
320 packets (320 packets over 1 port). As a compromise, we
decided to assign an input buffer capacity of 80 packets (320
packets over

√
16 ports).

Another important factor is the performance of the router.
The router consists of a crossbar switch and arbiters that coop-
eratively compute the matching. These components operate at
a certain clock frequency, i. e., they are able to handle a certain
amount of packets per second. In order to save money as well
as energy these components should operate only slightly faster
than the line rate. This means, for a line rate of 1 Gb/s, and a
(fixed2) packet size of 512 B the crossbar switch must be able
to handle 244,000 packets per second. We therefore set the
clock frequency to 250 kHz, i. e., the router is able to forward
250,000 packets per second and pair of ports. Furthermore,
we investigate the behavior of the router for a crossbar switch
slower than the line rate (220 kHz).

We ran the simulation for 1 second, and measured the
router introduced delay of every single packet that successfully
passed the router. For each interval of 1 ms we determined the
maximum routing delay for all packets arriving at the router in
this interval. Since there is always a large number of packets
traversing the router instantaneously via a non-congested link,
we consider the average delay rather uninteresting. Instead, we
plotted the maximum delay in each of those short intervals
over the course of the simulation. Furthermore, we counted

2Note: High performance switches are usually installed in networks such
as SONET or ATM where data is not organized in varying size packets, but
fixed size frames or cells.
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Fig. 7. Delay and Packet Loss at an Input-queued Router Computing 250,000 Matchings per Second

the number of packets arriving during this interval, but being
dropped in the router as a consequence of buffer overflow.

Figure 6a shows the delay added by the abstract ns–3 router,
mainly caused by output queuing. We observe uncongested
periods of time where the delay is almost zero, i. e., the first
bit of the packet is forwarded as soon as the last bit has
been received. However, when one output link is over-utilized,
packets are stored in the output queue and cause significant
delay. After the applications have stopped sending, the queue
drains out again, and the delay reduces to almost zero.

Right after 0.45 s we observe a different behavior: The delay
increases up to a level of 2.8 ms, and then constantly stays at
this level for tens of milliseconds before reducing again. At
the same point in time we observe a large number of dropped
packets (see Figure 6b).

This behavior is easy to explain: While a large number
of packets is addressed to one single output link, all those
packets are stored in the corresponding output buffer. As
soon as this buffer has reached its capacity, every additional
packet is dropped. Nevertheless, packets are still dequeued and
transmitted, such that another slot becomes available. Every
packet stored within that slot has to wait for the preceding
639 packets in the queue to be transmitted. With the given
link data rate and packet size this takes approximately 2.8 ms
which is exactly the delay for that packet.

We now compare the results of the simple ns–3 router
to the results of the detailed iSLIP router with a clock
frequency of 250 kHz (see Figure 7). The traffic generated by
the applications equals the traffic during the simulation with

the abstract router exactly. We used the same random number
generator seed.

At the time of 0.45 s we observe a rather high delay of
almost 5 ms on the detailed router (cf. to 2.8 ms for the abstract
router). This is because the maximum possible buffering
capacity of this router is higher than the capacity of the abstract
router. Nevertheless, we also observe a higher loss rate.

We now focus on the second delay peak at less than 0.1 s.
On the abstract ns–3 router the maximum delay in this period
of time is about 1 ms. However, the delay of the detailed router
increases up to almost 2 ms. This suggests that we chose the
buffer capacity for the detailed router too high.

On the other hand, at the same point in time we observe a
loss of several packets on the detailed router, while the abstract
router is able to store all incoming packets in its output buffer.
This means, to achieve the same loss rate as the abstract router
achieved, we had to increase the buffer capacity. We observe
this contradiction several times in the plots.

We conclude that, independent of the buffer size, the details
modeled in the Manifold crossbar switch model significantly
influence the performance of the router. Abstracting from these
details can result in too high expectations on the performance
of a router.

Furthermore, we observed that the size and the organization
of the input queues influences the router performance. We
therefore argue that in order to develop high performance
network routers it is necessary to use a detailed model of these
routers in order to be able to tune the buffer sizes accordingly.

By having a closer look to the bottom line of the plots we
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Fig. 8. Delay and Packet Loss at an Input-queued Router Computing 220,000 Matchings per Second

also observe another fact: Although the delay in non-congested
periods of time is almost zero for both the abstract and the
detailed model, we can still observe a slightly higher delay in
the detailed model. We attribute this to the fact that the detailed
model additionally accounts for the time it takes to compute
the crossbar switch matching, transmit the packet through the
crossbar switch, and store it in one more queue.

Figure 8 shows the performance of the detailed router with
a crossbar switch frequency of only 220 kHz. As expected,
these results are even worse than the results of the faster
crossbar switch. We argue that it might be also important to run
simulations with a detailed router model in order to estimate
which crossbar switch frequencies and matching algorithms
provide reasonable packet delays and loss rates.

We therefore conclude that, in fact, the router model makes
a difference in the network performance. Especially for router
manufacturers it might be important to simulate their routers
in the context of detailed network simulations. However, this
comes at the expense of additional overhead.

C. Run-time Overhead

In order to investigate the run-time overhead added by the
detailed iSLIP router model, we utilized a simulation setup
similar to the one above. We expected the overhead to be
mainly influenced by the router size (more ports increase the
matching complexity), and the crossbar switch frequency (a
higher frequency increases the number of matching events).
We therefore varied the number of nodes (4 to 64), and
the crossbar switch frequency (1 MHz to 100 MHz). We sent
packets with a payload of 24 B at a net data rate of 70 Mb/s.

We defined a high buffer capacity of 640,000 packets
(according to the widely used rule of thumb B = RTT × C
for RTT = 250ms and C = 1Gb/s). Again, we split this
capacity for the detailed router in 320,000 packets output
buffer and 320,000√

#input ports
packets per virtual output queue.

These large queue sizes avoided the problem that the input-
queued router could perform faster due to packet losses.

We ran the simulation for 0.2 s of simulated time, starting
measuring the simulation run-time at 0.1 s to pay credit to
the initial transient phase where all ns–3 applications are
in off state, and no contention occurs. We repeated each
experiment 10 times. After that we divided the run-time taken

with the detailed router model applied by the run-time taken
by the simple router model simulation, yielding the slowdown
resulting from the additional accuracy. We plotted the average
slowdown as well as the 95 % confidence intervals for both
federation schemes.

Figure 9a shows the slowdown by the detailed router with
the POSIX threads based federation scheme applied. For
low crossbar switch frequency values we observe that the
slowdown with a low number of ports is higher than the
slowdown with a large number of ports. This appears to be
contrary to our claim that the effort to compute the matching
increases with increasing number of ports. However, with
increasing number of nodes the number of packets to simulate
during the given time period increases. The total effort to
simulate the packet traveling from the application layer of
the source node to the application layer of the destination
node is mainly evoked by the packet manipulation in ns–3.
On the Manifold side the per packet effort is comparably low.
The crossbar switch computes the matching every clock cycle
independent of the number of packets in the input queues.

Nevertheless, we do observe more slowdown for a 32 or 64
port router (compared to a 16 port router) when the crossbar
switch frequency is as high as 100 MHz. We explain this by
the fact that for a 100 MHz router the per packet effort is
comparably low while the effort to compute the matching con-
stitutes most parts of the simulation run-time. The complexity
of the matching itself is quadratic in the number of ports
(every virtual output queue needs to be checked for a pending
request), and therefore the effort to compute the matching for
a router with many ports is significantly higher. However, this
is still not significant for a lower frequency since the matching
algorithm is executed less often.

For all the configuration parameters we observe a slowdown
factor of up to 6. We argue that neither a lower nor a higher
number of ports appears reasonable3. Furthermore, we set the
crossbar switch frequency to the highest value mentioned in
McKeown’s paper. Therefore, we expect a higher slowdown
only if the traffic rate is decreased. However, we believe
that router models with a detailed queuing model are only
necessary for highly utilized routers with congestion occurring.

3McKeown bases the iSLIP algorithm on 8 to 32 port switches [2].
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Fig. 9. Overall Slowdown in Simulation Performance

Figure 9b shows the simulation run-time with the MPI
based federation scheme applied. The course of the curves is
in general similar to the one observed for the thread based
federation. However, as expected, the lightweight POSIX
threads can slightly reduce the overhead as compared to the
heavyweight MPI processes.

This can be observed best for a low number of nodes and
high crossbar switch frequency. Due to the low traffic, the
ns–3 effort is comparably low. On the other hand there are
a lot of events on the Manifold side and therefore a lot of
synchronization messages have to be exchanged. This slows
down the simulation with the MPI based federation scheme
by a factor of 8 (as opposed to the factor of 6 for the thread
based scheme).

We summarize that modeling a router in more detail comes
at the expense of significantly reduced run-time performance.
However, for all reasonable parameter values we chose, we
observed a slowdown of less than one order of magnitude
while former approaches to federating dissimilar simulators
in order to achieve a higher degree of details showed even
worse performance [6]. We therefore argue that the additional
details are worth paying the fairly low overhead especially in
the evaluation of network core components.

VI. CONCLUSION

In this paper we introduced our concept of federating the
dissimilar simulators ns–3 and Manifold. While ns–3 is well
suited for detailed network modeling, Manifold complements
this by modeling the details of the hardware used to build
the network nodes. We showed that a detailed model of
input queued routers can significantly change the observed
network performance. This additional accuracy however comes
at the expense of additional overhead. In our evaluation the
slowdown in simulation performance ranged at factors from 2
to 8.

We discussed that it makes sense to model the function-
ality of a network router partly in ns–3 where e. g., a full
implementation of IPv4 is already available, and partly in
Manifold. This however does not enable speedup just by
running two simulators simultaneously. Nevertheless, we argue
that both simulators can still be parallelized by partitioning
a big network with multiple routers. Future work should
investigate the challenges and performance improvements of

this idea. Orthogonal work could also deal with the Manifold
router model and further increase the degree of details in
order to investigate whether more factors affect the network
performance significantly.

We conclude that the federation of ns–3 and Manifold
provides significantly more accurate results and argue that this
tool can be very valuable, especially in the design of novel
routers and switches.

REFERENCES

[1] T. Henderson, M. Lacage, and G. Riley, “The ns–3 Network Simulator,”
http://www.nsnam.org, 2007.

[2] N. McKeown, “The iSLIP Scheduling Algorithm for Input-Queued
Switches,” IEEE/ACM Trans. on Netw., vol. 7, no. 2, pp. 188–201, 1999.

[3] “Manifold: A Scalable Simulation Infrastructure for Many Core Sys-
tems,” http://manifold.gatech.edu/, 2012.

[4] S. McCanne and S. Floyd, “The LBNL Network Simulator,”
http://www.isi.edu/nsnam, 1997.

[5] J. Pelkey and G. Riley., “Distributed Simulation with MPI in ns–3,” in
Proc. of the 4th Int. ICST Conf. on Sim. Tools and Techn. ICST, 2011,
pp. 410–414.

[6] G. Yeung, M. Takai, R. Bagrodia, A. Mehrnia, and B. Daneshrad,
“Detailed OFDM Modeling in Network Simulation of Mobile Ad Hoc
Networks,” in Proc. of the 18th Workshop on Parallel and Distr. Sim.
ACM, 2004, pp. 26–34.

[7] G. Riley, M. Ammar, R. Fujimoto, D. Xu, and K. Perumalla, “Distributed
Network Simulations using the Dynamic Simulation Backplane,” in
Proc. of the 21st Annual Conf. on Distr. Comp. Systems. IEEE Press,
2001, pp. 181–188.

[8] D. Xu, G. Riley, M. Ammar, and R. Fujimoto, “Split Protocol Stack
Network Simulations Using the Dynamic Simulation Backplane,” in
Proc. of the 9th Int. Symp. on Modeling, Analysis and Sim. of Comp.
and Telecomm. Systems. IEEE Press, 2001, pp. 158–165.

[9] H. Wu, R. Fujimoto, and G. Riley, “Experiences Parallelizing a Com-
mercial Network Simulator,” in Proc. of the 33rd Winter Sim. Conf.
IEEE Press, 2001, pp. 1353–1360.

[10] M. Carson and D. Santay, “NIST Net – A Linux-based Network
Emulation Tool,” SIGCOMM Comp. Comm. Rev., vol. 33, no. 3, pp.
111–126, 2003.
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