
Extending the OMNeT++ Sequence Chart for
Supporting Parallel Simulations in Horizon

Georg Kunz∗, Simon Tenbusch‡, James Gross‡, Klaus Wehrle∗
∗Communication and Distributed Systems, ‡Mobile Network Performance

RWTH Aachen University
∗lastname@comsys.rwth-aachen.de, ‡lastname@umic.rwth-aachen.de

ABSTRACT
Developing parallel network simulations is a complex task.
Besides getting the model right, developers of parallel sim-
ulations are striving for an additional design goal: Perfor-
mance. We argue that developers need an insight into the
behavior of a simulation model in order to assess and opti-
mize its parallel performance. Specifically, given a parallel
simulation model, it is imperative to identify and eliminate
performance bottlenecks. To this end, we extend the se-
quence chart provided by the Eclipse-IDE of OMNeT++
with specific functionality to visualize, analyze, and optimize
the performance of parallel simulations in the context of our
OMNeT++-based parallel simulation framework Horizon.
This extended abstract presents the features and modifica-
tions of our code contribution.

1. INTRODUCTION
Visualizing event interactions has proven to be a valuable

aid during the development of simulation models. For this
reason, OMNeT++ provides two graphical user interfaces
(GUIs), each targeting a specific purpose. The first GUI,
a Tcl/Tk-based runtime visualizer, illustrates event interac-
tions and allows for inspecting the state of the simulation
at runtime. The second GUI is part of the Eclipse-based
integrated development environment (IDE). It constitutes
a sequence chart showing the execution order and succes-
sor relationship among events. In contrast to the runtime
visualizer, this GUI is an offline tool that reads and visual-
izes traces generated at runtime. Despite useful for verifying
the correctness of sequential simulations, both GUIs do not
provide specific development support for optimizing the per-
formance of parallel simulations.

In previous work, we developed Horizon, an extension of
OMNeT++ which allows for a parallel execution of Hori-
zon-enabled simulations on multi-processor machines. In
the context of this work, we observed the strong need for a
graphical support tool that helps developers in tuning par-
allel simulations. Hence, we extended the sequence chart of
the Eclipse-IDE with functionality for analyzing and opti-
mizing the performance of parallel simulations. In the fol-
lowing, we first briefly introduce the basics of Horizon be-
fore presenting the functionality of our code contribution.

2. HORIZON
Horizon enables a parallel execution of discrete event

simulations on multi-processor computers by means of a
novel modeling paradigm. Specifically, this paradigm ex-
pands discrete events with durations in simulated time to ex-
plicitly and naturally model the (processing) delays of phys-

ical systems, e. g., decoding packets, routing table lookups,
etc. Based on this paradigm, Horizon defines a conser-
vative parallelization scheme that exploits the given event
durations to determine independent events for parallel exe-
cution. According to this scheme, two overlapping expanded
events are considered to be independent and hence processed
in parallel. The rational behind this is that the result of
a physical process (e. g., decoding a packet) is only avail-
able after its completion (i. e., packet completely decoded).
Hence, if two expanded events overlap, the input of both
events cannot depend on their mutual output as the output
is not yet complete when the events begin.

3. EXTENDED SEQUENCE CHART
In order to assess the performance of an Horizon-based

parallel simulation model, we need to analyze three proper-
ties of the model:

i) the successor relationship among events,

ii) the duration of each event in simulated time, and

iii) the processing time in wall-clock time it takes to com-
pute each event on a CPU.

The first property is already part of the functionality of the
sequence chart provided by OMNeT++. In fact, visualizing
the successor relationship among events constitutes the main
purpose of the stock sequence chart. The other two proper-
ties, however, are only relevant in the context of Horizon:

Event durations: The conservative synchronization scheme
of Horizon utilizes event durations in order to determine
which events are safe for parallel processing. Hence, the
extended sequence chart needs to illustrate the duration of
each event to enable developers to visually assess the set
of parallelizable events. If this set is small, it constitutes a
performance bottleneck in the model.

Processing times: In addition to the event durations, the
processing time of each event is relevant. Typically, only
events of non-trivial computational complexity are worth
parallelizing since they dominate the runtime of the simula-
tion. In contrast, the synchronization overhead involved in
parallelization often out-weights the potential performance
gain for computationally simple events. Consequently, the
extended sequence chart needs to visualize the computa-
tional complexity of each event to allow developers to dis-
tinguish computationally relevant from irrelevant events.

As a result, our extension of the sequence chart needs to
display two time domains: the simulated time domain (event
durations) and the wall-clock time domain (event process-
ing times). In both cases, the straightforward approach is to
expand the illustration of an event to span a period of time
in the sequence chart. In our current implementation, we



Figure 1: Screenshot showing the duration of events
illustrated by the length of the “event-block” while
event complexities are color-coded. Note the differ-
ence in complexity: Events on the server and load-
Gen modules are more complex (darker) than events
on the dispatcher or sink (lighter).

only utilize the x-axis for visualizing one of the time spans.
Hence, users can choose whether the “length” of an event
indicates either its duration or its processing time. Depend-
ing on the selection, we visualize the respective other time
domain by means of a color scheme gradually ranging from
green to red for increasing values. Figure 1 shows an ex-
ample based on a simple MMN queueing model. Future
versions of the sequence chart might make use of the y-axis
to indicate the second time domain.

Usage. As for the stock version of the sequence chart, we
need to trace a simulation run to obtain all relevant data for
the visualization process. Although we target parallel sim-
ulations, this trace run is currently performed sequentially.
This is mainly for keeping the required changes to the exist-
ing implementation simple and to ensure a correct sequential
ordering of entries in the trace file. Moreover, since writing
to a single trace file is an inherent bottleneck, parallel per-
formance while tracing is expected to be low anyway.

Once a trace is complete, developers can load it in the IDE
and begin their analysis. To aid this analysis process, the
extended sequence chart provides supporting features in ad-
dition to illustrating the duration and complexity of events.
For instance, the sequence chart allows for highlighting the
critical path of the simulation: This path represents the
minimum runtime which is required to execute a simulation
run under consideration of event inter-dependencies and the
computational complexity of the events. All events on the
critical path therefore limit the runtime performance and
are hence candidates for optimization. To further analyze
the critical path, our sequence chart extension utilizes a red-
green color scheme that indicates for each event on the path
the computational complexity that takes place in parallel.
More precisely, an event on the critical path with only a few
parallel events is colored red since it causes a period of low
computational parallelism. Conversely events on the critical
path with a high degree of parallel events are colored green.
This enables the developers to quickly identify potential per-
formance bottlenecks. Figure 2 illustrates the visualization
of the critical path in a trace of the MMN queueing model.

Nevertheless, since simulation traces can be large, man-
ually checking thousands of events for bottlenecks quickly
becomes tedious or infeasible. Hence, the extended sequence
chart features a bottleneck detection mechanism that auto-

Figure 2: Screenshot showing the critical path (col-
ored events connected by big blue arrows). In this
view, the horizontal extent of an event corresponds
to its computational complexity. Events on the crit-
ical path that overlap with few other events are col-
ored reddish, while events with a high amount of
overlapping complexity are colored greenish.

matically scans the critical path for regions of low paral-
lelism, i. e., events that overlap with only few computation-
ally complex parallel events. Since the degree of parallelism
varies heavily from model to model, developers can configure
the bottleneck detection mechanism by specifying a thresh-
old for the degree of parallelism – every event below this
threshold is considered to be a bottleneck. Once a bottle-
neck is found, it is the task of the model developer to analyze
the cause of the bottleneck and modify the model accord-
ingly – for instance by replacing a single complex event with
multiple smaller ones that can be processed in parallel.

Implementation. Our changes to the existing implementa-
tion comprise modifications of the Java-based visualization
plug-in as well as the tracing library. Specifically, the mod-
ifications of the visualization plug-in involve the described
drawing functionality and respective toolbar buttons to con-
trol the new features. Moreover, the changes to the tracing
library include extensions of the API to enable recording
and accessing of event durations and processing times. For
recording the processing times, we additionally introduce a
new trace file entry of type EventEndEntry. This addition
is necessary to maintain the order of events in the trace file
and minimize the impact of our changes: Originally, the oc-
currence of an event is logged by means of an entry of type
EventEntry before the event handler is actually executed.
However, the processing time of an event is known only after
its execution. Since further entries regarding newly sched-
uled events are logged during the execution of an event, the
new entry type de-couples logging of the start and the end
of an event execution while allowing for logging arbitrary
many entries in-between. Nevertheless, by hiding the new
entries in the parsing process, our changes are transparent
to existing plug-ins, such as the EventLogTable. In addi-
tion, the extended sequence chart is backwards compatible
to traces generated by stock versions of OMNeT++. The
current implementation of Horizon, the extended sequence
chart, and the sample model are available in the source code
repositories on our project website1.

Acknowledgments: This research was funded by the DFG Cluster of Excellence
on Ultra High-Speed Mobile Information and Communication (UMIC), German
Research Foundation grant DFG EXC 89.

1
https://code.comsys.rwth-aachen.de/redmine/projects/

horizon-public


