
FANTASY: Fully Automatic Network Emulation Architecture
with Cross-Layer Support

Ismet Aktaş, Hendrik vom Lehn, Christoph Habets, Florian Schmidt, Klaus Wehrle
Chair of Communication and Distributed Systems,

RWTH Aachen University, Germany
{aktas,vomlehn,habets,schmidt,wehrle}@comsys.rwth-aachen.de

ABSTRACT
Testing and evaluating real-world wireless and mobile sys-
tems is very difficult. The volatile nature of the wireless
medium and mobility complicates their evaluation. The ac-
cess to system information hindered by the operating system
further increases the evaluation of a real-world system. In
contrast, a simulator allows to easily set up complex wire-
less and mobile scenarios, log protocol variables of interest
and to repeat the whole test easily if desired. Developers
of real-world systems also want to perform tests with the
simplicity and convenience of a simulation without loosing
the ability to execute arbitrary networking software in its
genuine environment (an operating system).
In this paper, we present fantasy, a new network emula-
tion architecture that allows the fully automated setup and
execution of an experiment, enables the convenient access to
system information and the collection of test results. With
the integration of the cross-layer architecture crawler, we
demonstrate that we are able to monitor parameters across
protocol layers and to evaluate network emulation scenarios
where cross-layer optimization is involved.

1. INTRODUCTION
Developers of software for wireless networks have to cope

with a number of difficulties. The wireless medium and the
distributed nature of the systems complicate the testing of
such software. One typical problem is that test setups come
with high requirements in terms of hardware and space. An-
other limitation is that the repeated execution of a test un-
der the same conditions is not possible. While implementa-
tions have to be able to cope with the rapidly and unpre-
dictably changing behavior of the wireless channels, during
testing, it is beneficial to precisely control the environment
to evaluate the influence of different parameters on the sys-
tem behavior. Including mobility in tests is cumbersome and
comes at the cost of human interaction [10] or highly sophis-
ticated test setups [5]. Another problem in this context is
that it can be difficult to access relevant system information

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2010 ICST, ISBN 78-963-9799-87-5.

that is required to evaluate a system. Due to the fact that a
number of different systems are involved in such a test, the
setup followed by an execution of a test and the collection
of results rapidly get quite complex.
Network simulation tools are especially built to solve the

aforementioned problems, but have their own disadvantages:
Regular simulation tools only allow a very limited use of
existing software code. This leads to the problem that the
system under test has to be implemented twice – once for
the use in a network simulator and a second time for use
in real systems. This means that only the system concept
can be tested, not the actual implementation. Furthermore,
simulation models are often too abstract and do not take into
account important effects that are caused by an operating
system, such as scheduling.
Network emulation [9] combines simulation and real world

testing to benefit from both worlds. However, this is only
partially possible in such a combined setup. For example,
the real systems that form part of the network emulation set-
up are not as transparently accessible as the simulated parts.
Furthermore, network emulation still requires complex setup
for the testbed machines.
In this paper we present fantasy, a new network emu-

lation architecture that facilitates the evaluation of wireless
network software. Our main contribution is a centrally con-
trolled system that allows the fully automated setup and
execution of an experiment, enables the convenient access
to system information, and automates the collection of test
results. The target audience of fantasy are developers of
wireless network software that want to perform tests with
the convenience of a network simulation, but nevertheless
require the use of real implementations and full operating
systems for the system under test. We alleviate the problem
of complicated access to relevant system information by in-
tegrating the crawler [1] architecture into fantasy, which
provides a unified interface for system information access.
Furthermore, since crawler’s original focus is on facilitat-
ing cross-layer communication, fantasy is especially suited
as a rapid prototyping and testing tool for the design of
cross-layer optimizations. We will show one example of a
cross-layer optimization that was implemented and tested
with fantasy in Section 4.
The remainder of this paper is organized as follows: Sec-

tion 2 presents a system overview, introduces the compo-
nents that fantasy is composed of and highlights our design
goals. In Section 3, we describe our architecture in more de-
tail and explain how we achieve the fully automatic setup
and execution of experiments. We evaluate fantasy in Sec-

Host Machine

Host Operating System

Host Configuration
Unit (HCU)

Virtual Machine 1

Guest OS

App

Host Configu

Simulation

Real System 1

GCU

Virtual Machine n

Guest OS

App

Real System n

GCU

n S
Host

System

H

Virtual Ma

Gues

A

H

GCU

uration S

V

G

n S

Figure 1: Conceptual view of fantasy.

tion 4 and discuss related work in Section 5. Finally, we
describe future improvements in Section 6, before conclud-
ing the paper in Section 7.

2. DESIGN OVERVIEW
The main goal of fantasy is to simplify the process of

testing wireless network software. Through a combination
of suited emulation components and the support of fully au-
tomatic experiment setup and execution, developers shall be
able to perform experiments with real software prototypes
as easily as with a network simulation. This section provides
an overview over the overall design of fantasy and the used
components.
In order to enable developers to test arbitrary networking

software in its native environment (an operating system),
but nevertheless minimize hardware requirements, we opted
for the use of virtual machines that execute the systems un-
der test. Because of its widespread use and easy configura-
tion, we have chosen VirtualBox as virtualization software.
With fantasy, those parts of an emulated setup that do

not run in virtual machines are simulated using the ns-3
simulation software [18]. ns-3 is well suited for this task
since it contains detailed models of the MAC layer [2, 17]
and already comes with support for network emulation. Part
of this is a real-time scheduler that runs the simulation in
real time, which is required in order to allow the exchange
of networks packets.
To connect the simulation with the virtual machines, fan-

tasy utilizes two components that have been developed as
part of the SliceTime project [21]. For the emulation of
Ethernet devices, a tap device which connects to ns-3 using
UDP datagrams is created in the system that runs inside
the virtual machine. A wireless emulation driver is used for
the emulation of wireless network connections. This device
driver creates a virtual network device which provides the
same interfaces as a real 802.11 wireless network card, in-
cluding the wireless extensions [23]. Both devices have in
common that they provide interfaces to the guest operating
system, but forward all sent and received frames to corre-
sponding models inside the ns-3 network simulation.
An advantage of network simulations that is usually lost

in case of network emulation [9] is the convenient access to

Host Control Unit (HCU)

HCU
Simulation

(NS-3)

Virtual Machine
(Virtual Box) tual B

S

HCU-Config Logger

VM-Com
(Virtual-Box)

Sim-Com
(NS-3)

HCU-Main

Figure 2: Overview over the Host Configuration
Unit (HCU), its interfaces, and its subcomponents.

relevant information in the network stack. Through the in-
corporation of the crawler architecture, fantasy supports
easy access to such information of the systems that run in-
side the virtual machines. Furthermore, this combination
allows to conveniently evaluate the effects of cross-layer op-
timizations using real-world systems. The only restriction
regarding the software that runs inside the virtual machines
is that they are constrained to Linux systems, as the wire-
less emulation driver and crawler have been developed for
Linux.
By using the aforementioned components, fantasy al-

lows the emulation of diverse scenarios on a single computer.
However, the overall setup and execution of an experiment
is still quite complex when compared to the ease of a pure
network simulation. To further simplify these processes, we
developed two components that allow to control the whole
setup from a central place. The host configuration unit
(HCU) is running on the host computer that accommodates
the network simulation and the virtual machines. It instan-
tiates the virtual machines, starts the network simulation
and is in charge of the overall setup. As part of the systems
that are running inside the virtual machines, the guest con-
figuration unit (GCU) waits for commands from the HCU.
It loads the wireless emulation driver, configures crawler,
starts processes that are part of the experiment and allows
the collection of test results to a central place.
Figure 1 gives an overview of the overall setup that is

used by fantasy. The functionality of HCU and GCU are
described in more detail in the following section.

3. ARCHITECTURAL DETAILS
This section provides more detailed information on how

HCU and GCU are used to control whole experiments in an
automated fashion.

3.1 Host Configuration Unit (HCU)
The Host Configuration Unit (HCU) is executed on the

host system and controls the entire experiment. It consists
of five subcomponents as shown in Figure 2. While design-
ing the HCU we kept it modular to group functionality for
usability and maintainability reasons. Moreover, the mod-
ularity provides us with exchangeable modules such as the
VM-Com subcomponent that is tailored for Virtual Box but
can simply be exchanged for another virtual machine soft-

ware. This holds also for the Sim-Com subcomponent that
is tailored for ns-3 but can also be exchanged for another
simulator. The HCU-Main subcomponent is interconnected
with all subcomponents and controls them.
The initial step to conduct a test setup is done by writing

a configuration file. The configuration includes the required
parameters for the simulation as well as instructions that
are performed on the virtual machines. The configuration
file is read and executed by the HCU-Config subcomponent.
After the experiment, the logged values for all parameters
specified in the configuration are collected from all virtual
machines and are given back to the Logger subcomponent.
In the following we describe how such values can be con-
figured in order to monitor them and how to setup up a
complete experiment.

3.1.1 Configuration
Typically when testing is involved, the experimenter has

to adjust parameters to evaluate the effects. Sometimes this
also requires to repeat the test several times to have stable
and credible experimentation results. It is desirable that
both of these steps are very simple to achieve. Therefore,
the aim of our configuration is to support a very automated,
customizable and easy-to-use testing environment.
In our configuration a whole test setup with different set-

tings is described in a configuration file. The configura-
tion contains everything necessary to automate diverse test
settings of the simulation as well as application and cross-
layer settings in the VM. Repeatability of the test setup is
given by re-executing the configuration file which can also be
configured. A configuration example is shown in Listing 1.
Here, the configuration is subdivided into sections by using
the keywords [ns3], [vm], [schedule] and [logger].
In section [ns3] simulation related settings are listed. Line

3 indicates which ns-3 version is used. In line 7 the ns-3 con-
figuration, already preconfigured, is loaded. The parameters
of the ns-3 configuration can be re-adjusted within the con-
figuration by assigning values to parameters with the use of
tuples as shown in line 16.
Virtual machine related settings are listed in section [vm].

For example, the number of emulated nodes is set on line 20
and their VM image is loaded from a path given on line 23.
The main part of the configuration is the [schedule] sec-

tion which determines when to execute which instruction.
For example, in line 28 indicated with iperf, we used two
tuples. We have introduced a three tuple notation (<vm>,

<time>, <command>); the first index indicates the VM, the
second index the relative time in seconds. Note that the
experimentation starting time between all VMs is synchro-
nized, i.e., all VMs are set once to a common time zero.
After the simulation has started, the HCU receives a sig-
nal and itself sends a signal to all VMs setting them to the
common time zero. The third index gives instruction about
what should be done on that particular VM. If we come back
to the example at line 28, an iperf server is started on VM 2
at time 4 and an iperf client on VM 2 at time 5. Similarly,
at line 29 a monitoring application is started on VM 1 at
time 5 that uses the crawler shared library to monitor the
congestion window (CWND) of TCP. The outcome of the
monitored parameter is stored in a log file. The same holds
for line 30 where the frame error rate (FER) is observed.
To deliver the logged values from the GCU within the

VMs to a central place, the [Logger] section is used. For

1 [ns3]
2 # Path to the ns -3 folder
3 ns3_path: /home/crosslayer/ns -3.7- slicetime
4

5 # Path to the ns -3 configuration file;
6 # leave empty to use default configuration
7 ns3_config: /ns_3/usecase2.cc
8

9 # Offset in seconds to start the HCU after simulation
10 hcu_start_offset: 0.5
11

12 # Simulation duration in seconds
13 ns3_duration: 50
14

15 # (Parameter ,value)-pairs to adjust ns -3 config
16 ns3_param_value: [(" sim_node_count ",1) ,("protocol","

TCP") ,("wlan","a")]
17

18 [vm]
19 # Number of VMs to be started
20 vm_machines: 2
21

22 # Template file for the VMs
23 vm_templ: ./ virtual_machines/templates/default.vdi
24

25 [schedule]
26 wifi :[([1 ,2] , 0.7, "load_wifi_emu ")]
27 crawler :[(1, 1, "load_crawler tcpLayer CLKernelModule

/src/test/enabletcp.ko")]
28 iperf :[(2, 4, "iperf -s -p 5001") , (1, 5, "iperf -c

192.168.1.2 -t 30 -y c -p 5001 -x CMSV -i 1 &>
iperf.log")]

29 tcp_cwnd :[(1, 5, "crawlerapp monitorapp transport.tcp
.tcp_out_5001.cwnd &> /home/crosslayer/gcu/
tcp_cwnd.log")]

30 fer:[(1, 1.5, "crawlerapp monitorapp wemu0.
wireless_stats.qual.fer &> /home/crosslayer/gcu/
fer.log")]

31

32 [logger]
33 # what should be logged
34 log :[(1 ," iperf.log") ,(1," tcp_cwnd.log") ,(1,"fer.log")

,(1,"gcu.log")]
35 # Path to where the log files should be kept
36 log_path: ./logs

Listing 1: A simple configuration file in fantasy.

example, line 34 indicates which values should be delivered
and line 36 indicates where these values should be stored.
Results for this particular configuration will be presented in
Section 4.
So far, we have only seen a fixed test setup, a single ex-

periment without changing parameters. What happens if
we want to have a slightly different test setup? To relieve
the user from having to write an additional configuration
file for only minor changes we distinguish between main
and custom configuration files. The main configuration file
describes the major test setup while the custom configura-
tion only includes the differences. The custom configuration
overwrites the respective values of the main configuration.
For example, if we want to use a different simulation con-
figuration as given in the main configuration shown in line
7 of Listing 1, we have to add only a single modified line
in the custom configuration to the respective section ([ns3]),
e.g., ns3_config:./ns_3/usecaseXX.cc, that overwrites the
main configuration.
However, when many similar tests with only minor changes

are supposed to be conducted, the process of creating cus-
tom configuration can be very cumbersome. To alleviate
this process, we have implemented a configuration genera-
tor which is explained next.

3.1.2 Configuration Generator
The configuration generator is an interactive tool that

helps to create several custom configurations. For each of
the parameters needed by a main configuration, the config-
uration generator asks for assignments. If a default value is
present for a parameter it can be kept by just pressing enter
and moving on to the next parameter. We have introduced a
list notation in brackets that allows to assign several values
to a variable. The following example assigns several values
to the variable ns3_param_value:

(" sim_node_count", [0,1,2,3,4,5,6,7,8,9,10,11,12]),
(" protocol ",["UDP","TCP "]) ,("wlan",["a","b"])

For each of the parameters within these tuples one value is
assigned from the list. In this particular example, the per-
mutation of all these assignments allows to conduct 52 tests,
all of which can be started by issuing one command that,
for ease of use, is given to the user when the configuration
generator finished successfully. This is a shortened example
that we also use later in the evaluation Section 4.2. The
only difference is that we configured more simulated nodes
(ranging till 20 nodes), more runs (10) and one additional
assignment to another variable (TCP and UDP traffic be-
tween emulated nodes) which leads to 1680 different test
runs for generating the experimentation results as presented
in Section 4.2. As a result, with the help of the config-
uration generator, custom configurations are automatically
generated and then used to run automated tests without any
further interaction from the experimenter.

3.2 Guest Configuration Unit (GCU)
The HCU gives instructions on what should be done when

a certain time arrives such as starting the simulation or
starting a real application on a VM. However, these instruc-
tions have to be received and performed on the VMs by a
counterpart. This is done by the Guest Configuration Unit
(GCU). Through the GCU, the HCU has the power to fully
control the VMs. Within each VM, the GCU is executed
when the system is started. This entails that the experi-
menter must install the GCU software on the VM template
which the HCU clones before starting the experiment.
After the VM is booted and the GCU started, it performs

some initials tasks and then waits for further instructions
from the HCU. Figure 3 shows the main responsibilities of
the GCU. These responsibilities include loading applications
that have been determined in the configuration (like iperf in
Listing 1). The GCU also loads crawler [1] which allows
passive monitoring and active manipulation of protocol and
system variables within the VM, as well as the WiFi emula-
tion driver [21] which couples the VM with the ns-3 simula-
tion.
In a simulation, accessing protocol variables is relatively

easy. Most network simulators are designed with ease of ac-
cess and observation of protocol or system variables in mind.
However, in a real system, access to many such variables is
restricted. This is mainly due to the protocol stack being in-
tegrated into the operating system which only provides few
limited interfaces because of security concerns. To facilitate
access to protocol and system variables in a real machine,
we use the crawler framework. fantasy integrates sup-
port in a way that hides the details of the crawler imple-
mentations and relieves the developer from directly config-
uring the framework. We do this by providing a wrapper

GCU

App App App

Virtual Machine

Guest OS
(Kernel Space)

CRAWLER
Logical

Component

LE

CRAWLER
Cross-Layer
Processing
Component

WiFi
Emulation

Driver

CRAWL
Logic

Compon

CRAWL

CRAWLE

App

t OS WiFi

Logging

Figure 3: Overview over the tasks and responsi-
bilities controlled by the guest configuration unit
(GCU).

called monitorapp that translates fantasy logging instruc-
tions into crawler monitoring instructions (cf. Listing 1,
lines 29 and 30).
Since crawler originated as a cross-layer optimization

framework, it is of course also possible to use it for this
purpose. Developers who want to test cross-layer optimiza-
tions in a VM can do so without any further changes to
the standard fantasy setup. The configuration to define
such optimizations is syntactically very similar to fantasy’s
configurations and therefore poses little additional learning
effort. Detailed discussion of the setup of cross-layer opti-
mizations with crawler is, however, beyond the scope of
this paper, and are explained in [1].

3.3 Implementation
fantasy is a combination of many different tools and li-

braries. Of those, two of the vital pieces, crawler and the
WiFi emulation driver tightly integrate into the Linux ker-
nel. This means that, while the developer is free to choose
a distribution, they are restricted to Linux as operating sys-
tem. For our tests, we used Ubuntu distributions. All com-
ponents of the HCU and GCU are implemented in Python
[19].
The communication channel between the HCU and the

GCU is realized through a separate virtual network in which
the HCU provides IP addresses to the GCUs via DHCP.
As a communication protocol between the HCU and GCU
we used the Python Remote Objects (Pyro) [6] package for
Python [19], which runs a daemon inside each VM allowing
the HCU to connect to it. Thus, the HCU is able to call
functions of an instance of the GCU as if they were local
objects.

4. EVALUATION
With our evaluation we show different test cases where

we emphasize different features of fantasy. In each test,
we show a subset of these features. The highlighted features
are: (i) comparability of results between real world tests and
fantasy (ii) cross-layer support for emulated nodes that al-
lows us to passively monitor protocol and system informa-
tion as well as accessing them actively; (iii) repeatability of
experiments; (iv) support of mobile wireless scenarios; (v)
automation and rapid testing capabilities. We will also give
some insight into the scalability of fantasy.

Emulated Node
Iperf Server

Emulated Node
Iperf Client
(stationary)

Ethernet WiFi

5m
distance

Simulated
Access Point

(a) Test case 1: comparison of real world tests and
emulated results with fantasy

(b) Test case 2: monitoring several parameters across sev-
eral protocol layers of a mobile emulated node

Emulated Node
Iperf Server

Emulated Node
Iperf Client
(stationary)

Ethernet WiFi

5m
distance

Simulated
Access Point

(SN) (SN) (SN) (SN)

(SN) (SN) (SN) Simulated Node (SN)

(c) Test case 3: testing the scalability by adding
simulated nodes until the simulation’s real-time
capability is lost.

Figure 4: Topology of the three test case scenarios that were used for evaluation.

4.1 Demonstrating Areas of Application
In this section we give two examples to demonstrate the

areas of application for fantasy. In the first example we
have conducted real world tests and we compare them with
the emulation results achieved with fantasy. This also
highlights the integrated cross-layer support. In the second
example, we showcase simulated mobility as well as mon-
itoring of parameters of several protocols in the emulated
node’s Linux kernel. In both test cases, the physical layer
and channel are simulated with ns-3’s channel model. We
used the two-ray ground propagation loss model that is part
of ns-3 [17] for our simulated wireless channel.

4.1.1 Test Case 1: Comparability, Cross-Layer Op-
timization Support

We present a test case where we changed TCP’s conges-
tion control algorithm depending upon the underlying net-
work conditions. The motivation for this optimization is as
follows: TCP CUBIC [11] is the standard congestion control
algorithm in the Linux kernel since 2.6.19 due to its supe-
rior performance and fairness properties under most net-
work conditions. However, TCP Westwood [16], specifically
developed for wireless communications (such as in WiFi),
provides better throughput in changing network conditions
with high loss rates. The idea is to specify a cross-layer op-
timization that, based on the observed network conditions,
switches between different congestion control algorithms at
runtime without reinitializing the TCP connection. How
cross-layer optimizations can be realized with crawler is
explained in our prior work [1] and is not within the scope
of this paper.
In the real world testbed, our test setup consists of two

PCs and one 802.11g access point. One PC runs the cross-
layer optimization configured in crawler, and is connected
to the access point via WiFi. On this PC we use iperf [20] to
create TCP traffic, and netem [12] to create different packet
loss rates (PLRs). The other PC serves as the destination
for iperf traffic; it is connected to the access point via Ether-
net. In fantasy, the two PCs are emulated virtual machine

nodes that use the emulated network drivers to connect to
a simulation setup. This simulation simulates an 802.11a
access point since 802.11g functionality is not given in the
used ns-3 version; but 802.11a should show the same behav-
ior. The test setup is depicted in Figure 4(a).
Figure 5 shows the results of our experiments. For the first

120 seconds, we have set the PLR to 10% which is a very sig-
nificant PLR for TCP. For the first 60 seconds, the optimiza-
tion is not active, as depicted by the low TCP throughput
achieved during this time. The optimization is activated at
60 seconds which triggers the switch from CUBIC to West-
wood and subsequently improves the throughput. At 120
seconds, we set the PLR to 0%, so that TCP switches back
to CUBIC and thus achieves a consistently higher through-
put. Although the results obviously are not perfectly similar,
they show the same tendency. The differences can be mainly
attributed to channel effects; the emulated setup uses a sim-
ple path loss model and does not account for small-scale
fading or interference from other nearby machines that use
a wireless connection, but are not part of the test setup.
This test case demonstrates the following features: We

have gained comparable results between real world tests and
our architecture. Furthermore, we showed an example of
executing a cross-layer optimization and continuously moni-
toring a protocol parameter. As fantasy also supports mo-
bility and monitoring of diverse parameters across protocol
layers and system components, we want to give an additional
example where we demonstrate these features.

4.1.2 Test Case 2: Monitoring, Mobility, Repeatabil-
ity

For our second test case (cf. Figure 4(b)), we use an em-
ulated setup similar to the previous one. However, we use a
standard TCP setup without any cross-layer optimizations.
Instead, we introduce mobility by simulating a constant
speed movement. The node that is connected to the AP
via WiFi starts at a distance of 0m to the access point and
moves to a distance of 460m at a speed of 1m/s. Upon reach-
ing that point, it moves back to 0m at the same speed. To

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 20 40 60 80 100 120 140 160 180

T
hr

ou
gh

pu
t [

M
B

it/
s]

Time [s]

TCP = CUBIC
PLR = 10%

TCP = Westwood
PLR = 10%

TCP = CUBIC
PLR = 0%

(a) Testbed measurements

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 20 40 60 80 100 120 140 160 180

T
hr

ou
gh

pu
t [

M
B

it/
s]

Time [s]

TCP = CUBIC
PLR = 10%

TCP = Westwood
PLR = 10%

TCP = CUBIC
PLR = 0%

(b) Emulated measurements with fantasy

Figure 5: Comparison of throughput measurements for a cross-layer optimization scenario. TCP’s congestion
control algorithm is changed based on the changing packet loss ratio (PLR) and the received signal strength
indicator (RSSI).

showcase the monitoring capabilities of fantasy, we logged
several key metrics throughout the experiment. The set-
up is the result of the configuration shown in Listing 1 and
discussed in Section 3.1.1.
The monitored parameters are shown in Figure 6. From

the application layer we logged the throughput measure-
ments gained by iperf, from the transport layer the conges-
tion window (CWND), and from the WiFi emulation device
driver the frame error rate (FER). We chose these param-
eters for two reasons. First, they are good candidates to
demonstrate the effects of mobility and packet loss. Second,
we show that we are able to monitor different layer or system
components within an emulated node.
As can be seen in Figure 6, the throughput is reduced

with increasing distance. The step pattern of the through-
put curve shows the effect of rate adaptation. At around
400s, the distance becomes too large for any meaningful
communication: virtually all frames are dropped due to er-
rors, and no TCP packets are received any more. After the
node reaches its maximum distance and slowly returns back
to the AP, the communication recommences at around 550s,
and throughput gradually increases afterwards.
To investigate whether we can produce repeatable test set-

ups with fantasy, we ran this scenario several times with
identical simulation settings. As can be seen in Figure 7, the
throughput is almost exactly the same over all runs. Other
measured parameters were also highly similar to each other.
With this test case, we demonstrate fantasy’s capabil-

ities to model mobile wireless scenarios. We also give an
example of monitoring and logging of system and protocol
parameters inside a virtual machine, and we use this to show
how fantasy produces very similar results over several runs
with identical simulator setups.

4.2 Test case 3: Scalability, Automation, Rapid
Testing

If the simulation has too many events to process, it is not
able to follow the real time demands. In such a case, simu-
lation overload introduces artifacts that strongly distort the
results. Therefore, fantasy stops the experimentation in
such a case. We therefore want to determine how complex

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 200 400 600 800 1000

F
E

R

Time [s]

 0

 200

 400

 600

C
W

N
D

 0

 5

 10

 15

 20

 25
T

hr
ou

gh
pu

t [
M

bi
t/s

]

Figure 6: Monitoring of three metrics (TCP
throughput, TCP congestion window, and frame er-
ror rate) at an emulated node over time. The node
starts at a distance of 0m to the access point, moves
away at a constant speed up to a distance of 460m,
and turns back until it reaches 0m again.

the simulation can get before simulation overload occurs.
This of course strongly depends on the performance of the
computer running the simulator and the virtual machines.
Evidently, a stronger machine allows more complex simu-
lations and more emulated nodes. For our tests, we used
a Dell OptiPlex 960 with 4GB Ram and Intel Core2 Quad
CPU Q9400, each processor running at 2.66GHz. Ubuntu
10.04 was installed on an external USB 2TB hard disc.
The test setup is very similar to the previous ones. The

emulated WiFi node is kept at a fixed distance of 5m and
sends netperf [14] traffic to the emulated Ethernet node.
With each run, we add an additional simulated node to the

 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000

T
hr

ou
gh

pu
t [

M
B

it/
s]

Time [s]

Figure 7: Monitored TCP throughput from three
simulation runs with the same parameters. Re-
peated runs produce highly similar results.

simulation setup. We continued this until the simulation ex-
perienced overload and canceled the evaluation. Figure 4(c)
shows the set for this test case. We placed the simulated
nodes equidistantly around the access point. The cross-
traffic created by the simulated nodes always adds up to
8Mbit/s, so that, for example, with four nodes, each sim-
ulated node sends with 2Mbit/s. This way, the channel is
always kept roughly equally busy from traffic by the simu-
lated nodes, with netperf using up the remaining capacity.
Apart from the number of simulated nodes ranging from

0 to 20, we varied three settings for this evaluation setup:
(a) we used either TCP or UDP for the netperf traffic be-
tween the emulated nodes, (b) we used either TCP or UDP
for the traffic between the simulated nodes, and (c) we used
either 802.11a or 802.11b as the WLAN standard. We also
conducted each test 10 times, resulting in 1680 experimen-
tal runs. (How these diverse tests were generated has been
shown in Section 3.1.2.) The reasons for these different tests
were all related to simulator performance. UDP produces
less overhead than TCP due to the less complex protocol.
802.11b produces less load on the simulator than 802.11a be-
cause of the lower maximum speed of the wireless network
(11Mbit/s and 54Mbit/s, respectively).
The results of our tests are summarized in Figure 8. In

general, the results confirmed our expectations. UDP traf-
fic between the emulated nodes meant we could add more
simulated nodes before the simulation overloaded (compare
same-colored bars with each other) compared to TCP traf-
fic between them. Likewise, UDP cross-traffic allowed us to
add more nodes than TCP cross-traffic (compare first pair
of bars in each set with second pair). 802.11b allowed us to
add more nodes than 802.11a (compare first bar with second,
and third with fourth in each set). The exception from these
rules are 802.11a with TCP cross-traffic, in which both ex-
periments overloaded after adding a single cross-traffic node.
The setup with just the emulated nodes running netperf
completed successfully for both TCP and UDP traffic.
In this section, we have demonstrated that we are able to

set up a mix of emulated and simulated nodes. The possible
complexity of the network depends on the used protocols and
used MAC layer models (and the used hardware to run the
network emulation setup). We will discuss concepts to im-
prove the performance and allow larger emulated networks
in Section 6.

 0

 5

 10

 15

 20

TCP UDP

A
dd

iti
on

al
 s

im
ul

at
ed

 n
od

es

Emulated node traffic type

WLAN standard and
traffic type of
simulated nodes

802.11a,TCP
802.11b,TCP
802.11a,UDP
802.11b,UDP

Figure 8: Number of nodes that could be simulated
using fantasy before simulation overload occurred.

5. RELATEDWORK
Since network simulation and emulation play an impor-

tant role in protocol evaluation, there are different projects
that offer functionality similar to fantasy.
Arguably the most elaborate of these is Emulab [8], a

project that aims at combining network simulation, network
emulation and real networks to create a complex testbed.
From the first implementation at the University of Utah, sev-
eral additional Emulab testbeds at different locations were
spawned, demonstrating the concept’s success. The origi-
nal Emulab consists of several hundred PCs with additional
hardware connecting them. Later additions to the testbed
include stationary wireless nodes, as well as Mobile Emu-
lab [13] which uses mobile robots to carry sensor nodes in
a room dedicated to this purpose. Clearly, this setup al-
lows testing in wireless networks with a lot of realism and
support of repeatability, but access to existing testbeds is
limited and costs for the setup of a new testbed are high.
With emulation, Emulab supports another way to perform
tests in wireless networks. However, the emulation features
for mobile nodes are more restricted and simple than the
functionality that fantasy offers through the incorporation
of ns-3.
An approach similar to fantasy is given by the Network

Experiment Programming Interface (NEPI) [15] which tries
to offer a single user interface for testing with many different
tools. For example, NEPI can use ns-3, PlanetLab, Emulab
and ORBIT in its tests to create diverse setups and topolo-
gies. Since NEPI tries to offer an uniform interface for this
diverse set of tools, the interface of NEPI itself is already
quite complex. If this combination of different tools is not
required, it is therefore easier to learn the use of a single
tool such as fantasy.
Another similar concept is given with Ad-hoc Routing/Em-

ulation [7] where a cross-layer implementation is tested on
virtual machines. These virtual machines represent robots
that have to navigate through a virtual world created by a
simulation. However, the virtual machines do not interact
with the simulation but only get status information about
the virtual world therefrom. This approach targets a rather
special case of cross-layer testing as it was designed specif-
ically to test the robots’ navigation. Using this setup for
general cross-layer testing is therefore not possible.

6. FUTUREWORK
As the scalability tightly depends on the power of the test

machine, the power needed to be real-time capable rapidly
grows with the simulation complexity. In other words, for
any amount of computing power, it is possible to create net-
work emulation setups that will overload the simulation and
therefore be too complex to be run in real-time. Therefore,
we are considering to solve this problem that fantasy suf-
fers from like all other network emulation frameworks more
fundamentally by relieving it from that real-time constraint.
One solution to do so is SliceTime [22], which continuously

synchronizes virtual machines and network simulation with
each other to combat the time drift to originates from simu-
lation overload. We are currently investigating the complex-
ity of integrating SliceTime with fantasy. Since SliceTime
is tightly integrated with Xen [3, 4] instead of VirtualBox,
this will mean a change in the VM software used. Due to the
modular design of fantasy, this will be mainly a question
of creating a new VM-Com module (see Section 3.1) for the
HCU.

7. CONCLUSIONS
In this paper we presented fantasy, a new network emu-

lation architecture that allows the fully automated setup and
execution of an experiment, enables the convenient access to
system information and the collection of test results. With
the integration of the cross-layer architecture crawler, we
demonstrated that we are able to monitor parameters in a
mobile emulated node across protocol layers and to evaluate
network emulation scenarios where cross-layer optimization
is involved.
Our fully automated emulation architecture is already an

essential part for testing of cross-layer optimizations within
the crawler project [1]. As we believe that our fully auto-
matic network emulation architecture will be useful to other
researchers and developers in the area of wireless networks,
we have made the source code1 available to the public.

8. ACKNOWLEDGMENTS
We would like to thank Raimondas Sasnauskas, Tobias

Drüner, Dominik Dennisen, Martin Henze and Elias We-
ingärtner for many fruitful discussions and valuable feed-
back. This research was funded in part by the DFG Cluster
of Excellence on Ultra High-Speed Mobile Information and
Communication (UMIC).

9. REFERENCES
[1] I. Aktas, J. Otten, F. Schmidt, and K. Wehrle. Towards a

Flexible and Versatile Cross-Layer-Coordination
Architecture. In Proceedings of the 29th International
Conference on Computer Communications (INFOCOM
2010), pages 1–5, March 2010.

[2] N. Baldo, M. Requena, J. Nunez, M. Portoles, J. Nin,
P. Dini, and J. Mangues. Validation of the ns-3 IEEE
802.11 model using the EXTREME testbed. In Proceedings
of SIMUTools Conference, 2010, March 2010.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and
the art of virtualization. In Proc. SOSP’03, Bolton
Landing, NY, USA, Oct. 2003. ACM.

1All source files are available at:
http://www.comsys.rwth-aachen.de/research/
projects/crawler

[4] Citrix Systems, Inc. Xen hypervisor, the powerful open
source industry standard for virtualization.
http://www.xen.org/. (accessed Nov 14, 2011).

[5] P. De, A. Raniwala, S. Sharma, and T. Chiueh. MiNT: a
miniaturized network testbed for mobile wireless research.
In Proc. IEEE 24th Annual Joint Conference of the IEEE
Computer and Communications Societies INFOCOM 2005,
volume 4, pages 2731–2742 vol. 4, 2005.

[6] I. de Jong. Pyro 3.x - Python remote objects.
http://www.xs4all.nl/~irmen/pyro3/. (accessed Nov 14,
2011).

[7] K. Dörnemann. Ad-Hoc Routing/Emulation -
Philipps-Universität Marburg - Verteilte Systeme (AG
Freisleben). http://www.uni-marburg.de/fb12/verteilte_
systeme/forschung/pastproj/adhoc_routing_emul.
(accessed Nov 14, 2011).

[8] Emulab.Net - Emulab - Network Emulation Testbed Home.
http://www.emulab.net/. (accessed Nov 14, 2011).

[9] K. R. Fall. Network emulation in the Vint/NS simulator. In
4th IEEE Symposium on Computers and Communication,
1999.

[10] R. S. Gray, D. Kotz, C. Newport, N. Dubrovsky, A. Fiske,
J. Liu, C. Masone, S. McGrath, and Y. Yuan. Outdoor
experimental comparison of four ad hoc routing algorithms.
In Proceedings of the ACM/IEEE International Symposium
on Modeling, Analysis and Simulation of Wireless and
Mobile Systems (MSWiM), 2004.

[11] S. Ha, I. Rhee, and L. Xu. CUBIC: a new TCP-friendly
high-speed TCP variant. SIGOPS Oper. Syst. Rev.,
42(5):64–74, 2008.

[12] S. Hemminger. Netem-emulating real networks in the lab.
In Proc. Linux Conference Australia, 2005.

[13] D. Johnson, T. Stack, R. Fish, D. M. Flickinger, L. Stoller,
R. Ricci, and J. Lepreau. Mobile Emulab: A Robotic
Wireless and Sensor Network Testbed. In Proceedings of the
25th Conference on Computer Communications (IEEE
INFOCOM 2006), April 2006.

[14] R. Jones, K. Choy, and D. Shield. Netperf.
http://www.netperf.org. (accessed Nov 14, 2011).

[15] M. Lacage, M. Ferrari, M. Hansen, T. Turletti, and
W. Dabbous. NEPI: Using Independent Simulators,
Emulators, and Testbeds for Easy Experimentation. In
ACM SIGOPS Operating Systems Review, pages 60–65,
January 2010.

[16] S. Mascolo, C. Casetti, M. Gerla, M. Y. Sanadidi, and
R. Wang. TCP westwood: Bandwidth estimation for
enhanced transport over wireless links. In Proc.
MobiCom’01, pages 287–297, New York, NY, USA, 2001.
ACM.

[17] ns-3 Wifi Models. http://www.nsnam.org/docs/release/3.
7/doxygen/group___wifi.html. (accessed Nov 14, 2011).

[18] ns-3 Website. http://www.nsnam.org/. (accessed Nov 14,
2011).

[19] Python Programming Language, Official Website.
http://www.python.org/. (accessed Nov 14, 2011).

[20] A. Tirumala, F. Qin, J. Dugan, J. Ferguson, and K. Gibbs.
Iperf: The TCP/UDP bandwidth measurement tool.
http://iperf.sourceforge.net/, 2004. (accessed Nov 14,
2011).

[21] E. Weingaertner, H. vom Lehn, and K. Wehrle.
Device-driver enabled wireless network emulation. In
Proceedings of the 4th International ICST Conference on
Simulation Tools and Techniques (SIMUTools 2011).
ICST, 3 2011.

[22] E. Weingärtner, F. Schmidt, H. vom Lehn, T. Heer, and
K. Wehrle. SliceTime: A platform for scalable and accurate
network emulation. In Proceedings of the 8th USENIX
Symposium on Networked Systems Design and
Implementation (NSDI ’11), March 2011.

[23] Wireless Tools for Linux. http://www.hpl.hp.com/
personal/Jean_Tourrilhes/Linux/Tools.html\#wext.
(accessed Nov 14, 2011).

