
978-1-4673-2447-2/12/$31.00 c©2012 IEEE

Integration Testing of Protocol Implementations
using Symbolic Distributed Execution

Raimondas Sasnauskas, Philipp Kaiser, Russ Lucas Jukić, and Klaus Wehrle
Communication and Distributed Systems (ComSys)

RWTH Aachen University, Germany
firstname.lastname@comsys.rwth-aachen.de

Abstract—Automatism and high-coverage are the core chal-
lenges in testing communication protocols in their early de-
velopment phase. Ideally, the testing process should cope with
a large input space, several sources of non-determinism, and
heterogeneous operating environments to effectively explore the
emerging execution paths. In practice, however, the missing tool
support imposes a huge amount of manual effort to perform
integrated conformance and interoperability testing of protocol
implementations.

In this paper, we first detail on the protocol testing issues,
such as low coverage, missing code and automation, we expe-
rienced during the lifetime of an university-industry project.
Second, we present SymNet, an integrated testing environment
which targets the latter limitations using state-of-the-art symbolic
execution techniques. Our approach is to interconnect several
virtual machines, execute each of them using selective symbolic
execution, and centrally coordinate the emerging distributed
execution paths. The key challenges are the synchronization of
distributed constraints, detection of false positives, and pruning
of redundant execution states. We detail on SymNet architecture,
show its applicability to real-world protocol software, and discuss
future research directions.

I. INTRODUCTION

Implementing and testing new communication protocols and
interactive systems is well-recognized to be a difficult task for
many software developers. Ambiguous protocol specifications,
distributed execution, node and network level non-determinism
make the testing process very labour-intensive. In addition,
achieving high code coverage, especially in testing of excep-
tions, is hard, resulting in insufficient manual testing.

Being a partner in an university-industry project [1] our goal
was to develop a municipal Wi-Fi network based on Wi-Fi
sharing. The core technique [2] of the project is based on the
Host Identity Protocol [3] (HIP) which supports key exchange
for secure communication, mobility, authentication, and en-
ables multihoming in IP based networks. The implementation
of HIP [4] was deployed on various devices ranging from
ordinary PCs to tablets and smartphones. During the project
phase, we experienced a number of typical debugging issues in
a distributed setting. Our test cases were covering only a small
part of the possible execution paths, hence, small changes
in the test setup revealed new problems with the software.
Moreover, some of the bugs (e.g., node crash or wrong pro-
tocol state) appeared only after prolonged operations making
it difficult to explain and narrow down their root causes since
the distributed state was lost. A further challenge was to

perform HIP interoperability tests with the proprietary HIP
implementation of our industry partner which was deployed
on their wireless router. These manual integration tests usually
come late and revealed some misinterpretations of the protocol
specification.

To support the developers with automated and high-
coverage protocol testing in such situations, we propose to
analyze the distributed execution of different implementa-
tions of protocols using selective symbolic execution (S2E)
[5]. This technique allows efficient symbolic execution of
unmodified software including its operating environment. To
extend this technique for protocol testing, we connect several
S2E instances over the network and centrally coordinate the
distributed testing process. We also propose to use simple
assertion-like invariants on distributed protocol states to detect
potential violations during execution.

In this paper, we describe SymNet (Symbolic Network), a
testing environment for unmodified protocol implementations
running in diverse operating systems. SymNet executes com-
municating protocol instances on symbolic, i.e., “any”, input
and thus achieves high code coverage giving the developers
early feedback on their software behavior. To symbolically
execute unmodified operating systems, SymNet employs the
S2E framework [5] built on the QEMU machine emulator [6]
and the symbolic engine KLEE [7]. If SymNet detects local
errors or violations of distributed invariants during testing, it
generates concrete test cases leading to the failing scenarios
and reports them to the developer for later analysis.

The core contribution of SymNet is the symbolic distributed
execution of communicating S2E instances in a real network
setup. To achieve this goal, we combine time synchronization
of VMs, distributed constraint synchronization, and aim at
state reduction techniques to efficiently explore distinct dis-
tributed execution scenarios. We demonstrate the effectiveness
of SymNet with an insidious bug detected in HIP during our
preliminary evaluation.

In the next section we introduce the basic concept of
our testing environment. Section III details on the design of
SymNet and Section IV presents its prototype implementation
and preliminary evaluation results. We relate our approach in
Section V and discuss the future work in Section VI.

II. BASIC CONCEPT

In this section we present the basic idea of SymNet and give
an overview of the testing process. Figure 1 depicts a typical
test setup in SymNet during the protocol development life
cycle. The protocol implementations are deployed at several
nodes in the testbed, each running the same or different
operating system (e.g., Linux, proprietary) in a virtualized
environment under QEMU. The nodes might be connected
either directly or in a multihop fashion to test different protocol
operating modes. SymNet executes unmodified OS images
inside virtual machines which can be interconnected in various
ways. Hence, the complete test scenario can be emulated inside
one machine or spread over several nodes in the lab.

SymNet employs selective symbolic execution to automat-
ically generate test cases at high-coverage. Symbolic input
can be injected at any place in the system (e.g., packet
headers, configuration options). SymNet serializes symbolic
data and the corresponding constraints behind VM boundaries
and delivers them to other VMs in the network. For example,
one typical test scenario is to mark the header (or parts of
it) of the initial data packet to be symbolic and track the
emerging distributed execution paths which should cover the
state machine of the tested protocol. While manually covering
even small input space is time-consuming, SymNet covers
these inputs automatically.

For test specification and execution control SymNet uses
a central coordination unit which has the global view of
the tested network. This unit implements a round-based time
barrier algorithm to synchronize the emerging execution paths
of involved VMs. After each time slice execution all VMs stop
and wait for further commands before continuing the testing
process. For example, if any of the specified test cases fail,
SymNet can put the distributed system on hold allowing the
developers to analyze the VMs using well-established tools
(e.g., attach GDB to a stopped instance of a VM). At each
round, the central unit of SymNet collects interesting data from
all VMs to feed it to an assertion checking module.

In summary, the overall testing process in SymNet consists
of the following steps: (1) The developers decide which
input should be marked as symbolic and which VM memory
regions should be extracted for distributed invariant checking;
(2) The central unit is configured with the number of VMs
and the distributed invariants; (3) The testing process runs
automatically writing the results to a file for later analysis.
In the following section, we detail on SymNet main modules,
discuss the architectural challenges, and present our solutions.

III. SYSTEM OVERVIEW

SymNet combines selective symbolic execution [8] and
symbolic distributed execution [9] to enable transparent and
automated testing with as little manual intervention as possi-
ble. Both approaches were extended to support the architecture
presented in Section II.

VM	 (Linux)	 VM	 (Linux)	 VM	 (Proprietary)	

Physical	 link	 Physical	 link	

Symbolic	 data	

Central	 test	
execu=on	 unit	

packet	

packet	 packet	

packet	

Fig. 1. Basic overview of an exemplary test setup in SymNet. The software to
be tested (e.g., different protocol implementations) is deployed inside diverse
virtual machines which are connected in a desired way. The testing process
is started and controlled by a central unit which collects execution events
and issues control commands. At the network level, (symbolic) packet data
is delivered to the matching execution path(s) on the destination VM(s) via
an emulated or physical link.

A. Selective Symbolic Execution of Protocols

The idea of selective symbolic execution is to symbolically
execute selected software parts while executing the rest of
the system concretely. This way, S2E is able to analyze
complete operating systems without the need of environment
modeling or manual code instrumentation. This technique has
been successfully applied to performance profiling, automated
testing of user-mode binaries, and reverse engineering of
proprietary software [5].

Instead of analyzing a single operating system, i.e., a single
protocol instance, SymNet supports the execution of several
communicating S2E instances1 in parallel containing different
OSs (cf. Figure 1). This architecture poses a number of
challenges.

Central coordination: Currently, each S2E instance repre-
sents a distinct analysis process with alternating symbolic and
concrete execution phases. During the execution of an active
path, a number of new execution paths may emerge which are
then selected by an internal search strategy for execution.

In SymNet, we move the execution control to a central
unit in the network to have a global view on the tested
network. This requires us to periodically signal execution
events (e.g., local branching instructions) of each S2E instance
to a central location and process received control commands
(e.g., select next execution path) locally. Thus, we designed a
simple protocol in JSON format which is both human readable
and easy to process. For example, if the root execution state
branches once, SymNet emits the following event to the central
coordination unit: {“event”: {“onStateFork”: {“parentState”:
0, “newStates”: (1)}}}

Time synchronization: By transparently switching between
concrete and symbolic execution on demand, S2E gives an
illusion of a full-system symbolic execution. Naturally, the
execution speed of software instructions accessing symbolic
values is slower compared to concrete instructions because
they have to be executed inside a symbolic engine as opposed

1We use the term S2E instance and VM interchangeably.

s1	 t1	

VM	 1	 VM	 2	

t1	 t3	 t4	

0	

t2	

x	

y	

Ru
n	
x	
-m

e	
un

its
	

s1	 t1	
t	

(a) VM 1 and VM 2 are instructed to run a time slice of x time units.
VM 1 starts the execution and stops at time x in the concrete domain.
VM 2 starts the execution and hits a symbolic condition resulting
in a switch from concrete to symbolic domain. The evaluation of
the symbolic condition at time y leads to the creation of three new
execution paths (t2, t3, t4). Finally, the original execution path t1
returns to concrete domain and reaches its time barrier x.

s1	 t1	

t1	 t3	 t4	 t2	

x	

y	

0	
Ru

n	
x-‐
y	
+m

e	
un

its
	

VM	 1	 VM	 2	

s1	 t2	 t3	 t4	 t1	
t	

(b) After the execution paths s1 (VM 1) and t1 (VM 2) reach
the time barrier x, all remaining execution paths on all VMs are
instructed to consume the remaining time budget x− y.

Fig. 2. An exemplary scenario of VM synchronization using a time barrier
algorithm. SymNet detects new execution paths and executes them until the
synchronization point is reached.

to native CPU. Consequently, if we connect several commu-
nicating S2E instances for testing, the execution of each VM
will switch from concrete to symbolic execution and vice versa
at different moments in time. This fact inevitably leads to time
drifts between the VMs, falsifying test results [10].

To overcome this issue, SymNet employs a round-based
time barrier algorithm to synchronize S2E instances. The
idea is to repeatedly distribute time slices, letting all active
VMs proceed to the same virtual time (cf. Figure 2(a)). This
way, we can compensate the time drifts occurring due to
the switch between concrete and symbolic domain. If the
execution branches within a time slice, all emerging execution
paths have to finish the remaining time budget of the active
time slice until the synchronization point (cf. Figure 2(b)).

In SymNet, VMs do not send out packets immediately
during the time slice. Instead, we buffer outgoing packets
within a time slice first and deliver them at the beginning of
the next time slice, because we do not know in advance which
of the execution paths on the target VM should receive the data
(cf. Section III-B). As a result, delaying packets increases the
expected RTTs between the VMs: Regardless the transmission

X��������� X���	
��
���
��

[���������

	������������

�

� � � � �

� � �

[���������

��

�

� � � � �

� � �
��

�

���� [���������

�

�

� � � � �

� �
��

�

X������ �
��

!

[���������

Fig. 3. An exemplary constraint serialization in SymNet. One of the execution
paths on the left VM is about to send a packet to the target VM on the right.
Assume that the third byte of the packet is symbolic and is constrained with
5 ≤ x < 12. Before concretizing the third byte upon leaving the VM domain,
we serialize the constraint and transmit an additional packet carrying the result.
Afterwards, the original packet is transmitted including the concrete value, say
7. At the receiving VM, the first packet is deserialized, the constraint is added,
and the symbolic data is written to the third byte of the second packet which
is then passed to the VM.

time within a time slice, all packets are delivered after the next
synchronization point. This artificial delay does not change the
temporal ordering of the exchanged packets, however, if the
protocol is sensitive to packet interarrival times or specific
delay we might lose the corresponding runtime behavior.
Decreasing the size of the time slice decreases the introduced
delay, but at the same time increases the synchronization
overhead between the VMs and the central coordination unit
making the testing process slower. In our experiments, the
observed overhead ranged from 0,3% for 1000ms time slice
to 9% (20ms) and 61% (1ms). Therefore, it’s up to the user
of SymNet to make a trade-off between the delay granularity
and performance overhead.

Symbolic packets: As soon as symbolic data (e.g., packets
containing symbolic values) is about to leave the boundaries of
a VM, it must be concretized since the real-world is not able
to handle symbolic data. However, by choosing one concrete
input we lose test cases which might lead to interesting
protocol behavior or even corner-cases of execution.

To handle outgoing data containing symbolic values we use
(distributed) constraint synchronization: If a VM is about to
transmit symbolic data, we extract and serialize the constraints
on symbolic data into a text-based format before the data
gets concretized. Afterwards, both the serialized constraints
and the concretized packet are transmitted to the target VM
via a physical link. The receiving S2E instance deserializes
the received constraints, merges them into the constraint set
of the receiving state, and writes the symbolic data to the
according bytes of the received packet (cf. Figure 3) before
passing the packet to the OS network stack. By merging
constraints upon communication we (1) avoid constraint over-
approximation and (2) effectively prune any false-positives
if the constraints after merging are not satisfiable. Note that
nodes in the network might constrain the exchanged symbolic
data with contradictory constraints during symbolic execution
leading to false positives.

t	
t1	 t2	 t3	 t4	 ‘s1	 ‘‘s1	 s1	 ‘‘‘s1	 x	

Fig. 4. State mapping conflict resolution in the scenario depicted in Figure
2(b). After the execution of the time slice, TRON detects three new execution
paths, namely t2, t3 and t4. Hence, TRON calculates the cross product of
the state sets {s1} and {t1, t2, t3, t4} resulting in the following network
scenarios: (s1, t1), (s1, t2), (s1, t3), and (s1, t4). Consequently, TRON
instructs VM 1 to copy state s1 three times (states with dashed circles) and
updates the respective distributed scenarios accordingly to (s1, t1), (′s1, t2),
(′′s1, t3), and (′′′s1, t4).

B. Symbolic Distributed Execution of Protocols

So far, we have presented the challenges we were facing to
connect and synchronize an arbitrary number of S2E instances.
Next, we will detail on TRON (Time SynchRONizer)—our
central test execution and coordination unit (cf. Figure 1)—
which performs the following tasks.

State mapping execution: In addition to time synchroniza-
tion, SymNet has to tackle the following problem efficiently:
If an execution path on one VM is about to send data to its
destination VM, which execution path on the destination VM
should receive the data? We refer to this problem as state
mapping problem which was presented in [9]. Assume that
the execution path t2 on VM 2 in Figure 2(b) is about to send
data to VM 1. In this scenario, we must fork the execution path
s1 on VM 1 before delivering the data. Otherwise we would
be unable to deliver a potential future packet from, e.g., t3
without causing logical violations.

To perform the state mapping centrally, TRON first collects
events from each VM such as execution path branching and
termination during the execution of a time slice. Second, after
all VMs have finished their time slices, TRON resolves the
conflicts (if any) by implementing the Copy on Branch (CoB)
algorithm [9] which builds a cross product of all execution
paths emerged during a time slice execution (cf. Figure 4). By
doing so, TRON calculates and triggers the required number
of state forks on the according VMs. Afterwards, we always
have a consistent symbolic distributed execution before we
continue with the next time slice distribution. However, CoB
is inefficient since the resulting state space contains two
redundant execution states, namely ′′s1 and ′′′s1. For the
transmitting state t2 only one copy of s1 is necessary to avoid
logical conflicts. The SDS algorithm from [9] detects and
avoids such redundancies, but it is not yet implemented in
SymNet.

Distributed searcher: To effectively explore emerging exe-
cution paths during testing, S2E uses different searchers (e.g.,
DFS, random etc.) to switch between the execution paths.
However, these searcher strategies operate locally without any
knowledge of the other VMs in the network. Therefore, in
SymNet we give TRON the full control over the path selection
at each new time slice. This is reasonable since only TRON
has global knowledge about matching execution paths and

their progress on all VMs. In our example in Figure 4, TRON
could choose the next distributed scenario randomly by picking
the state tuple (′′s1, t3) and instructing the VMs to switch to
execution paths ′′s3 and t3, respectively.

Distributed invariant checking: S2E already offers a
plethora of plugins to monitor the execution of software inside
a VM. For example, it is straightforward to detect assertion
failures and generate concrete test cases for the respective
execution paths. In addition, SymNet offers the developers
to specify invariants on distributed system states. First, the
developer has to determine which VM runtime information
is interesting and instruct S2E plugins to signal this infor-
mation periodically to TRON. Second, TRON provides a
simple interface to parse and check the received data at the
VM synchronization points using simple assertions. Once a
distributed invariant is violated, SymNet generates a test case
giving the developer concrete input values leading to the same
failure when replayed concretely (assuming determinism).

Test case generation: When an execution path terminates
(e.g., crash, assertion failure), S2E generates a test case by
feeding all path constraints into a constraint solver and asking
for concrete values that satisfy the path conditions. In SymNet,
we cannot generate test cases directly since there might be
further data constraints transitively created by other VMs in
the network during communication. Thus, once a (distributed)
failure occurs, S2E notifies TRON which in turn collects the
corresponding constraints from the execution states of the
active scenario and delivers them to the VM containing the
violating path. Afterwards, we merge the collected constraints,
check the result for satisfiability, and generate a test case
(e.g., concrete packet header), which leads to the same failing
distributed scenario when replayed. Finally, the concrete test
case values are emitted to TRON and logged for convenient
post-mortem analysis.

C. SymNet’s workflow

In summary, the testing process in SymNet consists of the
following steps. The developers setup VM images containing
their ready-to-test protocol implementations. In addition, S2E
plugins are configured by the developers to extract the software
runtime information which will be signalled to TRON for
distributed invariant checking. Next, TRON is configured with
the number of VMs, distributed invariants to check, and the
time of the test run. Note that such tests are configured only
once, hence, every following test can be run automatically
using either the same or slightly different parameters. Finally,
VMs and TRON are started, thereby initiating the testing
process:

1) If the test time is over, TRON exits shutting down the
VMs. If the test’s end time is not reached, TRON dis-
tributes a time slice to all VMs and any buffered packets
from the previous time slice execution are delivered to
the VMs.

2) During time slice execution, any outgoing packets are
buffered and TRON is updated with any runtime events
such as execution path branches or assertion failures.

3) At the end of the time slice, all VMs, i.e., the active
execution paths, stop and wait for further commands
from TRON. If necessary, TRON performs state map-
pings or triggers test case generation if, for example,
a (distributed) failure has been detected. Afterwards,
TRON searcher selects the next distributed scenario to
execute and returns to step 1).

IV. PROTOTYPE AND PRELIMINARY EVALUATION

SymNet prototype implementation consists of the S2E
framework2 extensions based on plugins, TRON acting as
a central instance, and a packet tunnel for packet buffering.
Moreover, we applied several ideas from our tool KleeNet3,
which is a symbolic distributed execution tool for self-
contained distributed systems, e.g., discrete event simulators.

For the preliminary evaluation, we deployed two Linux
VMs (Ubuntu 11.04) running on the same multi-core ma-
chine. Nonetheless, although not tested, SymNet supports the
different VMs to be spread over the network. On both VMs
we installed and started the HIP daemon4. Additionally, we
prepared a ping6 command on the first VM to trigger a
HIP association establishment to the second VM. At the same
time, parts of the header of the initial I1 packet of HIP are
marked by S2E to be symbolic. We deployed TRON on the
same machine as well, configuring it with the two VMs and
the testing time of one emulated minute. In this setup no
distributed invariants were specified.

Initially, we marked symbolically the version (4 bits) and the
reserved (3 bits + 1 fixed bit) header fields (a total of 1 byte)
of the first packet. Our expectation of this simple test case was
to detect two distributed execution paths: In the first scenario,
we should see a successful HIP association establishment
between the VMs followed by ping replies, whereas in the
second scenario the initial packet must be dropped due to
the invalid header version. Surprisingly, SymNet revealed
three distributed scenarios, two of them hitting local assertion
failures on the second VM.

As expected, in the first scenario a successful HIP asso-
ciation between the two VMs was established, generating a
test case with the concrete value 0x11 which is the default
value for the according header fields of a HIP I1 packet.
Consequently, in the second scenario, the HIP daemon on VM
2 fired an assertion indicating an invalid header version and
dropped the initial packet. The test case had the value 0x0
for the ver_res variable whereas HIP_VER_RES is 0x01:
hip_common->ver_res != ((HIP_VER_RES <<

4) | 1).
The unexpected third scenario triggered a surprising as-

sertion failure on VM 2 with the concrete value 0x10 for
ver_res:
len != hip_get_msg_total_len(hip_common).
How can arbitrary header fields influence the message

length? After digging into the code we found out that the

2https://s2e.epfl.ch/
3https://code.comsys.rwth-aachen.de/redmine/projects/kleenet-public
4https://code.launchpad.net/˜hipl-core/hipl/trunk (rev: 6277)

empty reserved field was used by the hipconf tool to
internally communicate with the HIP daemon for configuration
purposes. To reuse the existing code base, the developers had
decided to create configuration packets with the HIP header
and fill the reserved field plus the one fixed bit with zeros.
Since our I1 packet contained 0x10 in the header, it was first
identified as a configuration packet (HIP_USER_VER_RES is
0x10) and afterwards failed a sanity check on packet length at
a place where it should have not been performed. Obviously,
the HIP daemon should not accept any configuration packets
from outside since this is a potential security flaw. Finally,
our detected scenario appeared to be a common situation in
software development: Some of the original developers have
left the project and new ones have joined which were not
aware of the described code behavior.

This simple testing scenario demonstrates the core feature of
SymNet: Executing protocols on symbolic input can discover
such insidious corner-cases early in the development phase.
We argue that such cases are very difficult to detect using
manual or random testing.

We also ran further experiments subsequently marking the
fields of the 40 byte hip header struct as symbolic. The
number of explored paths on the receiver node ranged from 3
(1 symbolic byte) to 92 (40 symbolic bytes).

V. RELATED WORK

The approaches in the area of deployed distributed systems
testing come closest to our work. In this section, we discuss
and relate SymNet’s ideas to the recent efforts in this area.

D3S [11] is a framework to continuously create and check
global snapshots of deployed distributed systems. The protocol
states are extracted using binary instrumentation (bound to one
OS) in user-space and transmitted to a global verifier with
virtual time stamps for correct distributed event ordering. D3S
is a post-mortem analysis tool, hence, it is not possible to
hold the distributed execution once a failure is detected making
further analysis difficult. In contrast, SymNet can transparently
access protocol information from any VM and immediately
stop the distributed execution on failure detection. Moreover,
it employs symbolic input to explore many different distributed
system runs in parallel resulting in high code coverage.

To predict and prevent inconsistencies in deployed dis-
tributed systems, the authors in [12] present CrystalBall—an
approach to deploy a model checker on each of the running
nodes in the network and continuously explore the state space
on a recent neighborhood snapshot. This way, CrystalBall is
able to detect possible safety property violations in advance
and actively steer the execution away from inconsistent states
at runtime. In contrast, SymNet is not able to explore different
event interleavings in the distributed system at runtime since
the execution is driven by symbolic input only. Nevertheless,
SymNet can automatically explore different input equivalence
classes whereas CrystalBall dynamically explores variations
of one specific test run and is bound to one domain specific
language.

To automatically explore the execution paths of a network
configuration protocol, the authors of SymNV [13] propose a
framework which (1) symbolically executes a network daemon
on symbolic packets and (2) replays the concrete inputs
checking if the input and output packets match a set of rules
derived from the specification. SymNV discovered a number of
non-trivial bugs, but it only considers a single protocol instance
and its interaction with a modeled environment. By connecting
several protocol instances, SymNet is able to detect potential
bugs in the distributed state of protocols.

In summary, in SymNet we realize the ideas of KleeNet [14]
to enable automated testing of unmodified software running on
different—even proprietary—operating systems communicat-
ing over a physical link. In contrast to KleeNet, we run VMs
instead of simulation, add time synchronization, symbolic data
serialization over the network, and a central coordination unit
to solve different challenges we discovered during the design
process (cf. Section III).

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented SymNet, a testing environment
for unmodified communication software using symbolic dis-
tributed execution. The key feature of SymNet is the ability
to analyze protocol implementations running in different op-
erating systems communicating over a real network. Our pre-
liminary evaluation demonstrates SymNet’s ability to explore
unmodified protocol implementations and thereby uncovering
an insidious corner-case in the code under development.

In the future work, we plan to implement the SDS state
mapping algorithm [9] which drastically reduces the state
space compared to the Copy on Branch algorithm. Conse-
quently, we will evaluate SymNet with larger setups with
regard to scalability, distributed code coverage, and testing
efficiency. Selective symbolic execution is very resource con-
suming because the differences between the execution paths
grow over the time filling up the RAM. Moreover, even small
programs may quickly lead to state explosion during the
execution. Therefore, we plan to investigate how much time
and resources it takes to explore execution paths of typical
protocol implementations and how much code coverage can
we achieve in reasonable testing time.

At the time of writing, we are extending our prototype with
additional usability features. The goal is to include SymNet
into the automatic test suite of HIP which could be run
automatically during nightly builds. For this purpose we will
first deploy a line topology setup (cf. Figure 1) including
the proprietary HIP implementation of our industry partner
to test different HIP operation modes. Second, we plan to
write a number of distributed invariants which will check
our interoperability and specification requirements. On the
symbolic input side, we will iteratively choose different parts
of the packets for symbolic marking, since large symbolic
inputs in packets may quickly lead to state explosion [13].

Finally, we argue that with the recent advances in the
integrated tool support (e.g., KLEE, KleeNet, S2E) and sym-

bolic execution in general [15] this technique has become
an attractive and practicable approach for automated high-
coverage test case generation.

ACKNOWLEDGMENTS

We thank René Hummen for his help and ideas on HIP
protocol testing. We also thank Vitaly Chipounov and Oscar
Soria Dustmann for helping us to improve the quality of the
paper. This work is partly supported by DFG UMIC research
cluster of RWTH Aachen University.

REFERENCES

[1] “Mobile ACcess (German description),” http://www.mobile-access.org.
[2] T. Heer, S. Götz, E. Weingaertner, and K. Wehrle, “Secure Wi-Fi

Sharing at Global Scales,” in Proc. of 15th International Conference
on Telecommunication (ICT), St. Petersburg, Russian Federation, vol. 1.
Washington, DC, USA: IEEE, 6 2008, pp. 1–7.

[3] R. Moskowitz, P. Nikander, P. Jokela, and T. Henderson, “Host
Identity Protocol,” RFC 5201 (Experimental), Internet Engineering
Task Force, Apr. 2008, updated by RFC 6253. [Online]. Available:
http://www.ietf.org/rfc/rfc5201.txt

[4] “Host Identity Protocol for Linux,” https://launchpad.net/hipl.
[5] V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: A Platform for In-

Vivo Multi-Path Analysis of Software Systems,” in Proceedings of the
16th International Conference on Architectural Support for Program-
ming Languages and Operating Systems, 2011.

[6] F. Bellard, “Qemu, a fast and portable dynamic translator,” in Proceed-
ings of the annual conference on USENIX Annual Technical Conference,
ser. ATEC ’05. Berkeley, CA, USA: USENIX Association, 2005, pp.
41–41.

[7] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and Automatic
Generation of High-Coverage Tests for Complex Systems Programs,” in
USENIX Symposium on Operating Systems Design and Implementation
(OSDI), 2008.

[8] V. Chipounov, V. Georgescu, C. Zamfir, and G. Candea, “Selective
Symbolic Execution,” in 5th Workshop on Hot Topics in System De-
pendability (HotDep), 2009.

[9] R. Sasnauskas, O. S. Dustmann, B. L. Kaminski, K. Wehrle, C. Weise,
and S. Kowalewski, “Scalable symbolic execution of distributed sys-
tems,” in Proceedings of the 2011 31st International Conference on
Distributed Computing Systems, ser. ICDCS ’11. Washington, DC,
USA: IEEE Computer Society, 2011, pp. 333–342.

[10] E. Weingaertner, F. Schmidt, H. vom Lehn, T. Heer, and K. Wehrle,
“Slicetime: A platform for scalable and accurate network emulation,”
in Proceedings of the 8th USENIX Symposium on Networked Systems
Design and Implementation (NSDI’11), 2011.

[11] X. Liu, Z. Guo, X. Wang, F. Chen, X. Lian, J. Tang, M. Wu,
M. F. Kaashoek, and Z. Zhang, “D3S: Debugging deployed distributed
systems,” in 5th USENIX Symposium on Networked Systems Design
& Implementation, NSDI 2008, April 16-18, 2008, San Francisco,
CA, USA, Proceedings, J. Crowcroft and M. Dahlin, Eds. USENIX
Association, 2008, pp. 423–437.

[12] M. Yabandeh, N. Knezevic, D. Kostic, and V. Kuncak, “CrystalBall:
Predicting and Preventing Inconsistencies in Deployed Distributed Sys-
tems,” in NSDI, 2009.

[13] J. Song, T. Ma, C. Cadar, and P. Pietzuch, “Rule-based Verification of
Network Protocol Implementations using Symbolic Execution,” in IEEE
International Conference on Computer Communications and Networks
(ICCCN 2011), Maui, Hawaii, USA, 08/2011 2011.

[14] R. Sasnauskas, O. Landsiedel, H. Alizai, C. Weise, S. Kowalewski, and
K. Wehrle, “KleeNet: Discovering Insidious Interaction Bugs in Wireless
Sensor Networks Before Deployment,” in International Conference on
Information Processing in Sensor Networks (ACM IPSN/SPOTS). New
York, NY, USA: ACM, 2010, pp. 186–196.

[15] C. Cadar, P. Godefroid, S. Khurshid, C. Pasareanu, K. Sen, N. Tillmann,
and W. Visser, “Symbolic Execution for Software Testing in Practice
– Preliminary Assessment,” in International Conference on Software
Engineering, Impact Project (ICSE Impact 2011), Honolulu, Hawaii,
USA, 05/2011 2011.

