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Nicolai Viol, Jó Ágila Bitsch Link, Hanno Wirtz, Dirk Rothe, and Klaus Wehrle
Communication and Distributed Systems

RWTH Aachen University
Aachen, Germany

Email: {viol, bitsch, wirtz, rothe, wehrle}@comsys.rwth-aachen.de

Abstract—We propose an efficient approach to probabilistic
3D indoor path-matching and localization based on Wi-Fi-
signal measurements using Hidden Markov Model-based (HMM)
algorithms. Given a 3D model of the building, we derive high-
resolution emission probabilities and transition probabilities from
raytracing-generated Wi-Fi signal propagations. Therefore we
use both the generated signal-strength values and the geometric
information of the 3D model. Based on the emission and transi-
tion probabilities and a sequence of Wi-Fi signal measurements
provided by the client, the HMM-based algorithm computes the
most probable path through the building.

We qualitatively compare our HMM-based algorithms with
state-of-the-art Particle Filter-based (PF) algorithms for both
offline and online localization accuracy using both simulated
and real-world Wi-Fi measurements. In simulation, HMM out-
performs PF by up to 40% regarding path accuracy and also
performs significantly better in finding the current position. Using
real-world measurements, HMM computes the user’s path 34%
more accurately compared to PF while both perform equally well
in online localization. The evaluation further shows that a low-
effort 3D model of a building using only five different materials
for walls and doors is sufficient to achieve an average localization
error below 2m.

Our HMM-based approach provides accurate Wi-Fi local-
ization in real-time using commodity hardware and performs
especially well in path-matching. This makes it also a viable tool
for applications like geofencing or for offline analysis to identify
error-prone locations and measurements.

I. INTRODUCTION

Indoor localization based on Wi-Fi has been a fertile re-
search topic in the last decade. Compatible devices are cheap
and the infrastructure it needs is almost ubiquitous, in many
public and private environments. Still, the actual deployment
of Wi-Fi-based indoor localization is limited. The main cause
for this lies in the calibration and maintenance effort required
to keep the system accurate. Furthermore, the accuracy for
specific applications such as geofencing and other location-
based services might not be enough.

In this work, we address these points. To reduce the initial
calibration effort, we make use of already available 3D models
of a building. Especially in the context of trade fairs and
office buildings, there are detailed floor and exhibition plans,
or office plans available. In case those are not available, we can
make use of legally mandated evacuation plans, from which
we can generate a 3D model of a floor. Using this approach, we

can significantly reduce the overhead for manual calibration
that other Wi-Fi fingerprinting based schemes require.

Once we have this high-resolution signal data available
from the ray tracer, we evaluate the performance of different
3D localization mechanisms. Aside from the more common
Least Mean Square Error (LSME)-based methods, we look at
Particle Filters (PF) and particularly at Hidden Markov Models
(HMM). We propose an optimized HMM approach applying a
Viterbi decoder and state pruning to achieve real-time results
in the highest resolution with commodity hardware (Intel
core i7 CPU). We show that while we achieve performance
comparable to the related work during online localization,
we can improve the performance for offline applications like
tracking and geofencing by up to 40%.

The remainder of the paper is structured as follows: After an
analysis of the related approaches, both in terms of propagation
modeling and in Wi-Fi Localization, particularly fingerprinting
and HMM-based approaches, we discuss the framework of
our system. We focus on the raytracer and its calibration, as
well as the localization component. We follow with a detailed
algorithmic description of our HMM-based and our Particle
Filter-based approaches. In our evaluation we support our
performance claims.

Contributions

The main contributions of this work are:

• HMM-based offline and online localization: We pro-
pose efficient offline and online 3D localization using an
HMM-based path-matching algorithm using only com-
modity and inexpensive Wi-Fi hardware, namely a mobile
device and access points.

• Low-effort raytracing: We use a low-effort and easy to
adapt 3D radio propagation model based on raytracing.
The derived high resolution signal volumes and 3D model
map to finely distinguishable paths.

• Good performance of HMMs in a variety of cases:
We show HMM outperforms PF and LMSE especially in
the offline variant, on both synthetic and real-world data.
The real-world results are comparable to other high-effort
approaches.978-1-4673-1954-6/12/$31.00 © 2012 IEEE
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II. RELATED WORK

We divide our related work into two main categories:
Propagation Modeling, which can be further subdivided into
empirical, semi-empirical and physical models, while Wi-Fi
Localization may be categorized into fingerprinting, model-
base, and sequential approaches. We will see that, through
the novel combination of several of these approaches, we can
significantly reduce the effort required for Wi-Fi-based indoor
localization while preserving good accuracy.

A. Propagation Modeling

Various signal propagation modeling approaches have been
published in the last decades. While their initial purpose
was the optimization of wireless communication coverage and
performance, they receive new interest in their ability to im-
prove wireless localization systems, either through predicting
a localization accuracy at different locations, or by serving as
a basis of a localization technique itself.

We divide radio propagation models into empirical, semi-
empirical (or analytical), and physical models. We can derive a
basic empirical model purely from manual measurements. The
model captures the signal propagation very exactly. However,
this accuracy comes at the price of a very high manual effort
with respect to resolution and consistency.

Semi-empirical models make use of path-loss functions
to compute the signal propagation. These functions are
parametrized by empirical measurements. While basic semi-
empirical models only consider the distance to a source, more
advanced systems take different materials and environments
into account. A prominent example is the Wall Attenuation
Factor (WAF) model used within the RADAR localization
system [1]. Parameters are very environment-specific and the
model needs to be re-calibrated in each new scenario.

In contrast, physical propagation models simulate the phys-
ical nature of radio signals by accurately modeling different
physical effects like attenuation, reflection, diffraction, or
refraction. This requires an accurate model of the environment
including detailed material parameters. Depending on the
scenario, the additional overhead associated with the creation
of such a high-accuracy model does not pay off and makes it
necessary to find the best tradeoff between effort and accuracy.
These models are prominently computed using a raytracer [2]–
[5].

El-Kafrawy et al. [6] performed an extensive analysis on the
applicability of different types of signal propagation models
to Wi-Fi localization. They show that raytracing models in
general and 3D-raytracing in particular are able to provide
more accurate signal propagation models compared to simpler
models and achieve significantly better localization results.
This makes raytracing models a viable basis for Wi-Fi lo-
calization, even though they need longer computation times
and more detailed models compared to other propagation
prediction schemes.

B. Wi-Fi Localization

Fingerprinting-based Wi-Fi localization, also referred to as
range-free localization, typically uses a previously generated

fingerprinting database containing the AP signal levels at
various locations of the scene to determine the location of
a user. In contrast to range-based approaches, fingerprinting
does not use explicit distance estimation to a set of anchor-
points and is therefore more accurate in indoor scenarios where
signals are massively affected by many objects. Thus, the
required infrastructure and client hardware for fingerprinting
can be simpler and less expensive.

One of the first papers published presenting a fingerprinting
approach is [1]. By manually measuring the signal values
of the available APs at various reference points, Bahl et al.
achieve a localization accuracy in the range of 2 m to 3 m.

More advanced approaches in matching client measure-
ments to the stored fingerprints are able to further reduce
the error below 1 m [7]. However, the performance of Wi-Fi
fingerprinting is affected by dynamic objects and changes in
the environment. Hence, the main problem of fingerprinting is
the huge effort associated with the creation and maintenance
of an up-to-date fingerprinting database. As a consequence,
model-based approaches are proposed that uses different prop-
agation model techniques to reduce the initial effort, whereby
raytracing models have shown to achieve the best results [6].

Further improvement in terms of localization accuracy and
robustness is achieved by sequential localization approaches.
They exploit the sequential characteristic of Wi-Fi measure-
ments to match the individual measurements to a sequence of
locations using mobility models and thereby ensuring more
natural movements. Evaluating a sequence of measurements
comes at the cost of higher computational complexity and thus
requires efficient algorithms like Particle Filters (PF) [8], [9] or
Hidden Markov Models (HMM) [10]–[12]. These approaches
are prominently used in robotics and are typically combined
with additional sensors, e.g., compass, step-detection, or ac-
celerometer which refine the mobility model through activity
and mobility detection. Although HMM-approaches achieve
best results they demand higher computation times. Therefore,
they are typically used only with low-resolution states [10]. In
contrast, PF approaches work very efficiently due to smart
random sampling but the parameters need to be calibrated
carefully with respect to the expected error of the measure-
ments for each scenario. Otherwise, PF-based approaches are
prone to fail.

This observation motivated us to investigate an efficient
HMM-based localization approach based on high-resolution
raytracing models.

III. FRAMEWORK

The localization framework consists of two main com-
ponents, the Radio Propagation Component (RPC), and the
Localization Component (LC).

The RPC is responsible for modeling radio propagation
from different access points. Using a raytracer allows us to
produce a fingerprinting database (i.e., 3D signal volumes)
with a much higher spatial resolution compared to pure
empirical methods while being able to adapt to environmental
changes. However, we still use raw measurements derived
from a client device to calibrate our model parameters.
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The LC uses the propagation model and the 3D model
provided by the RPC as the main source of information to
perform localization. A mobile client is now able to send a
sequence of Wi-Fi measurements from the scene to the LC.
This sequence is then processed by the LC and the client gets a
sequence of locations in return. We propose a Hidden Markov
Model-based path-matching algorithm in an offline and an
online variant. We compare the results with corresponding
offline and online Particle Filter path-matching variants, as
well as with a naive Least Mean Square Error-based fingerprint
matching scheme.

A. Radio Propagation Component

To compute the radio propagations of the APs in the
environment we use the Photon raytracer [13]. The generated
radio propagation is a 3D voxel volume with a predefined reso-
lution, also called signal volume. We use signal volumes with
a resolution of 0.2 m× 0.2 m× 0.2 m. The Photon raytracer
takes the following data as input:

1) A polygon mesh of the scene geometry: We created the
mesh model manually in Blender using floor plans and few
manual measurements to gather the heights. While this is not
the focus of this paper, other tools exist that automatically
derive these models from floor plans. Also, trade fair planning
tools directly provide us with the necessary information.

2) Material parameters for surfaces: Using an optimizer,
we found a set of optimal material parameters to use in
our scenario. This process is time-consuming, but can be
completely automated, using the reference values described in
Section V-B. Using optimal parameters allows us to investigate
the influence of model granularity on the localization accuracy
without artificially reducing our accuracy beforehand.

3) AP position, power value and channel: We create a
different configuration for each signal source.

4) Voxel resolution: The voxel resolution may have an
arbitrary size. However, higher resolutions come at the cost
of higher processing times. Voxel sizes below the radio wave-
length do not make sense, as effects like interference are
not considered in the Photon raytracer. Therefore, a higher
resolution does not provide us with more information. A voxel
size of about 0.2 m provides us with a good trade-off between
raytracing time and propagation accuracy. We can also reduce
the resolution later using voxel aggregation in a postprocessing
step, if needed.

B. Localization Component

A mobile client localizes itself by periodically scanning
for available APs. The scan result includes the BSSID and
the MAC address of each discovered AP, as well as the
received signal strengths. The localization component (LC)
preprocesses these samples and forwards them to a localization
engine. For our HMM-based approach, this preprocessing
provides sample interpolation to avoid missing samples. More
details about this process are presented in Section IV-A3.

We implemented three main localization engines, an HMM-
based, a PF-based, and an LMSE-based engine. The HMM- as
well as the PF-based engine provide, an offline and an online

Fig. 1. Visualization of the 3D model and the generated signal volume in
both a 3D view and a 2D cut.

variant, depending on the exact use case. A localization engine
takes the preprocessed signal sequence and combines it with
the radio propagation volumes and the 3D mesh from the RPC.

In this context, we weigh a candidate location by the
difference between the signal sample and the radio propagation
volume. The 3D mesh refines the location estimation, e.g., by
identifying blocked and impossible locations. In addition, a
mobility model further restricts possible locations. We present
the details of this mobility model in Section IV-A2.

As a result the LC returns a sequence of locations represent-
ing the most probable path of the mobile client with respect
to the sample sequence and the applied localization engine.

IV. LOCALIZATION ALGORITHMS AND DESIGN

We define the localization problem as follows: For a given
sequence of Wi-Fi measurements, i.e., a sample sequence,
a sequence of locations is determined that (1) matches best
the signal values derived from the pre-computed propagation
volumes and that (2) follows the mobility model of a mobile
user in a building. Hence, the localization problem is analog
to a tracking or path-matching problem.

Additionally, we require the sample sequence to be geo-
graphically correlated, that is, consecutive samples are taken
fast enough, so that the possible movement of a user is
restricted to short distances with respect to the scene size.
More formally, for each measurement xi performed at time ti
a predecessor xi−1 performed at time ti−1 exists with dt =
ti − ti−1 < ε and ε×maxMovingSpeed = moveDistance <<
SceneSize, where the measurement xi is a D-dimensional
vector holding the signal strength readings of D APs measured
at time i.

In practice, this means if we restrict the user speed to 3 m/s,
we should collect a sample at least every 1 s, at a movement
state resolution of 0.6 m. Using this sequential characteristic
and the knowledge about previous locations, we can reduce
errors as they are often caused by temporary disturbances,
such as signal shadowing by people or other dynamic effects.
We can also use this information to improve localization in
regions where due to limited AP coverage only inexact or
limited data is available.
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Fig. 2. Evolution of the LMSE error for a selected path. False measurements
in error-prone regions lead to extreme localization outliers.

To quantify the effects of applying mobility models we com-
pare our approach to a classic naive LMSE-based approach,
such as RADAR [1], which does not consider any mobility
constraints and relies only on the radio propagation model.

a) Least Mean Square Error (LMSE): LMSE compares
the RSSI reading of the D-dimensional signal sample x with
all location annotated measurements ys of a database using
the Euclidean distance and returns the location s, which fits
best. The LMSE decision rule rLMSE : x→ s is defined as:

rLMSE(x) = argmin
s

[
1

D

D∑
d=1

(xd − ysd)2

]

= argmin
s

D∑
d=1

(xd − ysd)2

An example of a location sequence derived with LMSE is
shown in Figure 2. Localization outliers larger than 12 m, e.g.,
at time 18 s, result in large jumps through the scene. Path-
matching algorithms eliminate these jumps by following the
natural movement of a user.

Both the HMM-based and the PF-based localization al-
gorithms make use of the mobility model. We distinguish
between online and offline localization variants depending on
whether we derive the location as we are measuring the signal
samples or want to derive the most probable sequence of
locations ex post facto.

b) Online vs. offline localization: The online variant re-
turns the currently most probable location. It reduces the error
by eliminating impossible paths and avoiding jumps caused
by faulty measurements or limited signal data availability.
However, in regions with limited signal data, it might still lead
to inaccuracies. Online localization is typically used for real-
time applications, e.g., in navigation systems, where a user
needs to know the current position just in time.

In contrast to this, the offline variant returns the complete
path of a user ex post facto. As we have perfect future
knowledge for a given sample, we can take this into account
when calculating the path a user took through the environ-
ment. Hence, we first calculate the best final location and
then backtrack through the most probable previous locations.
This allows us to significantly reduce errors at intermediate
locations. The offline approach can be used to determine an
accurate path of a mobile agent, for instance in geofencing
applications. Also, the results from offline tracking can help

identify error-prone regions, e.g., by comparing offline with
online results.

A. HMM

Our HMM-based localization approach is based on a first-
order Hidden Markov Model. Each location is modeled as a
state s ∈ S. We denote the transition probability from state s to
state s′ by p(s|s′). The current state is not directly observable.
However, each state has a given emission probability p(x|s)
for a set of observable signal measurements x from an access
point. We model these measurements as a multivariate Gaus-
sian distributionN (µ, σ) with independent components. Using
the Viterbi decoder, we can efficiently extract the sequence of
locations, i.e., the hidden states, from the sequence of signal
measurements.

To find the best sequence of states sT for a given sample
sequence xT measured in the time interval T , the Viterbi
algorithm is based on the Bayes decision rule, i.e., the problem
of finding the maximized joined probability:

sT = argmax
sT

p(xT , sT )

= argmax
sT

T∏
t=1

p
(
(xt|st)

∣∣(xt−1|st−1)
)

This can be further simplified. The HMM requires the emis-
sion probabilities p(x|s) to be conditional independent. With-
out loss of generality, each signal sample is measured or
modeled at any location individually and does not depend on
previous or future samples, i.e., the samples are a multivariate
Gaussian distribution. Thus, the requirement for the emission
probability is fulfilled. Furthermore, in a first-order HMM each
state in a sequence st1 only depends on the previous state.
Applying these to the formula above results in:

sT1 = argmax
sT1

T∏
t=1

p(st|st−1) · p(xt|st)

To derive the most probable sequence of states sT1 for a
given observed sample sequence xT1 , the Viterbi algorithm
makes use of a dynamic programming approach. Q denotes the
dynamic programming matrix with |S| rows and |T | columns.
We initialize the calculation by giving each state the same
probability:

∀s ∈ S : Q(0, s) := 1/|S|

Then, the Viterbi algorithm is defined by the following recur-
sive equations:

Q(t, s) := max
s′

[p(xt, s|s′) ·Q(t− 1, s′)

As we are only interested in the sequence of states, and a
recursion step is only dependent on the previous column in Q,
we store the decision about which s′ was chosen in a back-
pointer array:

B(t, s) := s′ = argmax
s′

[p(xt, s|s′) ·Q(t− 1, s′)]

Therefore, we can derive the most probable sequence of states
by taking the most probable location from the last column of
Q and then backtracking through B.
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The computational complexity for evaluating Q at all time
frames T is O(T · S · N) where S is the number of states
and N is the number of transitions at each state. The memory
requirements for the Viterbi algorithm is proportional to the
size of the back-pointer array and is T · S.

As we are multiplying many small numbers, we can run into
numerical problems when probabilities become very small.
To address this problem, we perform the probabilities in
negative logspace. This allows us to transform the search for a
maximum probability into a very efficient search for minimum
cost that only requires additions. Applying the transformation
to negative logspace to the Viterbi recursion Q(t, s) leads to:

Q(t, s) := min
s′

[−log(p(xt, s|s′)) +Q(t− 1, s′)] (1)

:= min
s′

[Q(t− 1, s′)− log(p(xt|s))− log(p(s|s′))]

Commonly, the emission probabilities (p(xt|s)) and tran-
sition probabilities (p(s|s′)) evaluated by the Viterbi decoder
are estimated during a training phase using the Baum-Welch
algorithm [14]. For such a training, we need a set of location
annotated signal measurements that covers all possible states,
i.e., an empirical propagation model. In our approach, we sim-
ulate such measurements using the radio propagation model of
the raytracer.

1) Emission Probabilities: In our scenario, the location an-
notated signal measurements are the signal volumes generated
by the radio propagation component. As we assume the signal
strength to follow a multivariate Gaussian distribution where
all components are independent, we obtain a vector of the
mean signal strength from each of the D Access Points for
each position s. Unfortunately, it is not possible to derive the
variance of the signals at individual locations from the signal
volumes easily, because it is influenced by multiple effects
that are not yet taken into account by the radio propagation
component, e.g., interference effects, or shadowing effects by
moving people. Thus, we assume a constant variance.

Accordingly, an input feature vector x for a time frame
t is D-dimensional, i.e., x represents a list of stochastically
independent RSS readings from D Access Points. Using a
Gauss distribution, we can then define p(x|s) as:

p(x|s) = p(x1, ..., xd, ..., xD|s) =

D∏
d=1

p(xd|s)

=
1∏D

d=1

√
2πσ2

sd

exp

[
−1

2

D∑
d=1

(
xd − µsd

σsd

)2
]

As we assume the variance σsd to be constant for all locations
and access points, we can further simplify this definition, by
replacing the variance dependent terms by constants:

p(x|s) =
1

C1
exp

[
−C2

2

D∑
d=1

(xd − µsd)2

]
As we are operation in negative logspace, we further simplify
the term:

−log(p(x|s)) =
C2

2

D∑
d=1

(xd − µsd)2 + log(C1)

Inserting this into Equation 1, we are only interested in the
minimum. Therefore, we can drop the constants C1 and C2

which leads us to the following recursion assignment for the
Viterbi algorithm:

Q(t, s) := min
s′

[Q(t− 1, s′) +

D∑
d=1

(xtd − µsd)2 − log(p(s|s′))]

Thus, we can simplify the Gaussian modeled emission proba-
bility to a distance calculation between xtd and the generated
µsd components. This is equivalent to the LMSE distance
calculation.

2) Transition Probabilities: We use the transition probabil-
ities p(s|s′) to define a mobility model. We only allow state
transitions that follow the natural movement of a user. Our
mobility model is a (5,5,3)-transition model. This means, that
we allow transitions to locations up to a distance of 2 steps
in the x and in the y direction and of 1 step in z direction.
Including the standing still case, this includes 5 possibilities
in x and y direction and 3 possibilities in z direction. Thereby,
we restrict the user to move primarily in the horizontal plane.
In total, we have 75 possible transition per state.

It is easy to define other mobility models, but this simple
model matches our observation of natural movement in an
office environment and presented a good compromise between
freedom of user movement and computational effort. Assum-
ing a state resolution of 0.2 m, this results in a maximum
transition distance of 0.6 m in 3D space or a maximum
distance of 1.8 m assuming a state resolution of 0.6 m.

Next, we define the discrete probability distribution for
the 75 transitions for each state. The model ensures that the
probability distribution satisfies the normalization constraints
defined as

∑
s∈S p(s) = 1 and

∑
s′∈S(5,5,3)

p(s|s′) = p(s). We
distribute the probability of p(s) evenly over all three possible
transition distances of 0, 1, and 2:

p(0− transition) = p(1− transition) = p(2− transition) = 1/3

Then, we define the individual transition probabilities for
the 75 transitions by using the environmental information from
the 3D model combined with assumptions about a pedestrian
user. To correlate the states with the 3D model effectively, we
rasterize it into 3D cubes of the same resolution as the state
space.

Transitions across different materials are easy to observe.
We define them using the following assumptions about the
movement of a user:

1) A user cannot walk in or through walls or furnitures,
i.e. blocking elements. For all states s and s′ that
intersect with a blocking material (e.g., a wall), we
define p(s|s′) = 0. Special care need to be taken
for the 2-transitions, because they possibly allow to
jump through blocked states. To avoid this impossible
transition, we check if there exists an unblocked path
with a maximum length of two between s and s′. If not,
we set p(s|s′) = 0.

2) A user cannot fly, i.e., we assume a maximum height
of 2 m above ground. Therefore, state transitions that



2012 International Conference on Indoor Positioning and Indoor Navigation, 13-15th November 2012

lead to states that are more than 2 m above a blocking
element are assigned p(s|s′) = 0.

3) A users movement is assumed to follow straight paths
most of the time. Hence, a transition towards free space
is more likely than, e.g., a transition in front of a wall.
Transitions with more free space are emphasized while
transitions with less free space are weakened.

Note that assumption 1 and 2 already led to reasonable good
results. Assumption 3 added only minor improvement and can
be considered a fine-tuning.

3) Sample Interpolation: The maximum speed this model
allows depends on the frequency of the samples taken from
the client, because we allow only a maximum transition across
two locations and the location states have a fixed size. Hence,
the maximum physical distance is 0.6m, 1.2m, or 1.8m per
sample, respectively.

The sample frequency depends on the client ability of
performing the Wi-Fi scans. Even if we scan at the highest
possible frequency, our test hardware only allowed us to take
between 1 to 3 samples per second. Thus, for example, a
sample rate of 1 sample/s and a state resolution sres of 0.2 m
results in a maximum speed of only 0.6 m/s allowed by the
model, which is too slow to align with the maximum speed
of the user.

To enable the model to allow a maximum speed vmax of
at least 3 m/s for all state resolutions, we perform a sample
interpolation on the sample sequence in a preprocessing step.
The sample interpolation is defined as follows: For each
two samples xi and xi+1 taken at timestamp ti and ti+1,
we generate a new sample xj if ∆t > tmin, with tmin :=
sres · 3/vmax = sres/1 m/s. We linearly interpolate the signal
values of xj by taking the mean between xi and xi+1 for
each AP and the time tj = ti + ∆t/2. If ∆t is still too big,
we perform this operation again.

The linear interpolation is analog to a low-pass filter applied
only to the interpolated samples, thus, it does not introduce
outliers. However, it does not reduce the overall measuring
error of the sample sequence, because the true measurements
are not changed.

4) Pruning: To reduce the memory and the computational
complexity of the Viterbi decoder, we prune the most unlikely
states from the calculation and only keep the top-N states
for further processing. This is motivated by the observation,
that many of the intermediate hypotheses have a very low
probability as they are far away from the actual user position.
Thus, they are very unlikely to affect the observation of the
real path.

To efficiently retain the list of the top-N hypothesis at
each time frame we use the skiplist data structure [15]. A
skiplist represents a list of permanently sorted items, i.e., the
top hypothesis, with an insertion cost of O(log(n)) during
decoding.

However, if pruning is too aggressive, we might remove a
hypothesis, i.e., a candidate location prematurely, even though
it receives a boost in the next iteration. Hence, the size of
N is crucial to the localization performance. We observed
that 6% of the total number of states is a good choice. Thus,
pruning 94% of the hypotheses, i.e., cutting computation time

Fig. 3. A 3D plot of 300 unpruned states after the first sample of a
sequence was evaluated by the HMM. The colors indicate the individual state
probabilities where red indicates the largest and blue the lowest probability.

Fig. 4. The HMM localization result plotted in 3D. The path starts in the
top left in the first floor and follows the stairs down to the floor beneath and
than to the right side along the rooms. The colors indicate the localization
error of each sample with red indicating larger errors at the end of the path.

by a factor of 10, does not adversely affect the results. This
allows us to decode a sequence of measurements in real-time
an commodity hardware, even at the highest state resolution
of 0.2 m.

Figure 3 shows a 3D visualization of the top-300 (unpruned)
state after evaluating the first time-frame of a sequence. All
states are close together concentrating around the location with
the highest probabilities in the center of the top results. The
result of the evaluation of a complete sequence is presented
in Figure 4.

B. Particle Filter

Particle Filters (PF) are solving an analog problem to
HMMs. For a given sequence of signal samples xT , we need
to find the most probable sequence of sT of states with given
emission and transition probabilities p(x|s) and p(s|s′).

The main difference lies in the evaluation process of the
sequence xT . Instead of evaluating all possible path traversals,
the PF approach optimizes this process efficiently by using
weighted random choices, i.e., the particle sampling.

We define the sampling process recursively. Let {s(l)t } be a
set of samples with cardinality L for a time frame t and {s(l)0 }
an initial set of samples uniformly distributed across the scene:
p(s0). Then, the sampling weights {w(l)

t } are defined by:

w
(l)
t =

p(xt|s(l)t )∑L
m=1 p(xt|t

(m)
t )

The weight for a sample is derived from the emission
probabilities p(xt|st). The weights satisfy the normalization
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constraint
∑

l w
(l)
t = 1 and are in the range 0 ≤ w

(l)
t ≤ 1.

The posterior probability p(st|xt) is represented by the com-
bination of the samples and the corresponding weight for each
sample. The next posterior p(st+1|xt) is defined by combining
the weights and the transition probabilities:

p(st+1|xt) =

L∑
l=1

w
(l)
t p(st+1|st)

In a last step, new samples {w(l)
t+1} are generated from this

distribution. The weight defines the number of new samples
that are generated. The transition probability sets the most
probable direction and distance when generating new particles.

During the evaluation, intermediate states are stored in
a backtracking table. To derive the offline result, i.e., the
intermediate states that led to the most probable final state, we
evaluate this backtracking table. The online result is defined
as the most probable state at the time frame t.

1) Emission Probabilities: The definition of the emission
probabilities p(x|s) follows the HMM design. p(x|s) is a
multivariate Gaussian distribution with a mean vector extracted
from the radio propagation models. We empirically determined
that an assumed signal variance of 5 dBm leads to the best
results.

2) Transition Probabilities: The transition probability
p(s|s′) is modeled as a multivariate zero-mean Gaussian
distribution with independent components. The variance of the
horizontal components has been set to 5 m and the variance
of the vertical axis to 2 m, analog to the distances allowed in
the HMM-transitions. We empirically determined both values
by testing the PF on location annotated measurements.

Like in the HMM approach, the information of blocked
elements is derived from the 3D model. During the sampling
phase of the Particle Filter, the candidate samples s, that are
either in blocked zones or have blocked voxels on the straight
path from the source state s′ to s are rejected. To ensure
that not too many samples are being rejected, we perform
a resampling until a minimum number of total samples is
reached. We also limit the resampling to ensure termination
of this process.

1× 105 samples are generated at each iteration of the pro-
cess, i.e., at each time frame. Further increasing this number
did not have any positive influence on the error rate of the
PF approach. This results in ≈ 1 sample/m3 in our evaluation
scenario.

V. EVALUATION

After introducing the evaluation scenario, the used hardware
and the process of performing the Wi-Fi measurements, we
present the 3D model we built to drive the raytracer and eval-
uate the raytracer performance with respect to different model
configurations. As the main evaluation, we show a synthetic
analysis based on simulated signal values and an extensive
analysis on real-world measurements of the performance of
the proposed localization approaches.

A. Scene and Model Description

We used the UMIC Research Centre at RWTH Aachen Uni-
versity, a university office building, as our evaluation scenario.
The building has a rectangular footprint of about 900 m2 and
a height of about 13 m and consists mainly of uniform office
rooms and larger seminar rooms. We had detailed 2D floor-
plans available, which provided us with basic information on
different wall types, doors, windows, and stairways necessary
to construct a detailed 3D model.

For the 3D model, we defined 11 different object classes
which we identified as the most common objects in the
building and suspected to have the most effect on signal
propagation. These object classes are the Concrete and the
LightWalls class, used for, e.g., different walls, stairs, and
floors. Furthermore, we defined three classes for different
types of doors, namely the Doors class, representing regular
wooden doors, the IronDoor class, and the GlassDoor class.
Additionally we defined the classes OuterBuildingWall and
GlassWindow and the two classes Cupboard and Table to
represent the main pieces of furnitures present. Finally, we
defined a class Hardware to represent electronic devices of a
given size, like server racks or large printers, and the class
Railing to represent the railing at the stairways.

We used the open source 3D modeling framework Blender
(http://www.blender.org) to create the 3D models for all ob-
jects described by the classes. A 3D visualization of the model
is shown in Figure 1.

B. Wi-Fi measurements

As a client platform, we use an Android Tablet, namely the
Acer Iconia tablet. To measure the signal strength values of the
access points we used the default Android Wi-Fi API using de-
fault settings without any specific adaptations. We can initiate
Wi-Fi scans easily and the scan result returned is a list of the
discovered access points including the required information
about the BSSID, and the received signal strength (RSS). We
performed two different Wi-Fi scans for the following uses:

1) Static measurements at 60 distinct and known loca-
tions over three floors: At each location we took mea-
surements for ≈ 30 s to ensure a minimum number of
RSS readings per AP. We used these location annotated
measurements to calibrate the material parameters of the
raytracing model and to evaluate the model performance.

2) Sequential measurements on 7 different paths: We
made these sequential measurement in forward and
backward direction through the building to create a
set of sample sequences for the real-world evaluation.
Each sequence also includes reference positions on the
path that were marked with a time-stamp. We set the
reference positions at abort every 5 m and at every
turn of the paths. Thus, we were able to calculate all
intermediate true positions and compare the localization
results to this ground truth. Typically, we received 1 to
3 scan results/s which has proven to be enough for our
purpose.

In total, we located 22 APs distributed on three floors inside
the building. 7 of these APs were specifically dedicated only
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TABLE I
PROPAGATION ACCURACY FOR DIFFERENT MODEL COMPLEXITIES.

Mesh Basic1 Full1 Basic2 Basic5 Full11
Materials 1 1 2 5 11
∆ [dB] 5.7 5.8 4.4 4.2 4.3

to our project, meaning that we could move them as we saw
fit. The remaining APs belonged to other projects or are part
of the RWTH Aachen University IT infrastructure. Depending
on the model of the APs, we discovered minor differences in
the transmission powers, so we configured the raytracing for
each AP type accordingly.

C. Propagation Model

We computed the signal propagations for the 22 APs using
the Photon raytracer. Photon takes the 3D model, the material
parameter for the model, an AP configuration, and a voxel
configuration as input. The material parameter are crucial to
the performance of the raytracer. Thus, we decided compute a
optimum set of material parameter instead of relying only on
historical data only partially available from literature.

To derive an optimum set of material parameters for all
objects we used the location annotated signal measurements
from 60 distinct locations for an optimization process based on
a genetic algorithm. Typically, 30× 103 raytracer operations
were necessary for the genetic algorithm to terminate and
deliver a optimal set for the 3D model.

1) Model Complexity: Making use of the optimization pro-
cess, we evaluated the influence of the model complexity, i.e.,
the number of different object classes and material parameter,
on the raytracing performance. Table V-C1 summarizes the
results of five different model configurations and the corre-
sponding mean delta between the simulated signals and the
signals measured at the 60 reference points. Basic1 includes
Concrete and LightWalls classes combined to one mesh and
one set of material parameters. Full1 includes all objects
combined to one mesh and one set of material parameters.
Basic2 includes Concrete and LightWalls and two sets of
material parameters. Basic5 includes the five main objects of
the scene, Concrete, LightWalls, and the three door classes
with a own set of material parameters each. Full11 is the full
set of 11 objects classes with individual material parameters.

We see that the improvement of using more than 2 different
object classes and materials is marginal and probably not
worth the effort to model these details. The result for the full
model is even slightly worse than the Basic5 result. We also
compared the influence of the propagation performance to the
localization performance and observed the same results. Real-
world localization performed best using the Basic5 model.
Thus, we decided to perform the remaining evaluations pre-
sented in this paper on the Basic5 model.

2) Volume Resolution: The volume resolution and therefore
the number of possible states is a crucial factor for the
performance of the localization approach. This is especially
true for the HMM-based algorithm. Even though the RPC
generates signal volumes at the highest reasonable resolution,

Fig. 5. The tradeoff between computation time and accuracy of HMM path-
matching with respect the state resolution, i.e. the cube-width used.

with respect to computational performance we propose a sim-
ple solution to effectively reduce the resolution of the signal
volumes and thus the number of states, without generating
new signal volumes with the RPC. To reduce the signal volume
resolution, we aggregate neighboring signal values into a mean
signal. Thereby, The target resolution of the reduced volume
is defined by the number of neighboring signal values in one
dimension that are aggregated, also referred to as the cube-
width cwidth. For example, with cwidth = 3 the three neighboring
signal values in each dimension, i.e. 33 = 27 signal values,
are aggregated to one mean value. Thus, the resolution is
effectively reduced by a factor of cwidth and the number of
states by a factor of c3width.

Figure 5 shows the joined graph of the localization error
and the computation time versus the cube-width cwidth of 1,
2, and 3. For a reduced state resolution of 0.4 m (cwidth = 2),
we achieved the best trade-off between localization accuracy
and computation time. Thus, the evaluation of the localization
algorithms is performed on a state resolution of 0.4 m, even
though the performance was sufficient to deliver real-time
results also for the highest resolution of 0.2 m.

The fact that the localization error is about the same for
cwidth1 and cwidth2 is probably due to the higher number of
interpolations required for the lower resolution. For a state
resolution 0.2 m 70 % of the samples are interpolated, while
for 0.4 m only 40 % and for 0.6 m about 20% of the samples
are interpolation.

D. Path-matching and Localization

In this evaluation, we compare the performance of the
offline and online variants of the HMM and the PF approach
and the LMSE on (1) synthetic data simulating random error,
and on (2) real-world sample sequences.

1) Synthetic Error: For the synthetic evaluation, we used
the signal volumes from the raytracer and a Gaussian noise
function to simulate noisy signal measurements for noise
σ ∈ {0.0, ..., 15.5}dB in 0.5 dB steps. We defined 16 distinct
paths of different length and complexity trough the scene and
generated 20 sample sequences xTsyn per path and noise value
σ, leading to 320 paths of a total length of about 8 km per σ
value. The synthetic localization errors for all algorithms are
presented in Figure 6.

For all values of σ, the HMM offline algorithm achieves
the best accuracy and is at least 20 % more accurate than
the competing PF offline approach, in particular for larger
values of σ. As expected, HMM and PF outperform the
non-sequential LMSE algorithm. Interestingly, the PF offline
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Fig. 6. Synthetic analysis of the HMM (offline and online) performance
compared to PF (offline and online) and LMSE algorithms. The graphs show
the corresponding mean error and standard deviation for different noise levels.

TABLE II
PHYSICAL PROPERTIES OF THE PATHS AND THE MEASUREMENTS.

Path Length Turns avg. x avg. APs # xT

EG-rooms-1 40.0m 12 30.5 8.9 20
OG1-floor-1 41.9m 7 40.6 8.4 22
OG1-rooms-3 14.3m 9 43.2 9.9 24
OG1-rooms-2 81.2m 16 93.3 7.3 21
OG1-rooms-1 36.3m 8 40.6 12.1 23
OG1-EG-1 69.2m 13 62.3 10.4 26
OG1-EG-2 59.8m 11 65.4 6.6 22

variant performs unexpectedly bad for σ < 5. The reason
for this lies in the fixed variance values for the emission and
transition probabilities for all values of σ. In turn, this results
in a higher error on the backtracking path. The variances were
set to (5, 5), i.e., the optimal values we used for the real-world
evaluation. This results in an almost constant error for σ < 5,
which is also noticeable in the low standard deviation of the PF
offline error. From these results we can conclude that HMM
is more robust against random errors of arbitrary size. In the
next section, we will show that this assumption is also true
for real-world measurements.

2) Real-World Error: For the real-world evaluation, we col-
lected a set of location annotated signal sequences measured
on 7 different paths through the building. The paths we chose
differ in length and complexity, e.g., the number of turns,
rooms, and floors. We measured at least 20 sequences per path
to collect a representative data set. The different properties of
the 7 paths are presented in Table V-D2. The name indicates
the floors (EG, OG1) included on the path. OG1-EG-1 and
OG1-EG-2 also include a stairway to climb floors. OG1-floor-
1 is just a straight path along the floor, not entering any room.
The table also shows the average number of samples taken x,
the average number of discovered APs, and the total number
of measured sequences for that path.

Figure 7 presents the 50, 65, and 80 percentile error of the
offline variants compared to LMSE on individual paths and
for all paths. Over all paths, HMM performs at least 34 %
better than PF and 49 % more accurate than LMSE. However,
the performance varies between the different paths. Figure 8
shows the significant advantage of the offline path-matching

Fig. 7. The 50, 65, and 80 percentile of the offline localization error evaluated
on the individual paths and for all paths. 50 % of the real-world offline HMM
errors are below 1.6m, i.e. 34 % more accurate then offline PF and 49 %
more accurate than LMSE.

Fig. 8. The 50, 65, and 80 percentile of the HMM offline localization vs. the
HMM online localization error over all paths. The offline variant performs up
to 60 % more accurate.

Fig. 9. Evolution of the HMM and PF error for a selected path. The offline
variant for both algorithms is able to reduce large errors while HMM performs
even better. The LMSE error indicates error-prone regions.

compared to the online variant with respect to localization
accuracy. For the 50 percentile the offline HMM performs
about 60 % more accurate then offline HMM.

We selected a specific sample sequence from the OG1-EG-2
path to analyze the behavior of each algorithm in more detail.
Figure 9 shows two plots of the error evolution of this sample
sequence measured along the path. The top figure compares
HMM (offline), HMM online, and LMSE, the bottom figure
PF, PF online and LMSE.

The LMSE error is a viable indicator for error prone
samples. We see that certain samples cause extreme outliers
of up to 10 m and more. As expected, HMM and PF are able
to eliminate such outliers effectively. Unfortunately, the online
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approaches in some cases tend to stick to wrong paths or to
particular locations and only recover back to the true path
after some time while performing worse then LMSE during
this time. This behavior can be seen in Figure 9 between
time-frame 35 and 55. Thus, the average error of both online
results is about the same as LMSE, but there are significant
fewer extreme outliers. This is also true for the PF offline
variant, because the errors become too high and the sampling
process was not able to find optimal new states in time.
In contrast to HMM, PF sacrifices the knowledge about the
joined probability of the complete evaluated sequence and only
considers the local probability at each intermediate state. The
HMM offline variant eliminates the outliers effectively.

A comparison to the errors of the other sequences taken on
this path showed that this errors are not caused by random
measuring errors, but occur at predominantly the same loca-
tions. For example, the crucial region between time-frame 35
and 55 in figure 9 can be identified as the stairway which tends
to be particularly error prone due to low AP coverage (< 4
APs) and weak signal strength measurements (< −80 dBm).
Additionally, our mobility model is probably not handling
movements through the stairways optimally.

E. Discussion
We took a low effort approach to collecting client mea-

surements. Taking special care in the measuring process w.r.t.
the orientation of the device, shadowing effects by people, or
time variance, we expect that we can significantly improve
the localization performance [1], [3], [16]. We assume that
such improvements will affect all algorithms equally and
would therefore not change the overall difference between the
presented algorithms.

Furthermore, sequential algorithms like PF and HMM could
make explicit use of additional information from motion sen-
sors to further optimize the transition probability distributions
and the localization results respectively [11]. We did not yet
make use of such sensors, because we focused on a pure Wi-Fi
based approach. However, the integration of this information in
our system looks straight-forward while at the same time, most
modern devices such as smartphones are already equipped
with both, Wi-Fi and motion sensors, making these systems
interesting for further investigation.

Furthermore, we did not yet validate the optimized material
parameters in other environments and only did a quick test
concerning the stability of our model w.r.t. AP relocation. First
results are encouraging. However, we did not evaluate them
yet in more detail.

The gain of HMM path-matching compared to online lo-
calization offers the opportunity to use the offline variant to
optimize the emission and transition probabilities in error-
prone regions, e.g., at the stairways, and thereby improve
the online results. This form of model training need further
investigation in future work.

VI. CONCLUSION

We proposed a HMM-based Wi-Fi localization approach
using raytracing-generated 3D propagation models. We evalu-
ated the performance in both, an offline and an online variant

and compared the results with state-of-the-art PF algorithm
and a naive LMSE. We show HMM performs best in of-
fline mode on real-world data as well as on synthetic data.
Both mobility model supported algorithms (HMM and PF)
outperform LMSE using synthetic data. This underlines the
general feasibility of path matching as compared to simple
fingerprinting.

The performance optimization of the Viterbi decoder and
the pruning allows us to perform HMM offline and online
localization in real-time on commodity hardware in a high-
resolution state space. This enables our approach for a wide
range of applications and for real-time localization.

As we showed that the level of detail from a typical
floor plan is enough for a reasonable performing localization
system, we are confident, that we can further simplify the
deployment of Wi-Fi based localization systems with only
minimal additional manual calibration effort.
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