
Multi-level Parallelism for Time- and Cost-efficient
Parallel Discrete Event Simulation on GPUs

Georg Kunz∗, Daniel Schemmel‡ James Gross‡, Klaus Wehrle∗
∗Communication and Distributed Systems, ‡Mobile Network Performance Group

RWTH Aachen University
{kunz,wehrle}@comsys.rwth-aachen.de, {schemmel,gross}@umic.rwth-aachen.de

Abstract—Developing complex technical systems requires a
systematic exploration of the given design space in order to
identify optimal system configurations. However, studying the
effects and interactions of even a small number of system
parameters often requires an extensive number of simulation
runs. This in turn results in excessive runtime demands which
severely hamper thorough design space explorations.

In this paper, we present a parallel discrete event simulation
scheme that enables cost- and time-efficient execution of large
scale parameter studies on GPUs. In order to efficiently accom-
modate the stream-processing paradigm of GPUs, our paralleliza-
tion scheme exploits two orthogonal levels of parallelism: External
parallelism among the inherently independent simulations of a
parameter study and internal parallelism among independent
events within each individual simulation of a parameter study.
Specifically, we design an event aggregation strategy based on
external parallelism that generates workloads suitable for GPUs.
In addition, we define a pipelined event execution mechanism
based on internal parallelism to hide the transfer latencies
between host- and GPU-memory. We analyze the performance
characteristics of our parallelization scheme by means of a
prototype implementation and show a 25-fold performance im-
provement over purely CPU-based execution.

I. INTRODUCTION

Complex technical systems inherently provide a multitude
of tuning parameters. In order to find an optimal configura-
tion of a system (in terms of a specific goal), a thorough
exploration of the given design space is necessary. This
design space exploration is typically performed by means of
detailed simulation models and elaborate parameter studies,
often involving a large number of simulation runs. However,
even if a single simulation run finishes quickly, the total
combined runtime needed to complete a parameter study can
become considerably large, thereby severely hampering the
design space exploration process.

Despite existing techniques for reducing the number of
relevant system parameters, e. g., factorial design [1], studying
only a few parameters quickly results in large amounts of
simulations. For example, a study over 5 parameters, each
with 5 distinct values of interest, requires simulating 55 = 3125
different parameter sets. Additionally, in order to obtain statis-
tically credible results, all parameter sets need to be repeatedly
executed with varying random seeds. Considering the 3125
parameter sets and 30 repetitions, a total of nearly 100,000
distinct simulations runs are necessary.

In this paper, we present a parallel discrete event simula-
tion scheme that enables a cost- and time-efficient execution

of large scale parameter studies on GPUs. Our approach
leverages the massively parallel processing power of GPUs
to concurrently execute all individual runs of a parameter
study. The overall goal of our work is to provide a cost-
efficient alternative to the traditional approach of distributing
the simulations of a parameter study to multiple CPUs1. We
argue that conducting large scale parameters studies on a single
GPU might in fact be slower than running them on a large
number of CPUs, yet purchasing one consumer level GPU
is significantly cheaper than buying and maintaining a large
number of CPUs. Hence, our approach constitutes a trade-off
between cost and processing power.

In order to successfully exploit the massively parallel GPU-
architecture, we need to address two particular challenges:
i) GPUs implement a Single Instruction, Multiple Thread
(SIMT) processing paradigm in which groups of threads exe-
cute in lockstep, and ii) due to limited onboard memory, data
needs to be continuously transferred between host- and GPU-
memory, hence imposing large memory access latencies. Our
key contribution in this paper is a multi-level parallelization
scheme that overcomes these challenges. In particular, the
scheme builds upon two orthogonal levels of parallelism.

i) External parallelism given by the inherently indepen-
dent simulations of a parameter study: Assuming that
the simulations of a parameter study behave similarly,
external parallelism enables an event aggregation scheme
that generates SIMT-compatible workload.

ii) Internal parallelism given by the independent events
within each individual simulation of a parameter study:
By interleaving the transfer to and from GPU-memory
with the execution of independent events on the GPU,
internal parallelism allows for establishing a pipelined
event execution that hides memory access latencies.

Based on a proof-of-concept prototype, we analyze the per-
formance characteristics of the proposed scheme by means of
synthetic benchmarks. Moreover, we conduct a case study us-
ing a wireless network model. We show that our parallelization
scheme reduces the runtime demand in this case study by a
factor of 25 over an equivalent CPU-based implementation.

The remainder of this paper is structured as follows: Af-
ter analyzing the GPU-related challenges in Section II, we
present the design of our multi-level parallelization scheme in

1We use the terms CPU and CPU-core interchangeably in this paper.

Host
streaming multi-processors

GPU

instr.
dispatch

processors

CPU CPU CPU

streaminstr.
dispatch

instr.
dispatch p

memory

…

memory

CPU CPU CPU

m
ing processors

pp

PCIe

…

Fig. 1. Simplified illustration of a typical GPU architecture. Each streaming
multi-processor contains multiple streaming processors which share a common
instruction dispatch unit.

Section III. We then detail on our prototype implementation
in Section IV and evaluate our scheme in Section V. Finally,
we discuss related efforts in Section VI and conclude in
Section VII.

II. CHALLENGES OF INTEGRATING GPUS WITH PDES
Motivated by intriguing parallel performance and supported

by general purpose programming frameworks like NVIDIA’s
CUDA or OpenCL, GPUs have become an invaluable tool
for high-performance computing. For instance, the NVIDIA
GTX 580 graphics card provides a total of 512 processing
cores, organized in 16 multi-processors, which again consist
of 32 stream processors each. Supported by hardware assisted
thread scheduling, an even greater number of threads can con-
currently execute on a single GPU. However, in order to fully
exploit the available processing power, two peculiarities of the
GPU architecture need to be taken into account: i) Threads are
organized in groups which execute in lockstep, and ii) limited
onboard memory necessitates copying data to and from host-
memory. We discuss both aspects in the following and show
why they pose a particular challenge in the context of Parallel
Discrete Event Simulation (PDES).

A. Lockstep Execution of Threads

In NVIDIA’s Fermi architecture, a group of 32 threads
forms a so called warp [2]. Since the threads in a warp
execute on a common multi-processor, they share a single
instruction dispatch unit (see Fig. 1). As a result, all threads in
a warp execute the same instructions in lockstep, implementing
the Single Instruction, Multiple Thread (SIMT) processing
paradigm. Inspired by z-culling, it is nevertheless possible for
each thread to ignore single instructions from the common
instruction stream. By selectively masking instructions, the
threads in a warp can in principle follow different code paths.
However, since the masked instructions are part of a common
instruction stream, no other instructions can be executed in the
meantime. Fig. 2 illustrates the resulting problem by means of
a simple example. Assume threadId is a variable holding
the unique ID of the threads in a warp. The conditional if-
statement then causes all threads with an odd ID to process
the function doSomething while all threads with an even
ID process the function doSomethingElse. Since both
functions comprise different sets of instructions from the
common instruction stream, both groups of threads alternately
execute one instruction from each set, thereby effectively

void gpuKernel() {
if (threadId % 2 == 1)

doSomething();
else

doSomethingElse();
doSomethingTogether();

}

Fig. 2. Example for the lockstep execution problem. Due to a shared
instruction dispatch unit, all threads in a warp alternate executing the diverging
code paths of the if-statement. This effectively doubles the total runtime.

doubling the runtime. Fortunately, the CUDA runtime auto-
matically synchronizes both groups after executing diverging
code paths, so that all threads jointly execute the function
doSomethingTogether.

In stark contrast to the processing paradigm of GPUs,
parallel discrete event simulations execute independent events
in parallel. In general, those events do not execute the same
code but instead model completely unrelated aspects of the
simulated system. Consequently, when mapped to the same
streaming multi-processor, independent yet unrelated events
are still executed sequentially by the GPU. Concluding, in
order to efficiently integrate the lockstep execution paradigm
of GPUs with parallel discrete event simulations, we need
to design an event processing strategy that provides SIMT
workload to the streaming multi-processors of the GPU.

B. Memory Size and Latency

In comparison to the amount of main memory provided by
a typical desktop computer (~8 GB) or server (~32 GB), the
size of GPU memory is relatively small (~1.5 GB). Hence,
data is commonly held in host memory and transferred to
GPU memory on demand, modified there, and finally copied
back to host memory (see Fig. 1). Unfortunately, such memory
transfers across the PCIe bus suffer from significant latencies
and can easily become a performance bottleneck. A common
approach towards mitigating the adverse performance effects
of these memory transfers is latency hiding [3]. The key
idea is to perform three operations concurrently: i) Memory
transfers to the GPU, ii) memory transfers from the GPU, and
iii) actual GPU processing. This three-stage pipelining keeps
the PCIe bus as well as the streaming processors of the GPU
busy. In order to achieve a fully pipelined execution of events
in parallel discrete event simulations, all events in the three
stages of the pipeline need to be independent. Thus, the event
scheduler has to identify independent events and synchronize
their execution accordingly. Moreover, each memory transfer
over the PCIe bus involves a control overhead that favors large
transfer units (1-1000 K) over small ones (1-1000 bytes) [3].
However, the memory footprint of a single event in a dis-
crete event simulation is typically small. Hence, transferring
individual events to and from GPU-memory suffers from the
control overhead inherent to small transfer sizes.

III. MULTI-LEVEL PARALLELIZATION ON GPUS

The goal of this work is to leverage the massively parallel
processing power of GPUs to provide a cost-efficient reduction

of the execution time of parameter studies. Based on the
previous analysis of the peculiarities of GPUs, we state two
key design requirements for an efficient utilization of GPUs
in parallel discrete event simulations. Specifically, the parallel
simulation framework has to

i) provide SIMT-compatible workload to the GPU to accom-
modate the lockstep execution paradigm, and

ii) hide the latency of memory transfers between host- and
GPU-memory.

In order to meet those two design requirements, our proposed
solutions are based on two orthogonal levels of parallelism.
The first level, external parallelism, exploits the fact that
individual simulations in a parameter study are trivially inde-
pendent and can hence execute in parallel. External parallelism
thus lays the foundation for an event aggregation scheme
specifically designed for generating SIMT-compatible work-
load. The second level of parallelism, internal parallelism,
makes use of the observation that within an individual simu-
lation, groups of events may be independent and thus allow
for parallel processing. We exploit internal parallelism to hide
the latencies involved in memory transfers.

Both levels of parallelism are not new in themselves but
have been used in parallel simulation frameworks before.
Instead, we claim that the combination of both schemes results
in a novel parallelization scheme which unlocks the massively
parallel processing power of GPUs for parallel discrete event
simulations. The following sections introduce our approach in
greater detail.

A. SIMT-compatible workload using External Parallelism

In order to meet the first design requirement, our GPU-based
parallelization framework needs to generate SIMT-compatible
workload to match the lockstep execution paradigm of GPUs.
To this end, we design an event aggregation scheme that
exploits the fact that parameter studies comprise multiple
independent and self-contained simulations.

1) Event Aggregation Scheme: In a parameter study, each
individual simulation takes a specific combination of param-
eter values as input. Moreover, each combination of values is
typically executed several times with different random seeds
to obtain statistical confidence in the computed results. We
argue that despite different parametrization, the individual
simulations of a parameter study behave similarly since they
encompass the same logic, i. e., model implementation. In
particular, we expect the order of events in a simulation run
to be similar across the individual simulations of a parameter
study. Nevertheless, since each simulation uses a different
set of parameters, the actual state of each simulation model,
e. g., local variables, differs. Following the design of widely
used simulators [4], [5], we assume that simulation models
exhibit a modular structure. Hence, we define the state of
an event to be the values of the local data structures and
variables of the module the event takes place at. Based on these
assumptions and definitions, our approach towards generating
SIMT-compatible workload for GPUs is as follows.

simulation 1

event queue

t

Host GPU

m
:

on
s

instr.
dispatch

simulation 2

simulation n

…

event queue

t

t

batch processing

Ex
te

rn
al

 P
ar

al
le

lis
m

in
de

pe
nd

en
t s

im
ul

at
io

m
em

ory

…

instr.
dispatch

ins
disp

…

…

event queue

t

str.
patch

Fig. 3. By exploiting the external parallelism between independent simu-
lations of a parameter study, our event aggregation scheme creates SIMT-
compatible workload for the streaming multi-processors of the GPU.

Given a parameter study consisting of multiple individual
simulations, our scheme executes all these simulations concur-
rently in a round-based fashion. In each round, it first dequeues
from all simulations the event with the lowest timestamp. Since
the simulations supposedly exhibit the same behavior, these
events are of the same event type. We define the event type to
be uniquely defined by the specific event handler called when
executing an event. In contrast to the event type, the local state
of each event is different. Hence, we aggregate and transfer
all relevant states from host- to GPU-memory before executing
the event handler on the GPU. As a result, we generate SIMT-
compatible workload by executing one event handler (i. e.,
a single set of instructions) on a batch of aggregated event
states (i. e., multiple data) by means of multiple threads. Fig. 3
gives a schematic overview of the event aggregation scheme.
In this simplified example, all n simulations behave exactly
the same, resulting in the same order and type of events in
the corresponding event queues. Hence, by removing the first
event from every event queue and aggregating the associated
states in a batch, the stream processors of the GPU can modify
multiple event states while executing the same instructions.

2) Divergent Simulations: Of course, we cannot expect all
simulations of a parameter study to behave exactly the same in
all scenarios. Instead, it is more realistic to assume a divergent
event ordering among simulations. For instance, a successful
packet transmission triggers an ACK while an unsuccessful
transmission causes a NACK. In this case, the first events
of the respective simulations will subsequently differ and the
resulting event batches will contain different event types in
an arbitrary ordering. As the ordering within a batch defines
a mapping of events to the threads of a warp, divergent
simulations therefore result in a heterogeneous mapping (see
Fig. 4(a)). Consequently, the performance decreases due to the
divergent code paths of different event handlers. In general, the
degree of divergence between simulations heavily depends on
the particular simulation model as well as the parameters under
investigation. For example, a model of a strictly timed cellular
network is less susceptible to divergent behavior than a model
of a CSMA-based WiFi network.

GPU

…

instr.
dispatch

instr.
dispatch

instr.
dispatch

memory

(a) Unsorted event batch.

GPU

…

instr.
dispatch

instr.
dispatch

instr.
dispatch

memory

(b) Sorted and padded event batch.

Fig. 4. Diverging simulations cause a heterogeneous mapping of events to
streaming multi-processors. By sorting and padding the batch of events, we
create a homogeneous mapping that allows for truly parallel event processing.

To cope with divergent simulations, we exploit the fact
that threads on different multi-processors can independently
execute different instructions. Thus, our goal is to carefully
map events of different types to independent multi-processors
while assigning events of the same type to the same processor.
Specifically, we propose two simple mapping techniques.

Sorting: Our first mapping technique sorts the events
within a batch according to their type. The reasoning behind
this simple approach is that a sorted batch of events increases
the chances for assigning fewer different event types to one
multi-processor. However, it cannot guarantee a clean 1-to-n
mapping of event types to multi-processors and it generally
performs poorly for highly heterogeneous event batches. Even
in case of only few different event types, the simple sorting
scheme cannot align events to the boundaries of the multi-
processors. Thus a group of events of the same type might
span two multi-processors despite actually fitting onto a one.

Padding: An extension of the sorting scheme is event
padding. This scheme explicitly introduces gaps in a sorted
event batch to achieve a clean 1-to-n mapping of event types
to multi-processors and to align event types to the boundaries
of multi-processors (see Fig. 4(b)). However, despite achieving
a homogeneous mapping, the gaps effectively decrease the
utilization of GPU resources since the processors mapping to
a gap cannot perform useful work. Hence, padding involves a
trade-off between a decrease in resource utilization and a per-
formance gain through homogeneous event-to-processor map-
pings. We analyze the performance of both simple mapping
schemes in Section V-A1 and show that they indeed are able
to mitigate the performance impact of divergent simulations.
Future efforts nevertheless will focus on the development and
implementation of more sophisticated mapping algorithms.

Both padding and sorting algorithms aim for generating
SIMT-compatible workload on the level of event types. Yet,
even if executing a single event type (i. e., event handler), the
potentially different states may still cause divergent code paths
inside the corresponding event handlers (recall the example in
Fig. 2). However, since this kind of divergence depends on the
parametrization, we believe that its performance impact is on
average less severe than that of entirely different event types.
Nevertheless, future mapping algorithms may take a more fine
grained view on the event batch, for instance by incorporating
the actual state of the events.

simulation

event queue

Host GPU
stage 2: pr

m
eme3

in
disp

…

t

Internal Parallelism:
independent events within each simulation

rocessing

independent
events

m
ory

e1

e2

e3 str.
patch

…

Fig. 5. Internal parallelism utilizes independent events within a simulation
to establish a three-staged pipeline for event execution: i) copy event state to
GPU memory, ii) execute event, iii) copy event state back to host memory.

B. Hiding Memory Latencies using Internal Parallelism

In addition to external parallelism, we exploit internal
parallelism to hide the adverse performance effects of memory
transfers to and from the GPU. Internal parallelism relies on
the fact that simulation models typically exhibit a certain level
of independence among the events of a simulation run. For
instance, events representing packets in the protocol stack of
different network nodes are independent of each other, hence
allowing for parallel execution. Note that such independent
events are the foundation of traditional PDES techniques [6],
[7]. However, in contrast to traditional parallel discrete event
simulation, we do not intend to actually execute such events
concurrently. Instead, we exploit independent events to create
a three-staged pipeline which allows for a concurrent handling
of such events in order to hide memory transfer latencies.

Given three independent events e1, e2, e3, the three pipeline
stages perform the following tasks concurrently (see Fig. 5):
The first stage copies e1 from main- to GPU-memory. At the
same time, stage 2 executes the previously transferred event
e2 on the GPU. Lastly, the third stage copies e3 back from
GPU- to main-memory. Interleaving all three stages allows
for effectively hiding the memory latencies involved in stage 1
and 3, assuming a completely filled pipeline. However, if fewer
than three independent events are available at any point in time
during a simulation run, the pipeline stalls and some stages
may remain empty. In order to determine independent events,
our proposed parallelization scheme utilizes conservative syn-
chronization [6], [7]. As our scheme does not impose special
requirements on the conservative synchronization algorithm,
any such algorithm can be used.

In addition to conservative synchronization, we moreover
envision a speculative execution scheme that is inspired by
modern CPUs. The scheme is based on the observation that
the results of executing an event are two-fold and consist of i) a
modified event state, and ii) newly generated events. Note that
both results only take effect in the global simulation state after
being transferred from GPU- to host-memory. Hence, in order
to avoid stalls of the event pipeline due to a shortcoming of
independent events, we can speculatively dispatch potentially
independent events to the first (“copy state to GPU-memory”)
and second pipeline stage (“execute event on GPU”). If it turns
out that executing the event was in fact correct, its state is

copied back and newly generated events are enqueued in the
corresponding future event set. If, however, the event should
not have been executed, the modified event state and all new
events are simply discarded. As a result, speculative execution
may turn the performance overhead of transferring event states
into a performance optimization.

A remaining limitation of our approach is the relatively
small size of onboard memory which restricts the number and
the size of event states that can reside in GPU-memory. For
instance, assuming a parameter study with 500 simulations and
a 3-staged pipeline, a maximum of 1500 events states need to
be stored in GPU-memory. Assuming furthermore a typical
consumer GPU with 1.5 GB of memory, each event state may
not be larger than 1 MB. However, we argue that this limitation
does not impose severe restrictions on model developers in
practice. First, the event state contains only data which is
transferred between the modules of a simulation model (see
next section) and which is typically limited in size. Second,
the growing popularity of general purpose computing on GPUs
will likely foster a strong increase in the size of GPU memory.

IV. IMPLEMENTATION

We developed a proof-of-concept prototype to investigate
the viability of our multi-level parallelization scheme. The
prototype does not directly build on an existing simulation
framework, yet its architecture and the modular structure of
its simulation models are inspired by OMNeT++ [4]. The
prototype consists of a CPU-bound simulation core and GPU-
located simulation models. Furthermore, its implementation is
based on CUDA 4 and makes heavy use of Unified Virtual
Addressing (UVA). UVA provides a single virtual address
space spanning host- and GPU-memory, thereby significantly
increasing the memory available to the GPU. The drawback of
UVA however is a severe performance penalty when accessing
data in unified memory from the GPU as it needs to be
fetched from host memory. Hence, in our implementation
the event state solely comprises the “payload” of the events.
As in OMNeT++, simulation models attach data to events
to exchange information between modules. This gives model
designers explicit control over the event state size and the
corresponding memory transfer overhead. In contrast, data
local to modules remains in UVA and can hence become
(arbitrarily) large.

Our framework exports a typical discrete event simulation
interface that abstracts from GPU-programming and CUDA.
It primarily provides access to random number generators and
allows for creating and scheduling new events. Hence, the
model implementation effort is comparable to typical CPU-
based simulators such as OMNeT++ or ns-3 [5] as the interface
hides the complexities of GPU programming. For instance,
to avoid the considerable overhead of dynamic memory allo-
cation on the GPU, the framework creates new events in a
specific buffer provided by each event state. After copying the
event state and the buffer back to host memory, newly created
events are removed from the buffer and enqueued in the event
queues of the corresponding simulations. Furthermore, we

utilize multiple CUDA streams to implement pipelined event
execution. Each stream is part of a simulation driver which
performs four tasks in a round based fashion. In each round,
a simulation driver i) collects one event from each simulation,
ii) writes the corresponding event states to its CUDA stream,
iii) launches the event handling kernel, and iv) reads modified
event states from the CUDA stream. By interleaving the rounds
of multiple simulation drivers, our implementation establishes
a pipelined event execution. In the current prototype, these
CPU-based tasks execute sequentially in a single thread. We
leave the natural extension of the prototype to a multi-threaded
architecture for future work and focus instead on the GPU-
related challenges in this paper. Similarly, our implementation
does not yet provide speculative execution capabilities.

In order to handle divergent simulations, the prototype
employs both simple sorting and padding schemes as outlined
in Section III-A. Our implementation of the padding algorithm
assumes the worst case in the sense that every simulation may
contribute a different event type to the event batch. To still
allow for a homogeneous mapping in this case, the size of the
padded batch increases from |S| to |S|·w, where S denotes the
set of simulations and w the warp size. The implementation
hence trades off increased memory demands for performance.

V. EVALUATION

This section presents an initial evaluation of the proposed
multi-level parallelization scheme based on our proof-of-
concept implementation. We analyze the performance proper-
ties of the proposed scheme in terms of the performance im-
pact of divergent simulations and the event handling overhead.
In order to precisely control these parameters, the evaluation
employs a set of synthetic benchmarks we introduce separately
in the following sections. Moreover, to get an impression of
the possible performance gain in a real-world scenario, we
complement the synthetic benchmarks with a case study based
on a wireless mesh network model.

The benchmarking platform is a workstation PC providing
an AMD Phenom II X4 945 4-core CPU with 8 GB of main
memory and one NVIDIA GeForce GTX 470 GPU accommo-
dating 1.28 GB of memory. The simulation framework runs on
a 64 bit version of Ubuntu 10.10 with NVIDIA’s proprietary
drivers in version 290.10. Finally, we enable full optimizations
using the NVIDIA CUDA compiler, nvcc, in version 4.0 and
g++ in version 4.4. Furthermore, each data point shows the
mean and the 99 % confidence intervals computed over 30
independent repetitions. Nevertheless, the confidence intervals
are barely visible due to highly consistent performance results.

A. Synthetic Benchmarks

We utilize two different synthetic benchmarks to investigate
i) the impact of divergent simulation behavior on parallel
performance, and ii) the event handling overhead of our
framework. The following sections introduce both benchmarks
in detail and analyze their respective results.

100 101 102 103 104

Number of Simulations in the Parameter Study

100

101

102

103

104

105

106
Si

m
ul

at
io

n
Pe

rfo
rm

an
ce

 [e
ve

nt
s/

se
c]

 1x Internal Parallelism, 1 event type
 2x Internal Parallelism, 1 event type
 5x Internal Parallelism, 1 event type
 10x Internal Parallelism, 1 event type

Fig. 6. Simulation performance using nondivergent and computationally
complex simulations. The performance increases linearly along both levels of
parallelism until the GPU is saturated for large numbers of simulations.

TABLE I
SYNTHETIC BENCHMARK PARAMETERS

Parameter Values
Simulations (ext. par.) 2i, i ∈ {0, 1, 3, 5, 7, 9, 10, 11, 12, 13, 14}
Modules (int. par.) 1, 2, 5, 10
Events per simulation 300
Event state size 72 bytes
LCG iterations per event 20000

1) Divergent Simulations: The first synthetic benchmark
analyzes the performance impact of divergent simulations. It
particularly investigates the effectiveness of the simple sorting
and padding algorithms outlined in Section III-A.

Methodology: The performance impact of divergent sim-
ulations is most pronounced for computationally complex
events which hide all other performance effects and over-
heads. Hence, the benchmark uses arithmetically dense Linear
Congruential Generators (LCGs) for generating one pseudo
random number per event. Each module of the benchmark
model encapsulates one such LCG and continuously re-
schedules a single local event. To create divergent behavior,
the benchmark employs different LCGs per module, each one
resulting in a different code path and hence event type. Internal
parallelism is controlled via the number of modules in the
model as we consider concurrent events on different modules
to be independent. The size of the event state is 72 bytes
which includes the minimum set of meta-data required by
the framework for event handling. Moreover, each simulation
comprises a static workload by processing a fixed number of
events. We measure the performance in terms of the average
number of events processed per second. Table I gives an
overview over the set of parameters and their values.

Results: In order to quantify the performance impact of
divergent simulations, we first need to determine the maximal
achievable performance in a nondivergent scenario as shown
in Fig. 6. Focusing on an internal parallelism of 1, we observe
a perfect linear performance increase up to 2048 simulations
(note the double-log scale). Hence, this computationally dense
benchmark indeed constitutes an ideal case for the massively
parallel processing power of the GPU. Beyond 2048 sim-
ulations however, the GPU is fully saturated, achieving no

100 101 102 103 104

Number of Simulations in Parameter Study

100

101

102

103

104

105

106

Si
m

ul
at

io
n

Pe
rfo

rm
an

ce
 [e

ve
nt

s/
se

c]

 1x Internal Parallelism, 1 event type
 1x Internal Parallelism, 4 event types
 10x Internal Parallelism, 1 event type
 10x Internal Parallelism, 4 event types

Fig. 7. Comparison of nondivergent (dashed lines) with 4-way divergent
(solid lines) simulations w/o sorting and padding of events. The simulation
performance drops by a factor of 4 due to divergent code paths.

100 101 102 103 104

Number of Simulations in Parameter Study

100

101

102

103

104

105

106

Si
m

ul
at

io
n

Pe
rfo

rm
an

ce
 [e

ve
nt

s/
se

c]

 1x Internal Parallelism, 1 event type
 1x Internal Parallelism, 4 event types
 10x Internal Parallelism, 1 event type
 10x Internal Parallelism, 4 event types

Fig. 8. Comparison of nondivergent (dashed lines) with 4-way divergent
(solid lines) simulations with sorting but w/o padding of events. For more
than 128 simulations, sorting achieves a perfect mapping of events to multi-
processors, resulting in a perfect performance recovery.

additional speedup. In addition, the performance increases
linearly with the level of internal parallelism as more events
are available for processing on the GPU.

After establishing the optimal performance as baseline,
we now consider 4-way divergent simulations. To this end,
the modules of each individual simulation select one out
of four different LCGs, yielding exactly four different event
types per batch. In this context, Fig. 7 compares the baseline
performance (dashed lines) with the performance of a 4-
way divergent configuration (solid lines) without applying
sorting or padding. We clearly observe a consistent 4-fold
performance decrease over all values of internal and external
parallelism larger than 2. This confirms the expected adverse
effects of divergent simulations. Note that for 2 simulations,
the performance drop corresponds to just a factor of 2 as there
can only be 2 events in a batch anyway. The same holds true
for just 1 simulation.

Sorting the events before execution yields the performance
results shown in Fig. 8. Similarly to the nonsorted and non-
padded case discussed before, a 4-fold decrease in simulation
performance remains for up to 64 simulations. However,
starting with 128 simulations, the performance of the divergent

100 101 102 103 104

Number of Simulations in Parameter Study

100

101

102

103

104

105

106
Si

m
ul

at
io

n
Pe

rfo
rm

an
ce

 [e
ve

nt
s/

se
c]

 1x Internal Parallelism, 1 event type
 1x Internal Parallelism, 4 event types
 10x Internal Parallelism, 1 event type
 10x Internal Parallelism, 4 event types

Fig. 9. Comparison of nondivergent (dashed lines) with 4-way divergent
(solid lines) simulations with sorting and padding of events. Padding achieves
a significant performance recovery but causes a noticeable runtime overhead.

benchmark matches the ideal performance of the convergent
one. We accredit this to the fact that the particular GPU used in
the benchmarks utilizes a warp size of 32 threads. Therefore,
in the case of 4 different event types and 128 simulations,
the simple sorting scheme (coincidentally) achieves an ideal
mapping of exactly 32 identical event types to each warp. The
same also holds true for the remaining configurations as the
number of simulations is divisible by 32 without remainder.
Nevertheless, this constitutes an ideal case which rarely occurs
in real scenarios. Hence, sorting is not sufficient to mitigate
the performance loss inflicted by divergent simulations.

A more promising approach to realizing an ideal mapping
of event types to warps is padding of the sorted event array as
sketched in Section III-A. Applying this technique to the 4-
way divergent benchmark yields the results presented in Fig. 9.
The figure clearly illustrates that for an internal parallelism of
1, divergent and convergent behavior achieve the same per-
formance. Furthermore, for an internal parallelism of 10, the
results show a significant improvement over sorting, however,
the performance still remains slightly below the nondivergent
case. This is due to the additional computational overhead
caused by the padding algorithm as well as a less efficient
utilization of the multi-processors due to gaps in the event
batch. We particularly blame the latter for the performance
drop at 8, 32 and 128 simulations. Hence, future efforts
towards improving the overall performance of the multi-level
parallelization scheme will focus on developing more efficient
event mapping algorithms.

2) Event Handling Costs: The event handling costs of
a discrete event simulation framework comprise in general
all management operations within the framework, such as
creating and deleting, or enqueueing and dequeueing events.
In the context of our GPU-based framework, the overhead
additionally includes the costs of transferring event states
between host- and GPU-memory over the PCIe bus.

Methodology: To measure the event handling costs, we
use a synthetic benchmark model which does not perform
any computations on the GPU apart from continuously re-
scheduling new events. As a result, the runtime of this simula-

100 101 102 103 104

Number of Simulations

0

20

40

60

80

100

To
ta

l R
un

tim
e

[s
]

 1x Internal Parallelism, 1 event type
 2x Internal Parallelism, 1 event type
 5x Internal Parallelism, 1 event type
 10x Internal Parallelism, 1 event type

Fig. 10. Runtime of the synthetic overhead benchmark indicating that the
event handling overhead is effectively parallelized with an increasing number
of simulations. Up to 4096 simulations, a higher degree of internal parallelism
furthermore reduces the overhead due to memory latency hiding. Beyond 4096
simulations the GPU is overloaded.

tion model constitutes a direct measure for the event handling
costs. In contrast to the benchmark model used in the previous
section, this model employs a fixed workload for the whole
parameter study. Since we use the runtime as a direct measure
for the overhead, the workload has to remain constant when
changing the benchmark parameters of interest. Thus, each
parameter study executes a fixed number of events, which are
equally distributed across all simulations and modules within
the simulations. Based on this model, we analyze the event
handling costs under consideration of the degree of internal
and external parallelism as well as the event state size.

Event Scheduling Costs: In this benchmark, we again
vary the level of external parallelism between 1 and 16384 and
the level of internal parallelism between 1, 2, 5 and 10 while
fixing the event state size to the minimum of 72 bytes. Fig. 10
shows the resulting total runtimes. Focusing on the results
obtained for an internal parallelism of 1, we observe a nearly
ideal decrease in the total runtime when increasing the number
of simulations from 1 to 128. Above 128 simulations, however,
the runtime converges towards a stable value. We conclude that
the event handling overhead is effectively distributed across the
growing number of parallel events (due to increasing external
parallelism) and hence hidden up to a certain degree. More
importantly, we conclude furthermore that the performance
gain of parallel processing is larger than the event handling
overhead, even for computationally insignificant events. Ana-
lyzing the results for the other values of internal parallelism
indicates a similar behavior, yet even lower runtimes for up
to 2048 simulations. This demonstrates that the pipelining
approach for hiding memory latencies successfully reduces
the effective event handling overhead as well. Nevertheless,
the figure also reveals an increasing runtime for more than
4096 simulations and a degree of internal parallelism larger
than 1. Specifically, the larger the internal parallelism, the
longer it takes to complete the benchmark, thus resulting in an
inversion of the performance results. We believe that the GPU
is in fact over-saturated in these benchmark configurations due
to contention on the CUDA-streams.

100 101 102 103 104

Number of Simulations

0

20

40

60

80

100
To

ta
l R

un
tim

e
[s

]
No sorting nor padding, 10x Internal Parallelism
Sorting, no padding, 10x Internal Parallelism
Sorting and Padding, 10x Internal Parallelism

Fig. 11. Comparison of the overhead introduced by sorting and padding of
events. Padding adds a considerable overhead over sorting which in turn adds
only a negligible overhead.

Event Mapping Costs: A type of overhead specific to our
framework is caused by the event mapping algorithms. Fig. 11
compares the runtimes of the benchmark model using i) no
sorting or padding, ii) only sorting, iii) sorting and padding.
As expected, applying neither sorting nor padding results in
the lowest runtimes, i. e., overhead. In comparison, sorting
adds only slightly more overhead. This overhead, however,
grows with an increasing number of simulations as the sorting
operation becomes more complex. In contrast, the simple
padding algorithm adds a considerable overhead, in particular
for more than 1024 simulations. Nevertheless, as shown in the
previous section, the performance gain of the padding scheme
clearly outweighs its overhead.

Memory Transfer Costs: Lastly, we investigate the influ-
ence of the event state size on the event handling overhead.
To this end, we fix the number of simulations to 512 and
stepwise increase the event state size from the minimum
of 72 bytes to 26000 bytes. Fig. 12 plots the resulting total
runtimes for different values of internal parallelism. In contrast
to the previous results, the figure illustrates that larger degrees
of internal parallelism cause longer runtimes, which directly
translates into more overhead. This is due to a trade-off
between utilization and contention regarding the PCIe bus:
For an increasing degree of internal parallelism, more CUDA
streams allow for better utilizating the bus but also add more
overhead due to contention. In Fig. 12, an internal parallelism
of 2 achieves the best trade-off as indicated by the shortest
runtime. An internal parallelism of 1 does not yet fully utilize
the bus, while an internal parallelism of 5 and 10 cause
too much contention. However, note that the events of this
benchmark model are by design computational insignificant.
Hence, they do not consume enough runtime to outweigh the
memory transfer overhead inherent to large event states.

B. Case Study

In addition to the synthetic benchmarks, we conduct a case
study by means of a wireless mesh-network model to get an
impression of the user-perceived performance gain.

Methodology: The model simulates wireless transmis-
sions based on an accurate and hence computationally complex

5000 10000 15000 20000 25000
Event State Size [byte]

0

5

10

15

20

25

30

35

40

45

To
ta

l R
un

tim
e

[s
]

 1x Internal Parallelism, 1 event type
 2x Internal Parallelism, 1 event type
 5x Internal Parallelism, 1 event type
 10x Internal Parallelism, 1 event type

Fig. 12. Comparison of the overhead of different event sizes and levels of
internal parallelism. The overhead grows with the size of the events as well as
the internal parallelism due to an increased load on the PCIe bus. The number
of simulations is fixed to 512 in this benchmark.

channel and error model. For the sake of brevity, we do not
introduce these models here but refer to Puñal et al. [8] for de-
tailed information. Moreover, the simulated network comprises
5 nodes connected in a fully meshed topology, i. e., every
transmission is received by all nodes in the network. Each
node consists of three separate modules: i) An application
module which broadcasts packets at a fixed sending rate.
ii) A MAC module which implements the error model and
a rudimentary MAC protocol: Each receiver sends an ACK
or a NACK, depending on whether or not a transmission was
successfully received. Note that sending different replies is a
source of divergent behavior. iii) A PHY module which models
the effects of the wireless channel. The model furthermore
abstracts from the network and transport layer and disregards
interference. Since events traverse the modules up and down
the protocol stack, a total of 7 different event types occur
in the model. Furthermore, due to the fully meshed topology,
every transmission is received by 4 nodes, resulting an internal
parallelism of at least 4. Finally, the event size is 268 byte.

In order to create a simple parameter study, the model
provides two independent parameters. First, the application
module allows for configuring the packet generation rate.
Second, the fading model of the wireless channel considers
different movement speeds in order to model a dynamic envi-
ronment. We vary the former between 1, 5, and 10 packets/s
and the latter between 1, 5, and 10 m/s. In addition, every
combination of parameter values is repeated 30 times with
different seeds to obtain statistical confidence. Altogether, the
parameter study comprises 270 simulation runs.

To allow for a performance comparison between classic
CPU-bound simulation and the proposed multi-level paral-
lelization scheme, the case study utilizes two versions of the
wireless network model: A CPU-based version which builds
upon OMNeT++ and a GPU-based variant which builds on top
of our prototype simulation framework. We explicitly aimed
for keeping the implementation of both models as similar as
possible despite the architectural differences of the underlying
simulation frameworks. Hence, this case study aims at pro-
viding a rough impression of the potential performance gain

CPU
(complete study, 4 cores)

CPU
(single run)

GPU
(complete study)

0

100

200

300

400

500

600

700
Ru

nt
im

e
[s

]
657.45

9.69 26.45

Fig. 13. Runtime of the complete parameter study on a 4-core CPU
(left) and on a GPU (right), as well as the runtime of a single CPU-bound
parameter run (middle). GPU-assisted multi-level parallelization achieves a
25-fold performance improvement over CPU-based execution.

while keeping the limitations of the particular comparison in
mind. Moreover, the CPU benchmark does not utilize internal
parallelization but solely employs external parallelism. We
argue that any internal parallelization scheme using n CPUs
is inherently slower than n independent sequential simulations
because of additional synchronization overhead. Given the 4-
core CPU of our benchmarking machine, we execute the CPU-
bound parameter study in groups of 4 parallel simulations.

Results: Fig. 13 compares the resulting total runtime of
the CPU-based parameter study (left bar) with the total runtime
of the GPU-based parameter study (right bar). The figure
shows that our GPU-assisted approach significantly outper-
forms the traditional CPU-bound implementation by a factor
of more than 25. This confirms that our approach enables a
time-efficient execution of parameter studies. Moreover, the
bar in the middle of Fig. 13 illustrates the runtime of a single
simulation on one CPU-core. It hence represents a distributed
execution of the parameter study on 270 individual CPUs. This
large scale setup achieves an additional 2.7-fold performance
increase over our single GPU-based implementation. However,
the costs of purchasing and maintaining computers with a
total of 270 CPUs by far exceed the costs of a single
computer providing one consumer level graphics card. Thus,
our approach constitutes a truly cost-efficient alternative to
purely CPU-oriented large scale parallelization.

VI. RELATED WORK

GPUs lay the foundation for improving the performance of
a wide range of different types of simulations, including simu-
lations of physical processes [9], computer architectures [10],
vehicular networks [11], Monte Carlo simulations [12], etc. A
comprehensive survey by Owens et al. [13] gives an overview
of the subject. In this paper, we focus particularly on parallel
discrete event simulation. Since this field comprises a large
body of research [7], we only discuss closely related efforts.

A. Integrating GPUs with PDES

Parallel discrete event simulations can either utilize GPUs
solely as potent co-processors or execute the entire simulation
on the GPU. We discuss both variants in the following.

1) GPUs as Co-processors: Similarly to our approach, the
majority of related efforts integrate GPUs as co-processors
onto which complex computations are offloaded. The core
logic of the simulation framework, e. g., event schedulers and
event queues, remain in host memory and run on the CPU.
In this context, Bauer et al. [14] investigate the applicability
of GPUs to combined simulations [15] in which the discrete
component of the simulation (the event scheduler) executes on
CPUs while the continuous component (the event handlers)
runs on GPUs. Using a synthetic workload model, the au-
thors report considerable speedups for simulations containing
computationally complex events. However, memory I/O turns
out to be the primary performance bottleneck of this work
which does not consider memory latency hiding techniques.
Following a similar approach, Xu et al. [16] identify sources of
data- and task-parallelism within detailed network simulation
models. In contrast to our work, this approach mainly relies on
data-parallelism within complex events and does not explicitly
attempt to achieve a high degree of task-parallelism between
events. SCGPSim [17] is a simulation framework focusing
on SystemC simulations. Using source-to-source compilation
of SystemC to CUDA-enabled code, it automatically maps
sequentially executing SystemC threads to parallel threads on
a GPU. This approach achieves a considerable speedup, but
it inherently relies on the processing model of SystemC and
hence cannot be applied in general to discrete event simulation.

2) Purely GPU-based Simulation: In contrast to limiting
GPUs to mere co-processors, Perumalla [18] explores the
challenges of a purely GPU-based simulation framework. To
account for the streaming-oriented processing model of GPUs,
the traditional event scheduling loop underlying discrete event
simulation is replaced by an event-streaming algorithm. De-
spite a low-level GPU implementation, the approach indeed
achieves a parallel speedup in a specific heat diffusion sim-
ulation. Although the paper shows the feasibility of an en-
tirely GPU-based simulation framework, the central question
of general applicability remains unanswered. Moreover, this
pioneering work suffers from the absence of general-purpose
programming environments such as CUDA. Park et al. [19],
[20] extend the previous work by developing a GPU-based
event aggregation and execution scheme based on the concept
of approximate time [21]. While the proposed event aggre-
gation scheme can indeed generate considerable performance
improvements, it results in numerical errors. Although error
analysis and approximation techniques allow for mitigating
the amplitude of these numerical errors, this approach is as
well not generally applicable. Finally, Chatterjee et al. [22]
propose a fully GPU-based simulator for evaluating hardware
designs on the gate level. In order to make efficient use of the
GPU, the authors introduce a dedicated compilation phase in
which the typically monolithic hardware model is segmented
in smaller parallelizable tasks. Nevertheless, this approach
heavily depends on the specifics of hardware logic simulations.
In contrast, our proposed multi-level parallelization scheme is
readily applicable to any discrete event simulation.

B. Efficient Execution of Parameter Studies
Simulation cloning [23], [24], [25], [26] reduces the amount

of common computations across all simulations of a parameter
study. Instead of executing a separate simulation for each
parameter set, simulation cloning conducts only a single sim-
ulation which represents all possible execution paths within a
parameter study. To branch into diverging execution paths, the
simulation clones its current state at so-called decision points,
i.e. events causing diverging behavior, and subsequently fol-
lows each path separately, but in parallel. As a result, the
path segment up to the decision point is shared among both
resulting simulation paths and thus only computed once. While
simulation cloning can significantly reduce the total runtime of
a parameter study, the primary drawback of this technique is its
complexity and overhead due to state saving and maintenance.

VII. CONCLUSION AND FUTURE WORK

We presented a novel parallel discrete event simulation
scheme that utilizes the massively parallel processing power
of GPUs to enable a cost- and time-efficient execution of
large scale parameter studies. In order to efficiently bridge
the substantially different processing paradigms of GPUs and
discrete event simulations, the proposed scheme exploits two
levels of parallelism: i) External parallelism between the
independent simulations of a parameter study for generating
SIMT-compatible workload, and ii) internal parallelism among
the events within each simulation to hide the transfer latency
between host- and GPU-memory. Based on a proof-of-concept
implementation, we obtain early performance results that un-
derline the viability of the multi-level parallelization scheme.

Nevertheless, as this paper covers only an initial investiga-
tion, future efforts target three specific goals. First, we aim for
further mitigating the negative performance impact of lockstep
execution on simulation performance. The simple padding al-
gorithm sketched in this paper trades memory for performance
by introducing artificial gaps between events of different types.
In order to better utilize the limited memory resources on the
GPU, we will develop and investigate enhanced algorithms for
mapping events to multi-processors. Second, we will extend
the current prototype implementation to make use of multiple
CPUs. In contrast to the current single-threaded implementa-
tion, a multi-threaded architecture can improve the simulation
performance by means of distributed data management and
preprocessing of event batches. Third, we will substantiate
our preliminary performance results by porting and thoroughly
investigating further real-world simulation models.

ACKNOWLEDGMENTS
This research was funded by the DFG Cluster of Excellence on Ultra High-

Speed Mobile Information and Communication (UMIC), German Research
Foundation grant DFG EXC 89.

REFERENCES

[1] R. Jain, The Art of Computer Systems Performance Analysis. John
Wiley & Sons New York, 1991, vol. 182.

[2] NVIDIA, “NVIDIA’s Next Generation CUDA Com-
pute Architecture: Fermi,” Whitepaper, V1.1. [On-
line]. Available: http://www.nvidia.com/content/PDF/fermi white
papers/NVIDIAFermiComputeArchitectureWhitepaper.pdf

[3] S. Han, K. Jang, K. Park, and S. Moon, “PacketShader: a GPU-
Accelerated Software Router,” in Proc. of the ACM SIGCOMM con-
ference, 2010.

[4] A. Varga, “The OMNeT++ Discrete Event Simulation System,” in Proc.
of the 15th European Simulation Multiconference (ESM), 2001.

[5] T. R. Henderson, S. Roy, S. Floyd, and G. F. Riley, “ns-3 Project Goals,”
in Proc. of the 2006 Workshop on ns-2: The IP Network Simulator, 2006.

[6] R. M. Fujimoto, “Parallel Discrete Event Simulation,” Communications
of the ACM, vol. 33, no. 10, 1990.

[7] K. S. Perumalla, “Parallel and Distributed Simulation: Traditional Tech-
niques and Recent Advances,” in Proc. of the 38th Winter Simulation
Conference, 2006.

[8] O. Puñal, H. Escudero, and J. Gross, “Performance Comparison of
Loading Algorithms for 80 MHz IEEE 802.11 WLANs,” in Proc. of
the 73rd IEEE Vehicular Technology Conference, 2011.

[9] J. Yang, Y. Wang, and Y. Chen, “GPU Accelerated Molecular Dynam-
ics Simulation of Thermal Conductivities,” Journal of Computational
Physics, vol. 221, no. 2, pp. 799–804, Feb. 2007.

[10] M. Moeng, S. Cho, and R. Melhem, “Scalable Multi-cache Simulation
Using GPUs,” in Proc. of the 19th Intern. Symp. on Modeling, Analysis
& Simulation of Computer and Telecommunication Systems, 2011.

[11] K. S. Perumalla, B. G. Aaby, S. B. Yoginath, and S. K. Seal, “GPU-
based Real-Time Execution of Vehicular Mobility Models in Large-Scale
Road Network Scenarios,” in Proc. of the 23rd Workshop on Principles
of Advanced and Distributed Simulation, Washington, DC, USA, 2009.

[12] T. Preis, P. Virnau, W. Paul, and J. J. Schneider, “GPU Accelerated
Monte Carlo Simulation of the 2D and 3D Ising Model,” Journal of
Computational Physics, vol. 228, no. 12, pp. 4468–4477, Jul. 2009.

[13] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E.
Lefohn, and T. J. Purcell, “A Survey of General-Purpose Computation
on Graphics Hardware,” Computer Graphics Forum, vol. 26, no. 1, pp.
80–113, Mar. 2007.

[14] D. W. Bauer, M. McMahon, and E. H. Page, “An Approach for the
Effective Utilization of GP-GPUs in Parallel Combined Simulation,” in
Proc. of the 40th Winter Simulation Conference, 2008.

[15] B. Zeigler, H. Praehofer, and T. Kim, Theory of Modeling and Sim-
ulation: Integrating Discrete Event and Complex Dynamic Systems.
Academic Press, 2000.

[16] Z. Xu and R. Bagrodia, “GPU-Accelerated Evaluation Platform for High
Fidelity Network Modeling,” in Proc. of the 21st Intern. Workshop on
Principles of Advanced and Distributed Simulation, 2007, pp. 131–140.

[17] M. Nanjundappa, H. D. Patel, B. A. Jose, and S. K. Shukla, “SCGPSim:
A fast SystemC Simulator on GPUs,” in Proceedings of the 15th Asia
and South Pacific Design Automation Conference (ASP-DAC), Jan. 2010.

[18] K. S. Perumalla, “Discrete-event Execution Alternatives on General
Purpose Graphical Processing Units (GPGPUs),” in Proc. of the 20th
Workshop on Principles of Advanced and Distributed Simulation, 2006.

[19] H. Park and P. A. Fishwick, “A GPU-Based Application Framework
Supporting Fast Discrete-Event Simulation,” Simulation, vol. 86, pp.
613–628, Oct. 2010.

[20] ——, “An Analysis of Queuing Network Simulation using GPU-based
Hardware Acceleration,” ACM Trans. Model. Comput. Simul., vol. 21,
no. 3, Feb. 2011.

[21] R. M. Fujimoto, “Exploiting Temporal Uncertainty in Parallel and
Distributed Simulations,” in Proc. of the 13th Workshop on Parallel and
Distributed Simulation, 1999.

[22] D. Chatterjee, A. DeOrio, and V. Bertacco, “Event-driven Gate-level
Simulation with GP-GPUs,” in Proceeding of the 46th ACM/IEEE
Design Automation Conference (DAC), 2009.

[23] M. Hybinette and R. Fujimoto, “Cloning: A Novel Method for Interac-
tive Parallel Simulation,” in Proceedings of the 29th Winter Simulation
Conference, 1997, pp. 444–451.

[24] M. Hybinette and R. M. Fujimoto, “Cloning Parallel Simulations,” ACM
Transactions on Modeling and Computer Simulation, vol. 11, no. 4, pp.
378–407, Oct. 2001.

[25] P. Peschlow, M. Geuer, and P. Martini, “Logical Process Based Se-
quential Simulation Cloning,” in Proc. of the 41st Annual Simulation
Symposium, 2008, pp. 237–244.

[26] P. Peschlow, P. Martini, and J. Liu, “Interval Branching,” in Proceedings
of the 22nd Workshop on Principles of Advanced and Distributed
Simulation, 2008, pp. 99–108.

