
Device Driver-enabled Wireless Network Emulation

Elias Weingärtner, Hendrik vom Lehn, and Klaus Wehrle
Communication and Distributed Systems

RWTH Aachen University
{weingaertner, vomlehn, wehrle} @ comsys.rwth-aachen.de

ABSTRACT
Testing and evaluating the performance of actual software
for wireless networks is difficult. Real-world wireless testbeds
are costly and cumbersome to maintain. Measurement stud-
ies are complicated by many uncontrollable environmental
influences, particularly the wireless channel. Network simu-
lations on the contrary allow the convenient analysis of wire-
less networks with a maximum level of controllability; how-
ever they typically do not allow the execution of arbitrary
and unmodified wireless communication software inside the
simulation environment.

In this paper, we present a new network emulation archi-
tecture for the evaluation of wireless communication soft-
ware. By bridging the gap between simulation and wire-
less software using a custom device driver, our framework
enables arbitrary and unmodified wireless communication
software to be evaluated in a fully simulated network. In
accordance to this architecture we present a new 802.11 em-
ulation framework based on ns-3 that allows the investiga-
tion of arbitrary Wi-Fi software for Linux. It eases both the
development and the performance analysis of present and
future Wi-Fi software.

Keywords
Network Simulation, Network Emulation, Wireless Software

1. INTRODUCTION
Both the development process as well as performance eval-

uations of software for wireless networks are often challeng-
ing and sometimes even painful. There are two prominent
requirements in this regard. First , it is often vital to repeat
an evaluation or an experiment multiple times in a deter-
ministic fashion. Second, a major necessity is the aptitude
of investigating real-world software. Ideally, a respective
methodology or performance evaluation tool allows for the
analysis of the wireless software in its genuine context, which
usually is an entire operating system on a real machine.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIMUTools 2011 March 21–25, Barcelona, Spain.
Copyright 2011 ACM ...$5.00.

According to the development of new software for wireless
networks researchers typically rely on network simulations
or real-world testbed deployments. Network simulations
are the primary evaluation technique of choice for to the
analysis of wireless networks: Contemporary network simu-
lators, such as OMNeT++ [30], JiST/SWANS [6], ns-2 [21]
or ns-3 [24] facilitate the convenient investigation of wire-
less networks. In fact, these simulators provide models for
a plethora of wireless network technologies, ranging from
models of 802.11 [4,16,25] and its different sub-standards to
cellular networking technologies like LTE [20] or sensor net-
works operating on IEEE 802.15.4 [9]. While all simulation
tools inherit a very high degree of controllabiliy and scal-
ability from the underlying concept of discrete event-based
network simulation, one aspect disqualifies them as the one
and only evaluation technology for wireless networks: With
rare and specific exceptions [18], network simulators do not
allow the execution of arbitrary wireless networking soft-
ware in the simulation environment. This issue is critical for
different reasons: First, this hinders studies of legacy wire-
less software for which no source code is available. Second,
network simulation frameworks require the wireless software
under investigation to be adapted to the simulation environ-
ment, which is mostly work intensive and often costly. In
addition, simulation environments strongly differ from oper-
ating systems forming the original context in which wireless
networking software is executed. Hence, it is difficult to
uphold the original behavior of networking software if its
ported to a simulation environment.

Real-world software deployments and testbeds nat-
urally allow the investigation of genuine wireless software
and hardware. Such testbeds are expensive both in terms of
hardware costs and maintenance. Moreover, measurements
with real-world wireless systems typically also suffer from
many uncontrollable environmental conditions. For exam-
ple the radio propagation on the wireless channel is prone
to unpredictable interferences with other radio devices. In
addition, node mobility usually originates from vehicle or
human movement, which is difficult to reproduce. Hence re-
peating real-world measurements under equal conditions is
hard if not impossible in most cases.

Network emulation [10] enables the analysis of real-
world network systems and software in a fully controlled
environment. For this purpose, these real-world communica-
tions systems pass their traffic through a network simulation
that reproduces the behavior of an interconnecting network.
Depending on the scenario’s requirements, the form of the
simulation may vary between a mere imitation of packet

Network Simulation

Simulated Nodes

Simulated
Wireless Channel

Gateway Nodes

Virtual Node
Mobility

Operating System

Network Stack

Application

Wireless Emulation
Net. Device

Figure 1: Conceptual overview of our wireless emu-
lation approach: An instance of an entire operating
system is integrated with the network simulation us-
ing a custom wireless network device driver. Traffic
between the simulation and the device driver is ex-
changed at so-called gateway nodes. The network
simulation models the wireless channel, other fully
simulated nodes as well as potentially virtual node
movement.

propagation characteristics and a provision of a fully simu-
lated network consisting of simulated hosts, simulated pro-
tocol stacks and simulated network applications.

In this paper, we revisit the concept of network emulation
for the evaluation of wireless networking software. Specifi-
cally, the contributions of this paper are the following:

• We introduce a new architecture for the emulation
of wireless networks (Section 2). We integrate the
wireless software by providing it with a virtual wire-
less network interface that behaves like a real wire-
less networking card, but instead handles the transmis-
sion and reception of data using a network simulation.
This way, any real-world wireless networking software
as well as routing and transport protocol implemen-
tations can be investigated inside a fully simulation-
controlled environment. The simulation models the
MAC and PHY layers, the wireless channel, potential
node movement as well as other fully simulated nodes.

• We present an elaborate discussion of a new 802.11
emulation framework for ns-3 that we designed corre-
sponding to this architecture (Section 3). Our frame-
work allows any networking software for Linux making
use of 802.11 wireless networks to be evaluated within
ns-3 simulation scenarios of any kind.

• The evaluation in Section 4 shows that our framework
accurately integrates the ns-3 Wi-Fi models with real-
world networking software for Linux at the MAC layer,
both according to latency and network bandwidth.

We discuss important related work in Section 6. The pa-
per concludes with final remarks in Section 7.

2. SYSTEM ARCHITECTURE
Figure 1 shows a high-level view of our architecture for

the emulation of wireless networks. Corresponding to the
underlying concept of network emulation [10], our frame-
work consists of two main components: The first is a host
operating system (OS) that executes the wireless software
to be investigated. We consider the wireless software to be
any program or service that makes use of a wireless net-
working device. The second component is a discrete event-
based network simulation, which models a virtual wireless

Physical Layer (PHY)

Medium Access Layer (MAC)

Operating System

Net. Device Driver

Routing Layer

Transport Layer

Socket Layer

Application

Routing Layer Model

Transport Layer Model

Socket Layer Model

Application Model

Simulated Node

Real-World Software

Simulation Domain

Figure 2: Stack organization in a device-driver en-
abled emulation scenario. We integrate the OS with
the network simulation at the MAC layer. The net-
work simulation models the MAC and the PHY lay-
ers; for fully simulated nodes it provides the entire
protocol stack.

network containing both simulated nodes and so-called gate-
way nodes. The gateway nodes connect the simulation do-
main with the real-world software prototypes.

2.1 Real-world wireless network software
Our architecture integrates entire instances of operating

systems executing the wireless software under investigation
into the emulation set-up. The most important cornerstone
in our architecture is a special device driver providing the
wireless software with MAC-layer connectivity to the sim-
ulated wireless network. In the following we explain why
these design decisions were made.

First, the major design requirement for our emulation ar-
chitecture is to enable the incorporation of arbitrary wire-
less software into an emulation scenario. Any software mak-
ing use of wireless communication, for instance ad-hoc rout-
ing protocol daemons, VoIP applications or legacy operating
system applications, should be able to be included into the
wireless emulation set-up. For this reason we need to pro-
vide the wireless software with its genuine environment that
is of course the operating system context for which the soft-
ware was developed for. Second, we generally assume that
modifying the software for the inclusion into an emulation
framework is not possible. Hence, we generally do not re-
quire source code to be available. This is true for many
commercial applications.

Interfacing the wireless software with the simulation is
generally possible at different levels of the protocol stack.
One option would be to provide an alternative socket layer
for the wireless software to link against, for example like
in EmuSocket [3]. However, this constrains one to rely on
TCP/IP for all means of wireless communication, and thus,
investigating custom routing or transport protocol imple-
mentations becomes impossible. Similar problems hold for
the interception at the IP layer (e.g. [28]), which require the
wireless software to use IP for communication.

Figure 2 displays how we address this problem. The com-
mon language of all nodes in the simulation is the proto-
col used for wireless communication at the MAC layer. All
MAC and PHY layer behavior is therefore modeled by the
network simulator.

Our architecture employs a custom device driver behaving
like a real-world wireless networking card to embed arbitrary
software into a wireless emulation scenario. Besides send-
ing and receiving data from other nodes, it also implements
device specific actions such as scanning for access points,
depending on the emulated wireless communication tech-
nology. In effect, any protocol stack or application that is
capable of accessing network interfaces can be transparently
used for wireless network emulation. This neither requires
source code changes nor any other additional effort such as
recompilations or relinking the code.

2.2 Network Simulation
The overall task of the network simulation is to model

a wireless network, consisting of so-called gateway nodes
and optional fully simulated nodes. The gateway nodes are
stand-ins for the real-world software inside the simulation’s
virtual network topology.

The core functionality of the gateway nodes is to relay
traffic originating at real-world wireless software over the
simulated wireless channel. To enable the communication
between gateway nodes and other nodes in the simulation,
the gateway nodes only implement the physical and medium
access control layers of the simulation.

Besides incurring the pure communication actions for the
software prototypes, the gateway nodes also implement other
functionalities usually carried out by wireless communica-
tion hardware. One example is reading Received Signal
Strength Indicator (RSSI) values. In the real world, RSSI
values indicate the signal strength associated with received
packets. Typically such values are exported to the operat-
ing system and the software using an interface at the device
driver. For the emulation case the RSSI values are the out-
come of simulation models. In order to enable real-world
software to access such “simulated” environment parame-
ters, the driver bridges important parameters and proper-
ties of the wireless simulation model with the API of the
host operating system. Similarly, the gateway nodes map
other commands to corresponding actions in the simulation,
for instance a request to scan for access points. Hence our
architecture not only emulates the wireless communication
characteristics but also the operating system interface of re-
spective typical networking hardware.

It is also noteworthy that a major reason to rely on an
event-based network simulator as an emulation engine is its
capability of modeling additional environmental behavior in
a deterministic way. Most notably this concept allows the
simulator to implement virtual mobility support. Network
emulation with virtual mobility allows one to investigate de-
terministically how real-software prototypes and their per-
formance are affected by influences due to node movement.
Similarly, the network simulation may also implement sim-
ulated nodes, for instance access points in the context of
802.11 networks or simulated hosts forming an arbitrary
background network. This enables emulation scenarios to
scale up to a larger degree in terms of node count or emula-
tions containing network components that are not available
otherwise.

2.3 Message Exchange
A crucial part of every device driver-enabled wireless emu-

lation framework is the message exchange between the gate-
way nodes and device drivers that are associated with them.
We assume that the network simulation and the wireless
emulation device driver are typically executed on separate
installations of an operating system. For example, if two
physical machines are used, one might host the network sim-
ulation while the other runs the emulation device driver and
the wireless software. The use of virtual machines of course
makes it is also possible to run the network simulation as well
as multiple OS installations with the driver on one physical
computer.

The first important requirement regarding the commu-
nication between both components is low latency. As the
execution of the operating system hosting the driver and
the network simulation is usually not tightly integrated, the
message exchange scheme directly influences the communi-
cation delay perceived by the wireless software. Hence, a
low messaging latency is vital to avoid potentially significant
performance loss regarding round trip times and end-to-end
throughput between a gateway node and another node in
the simulation. A second challenge is the adequate repro-
duction of buffering behavior. While network simulations
mostly assume unlimited transmission queues, the capacity
of transmission buffers found in real-world network devices
is strictly limited. In order to obtain realistic performance
measurements, for instance regarding the throughput mea-
sured on the emulated network device, we also need to em-
ulate buffer capacity.

According to communication between the device driver
and the gateway node, the following forms of message ex-
change between driver and simulation can be differentiated
in a device-driver enabled wireless emulation tool-chain:

• Driver (un-)registration
We define the wireless simulation to be the “master”
component at which the device drivers may register
and unregister at any point in time. This implies that
the network simulation that models the environment
for the gateway nodes has always to be instantiated
prior to the wireless device drivers.

• Exchange of data frames
The main type of message exchange is the transmission
of data frames from the gateway node to the emula-
tion device driver. Similarly, data packets delivered to
the driver need to be transferred to the gateway node
where they are injected into the simulated wireless net-
work.

• Status update notifications
The wireless driver needs to provide statistics and sta-
tus information such as RSSI values. As this informa-
tion is only available at the wireless communication
stack of the gateway node, a data exchange mecha-
nism for status information needs to be established.

• Network hardware configuration and commands
As the wireless software might invoke certain com-
mands typically carried out by the wireless network-
ing hardware, the messaging scheme needs to forward
them to the gateway node.

As we later discuss in Section 3.3, an actual implemen-
tation of the data exchange between driver and real-world
simulation might also require the proactive transfer of infor-
mation, e.g. to enable the timely access to status informa-
tion.

2.4 Scalability
Like with any network emulation framework an important

aspect is the degree of achievable scalability. More specifi-
cally, the question is how many emulated hosts can be mod-
eled by the simulation (simulation scalability) and how many
real systems can be attached to it (emulation scalability).

The emulation scalability is heavily dependent on the ac-
tual implementation of the gateway nodes and the message
exchange with the device drivers. One important factor is
the accumulated traffic between all gateway nodes and the
the corresponding driver instances. It has to be kept within
the bounds of available communication resources of the com-
puter executing the simulation. In addition, each gateway
node requires state information that is in the same magni-
tude as the one required by a simulated host. From our
experience with our 802.11 implementation of device driver-
enabled wireless network emulation (discussed in Section 3),
however, we have learned that emulation scalability is not re-
ally an issue. Early experiments had shown that our frame-
work is easily capable of handling a couple of dozens of driver
instances at the same time.

Instead, the bigger limitation by far is simulation scalabil-
ity. Given the computational complexity of wireless channel
models and the detailed simulation of the MAC layer, the
resource demands of wireless simulations grow fast with the
number of simulated hosts and gateway nodes. As the net-
work simulation needs to operate in real-time to be used
for network emulation this hinders the set-up of large-scale
wireless network emulation scenarios. Throughout the rest
of this paper we accept this constraint and only focus on
network emulation scenarios that employ real-time capable
simulations. However, we have developed a network em-
ulation platform called SliceTime [32] that eliminates this
constraint. We also show in [32] how device driver-enabled
wireless network emulation in conjunction with SliceTime
can be used for large-scale 802.11 network emulation sce-
narios.

3. AN 802.11 EMULATION FRAMEWORK
Corresponding to the architecture presented in the previ-

ous section, we now describe the implementation of a device
driver-enabled wireless emulation framework for 802.11 (Wi-
Fi) networks. Although we focus on 802.11 throughout the
rest of this paper, the concept of device driver-enabled wire-
less network emulation proposed in Section 2 may also ap-
plied to different communication technologies like Bluetooth
or Zigbee.

Our 802.11 wireless emulation framework encompasses the
following components:

• We rely on ns-3 for the simulation of the 802.11 net-
work. We extended the 802.11 model of ns-3 with an
implementation of an 802.11 gateway node to en-
able the 802.11 model to be used for network emula-
tion. In order to support further typical features of
802.11 such as scanning for access points (APs), only
minor changes had to be applied to the model itself.

• We implemented a custom Wi-Fi device driver for
Linux as loadable kernel module. It provides all func-
tionality of a common wireless network device and sup-
ports the Linux Wireless Extensions. Thus any pro-
tocol implementation and Linux application can seam-
lessly be incorporated into a Wireless emulation set-up.

• We designed a lightweight and flexible message ex-
change protocol to integrate the functionalities of the
driver and the gateway nodes.

We now describe important aspects regarding the imple-
mentation of the individual components.

3.1 Extensions of ns-3
We chose ns-3 as underlying network simulator because

of its good support for data exchange with real systems. It
already contains a real-time scheduler, which is a require-
ment to exchange network packets with external systems.
Furthermore, the internal representation of network packets
is the same as in real networks. Hence no explicit conversion
is required when packets are exchanged with real systems.

3.1.1 The ns-3 802.11 model
The 802.11 network model used in ns-3 originates from the

Wi-Fi model of an earlier discrete event-based simulation
tool named Yet Another Network Simulator (YANS) [19].
Recent versions of ns-3 include detailed MAC layer and
PHY layer simulation models for 802.11a and 802.11b net-
works [23]. ns-3 supports the simulation of infrastructure
as well as the investigation of ad hoc scenarios. The ad hoc
network implementation, however, is not complete, as it cur-
rently only sends the data frames themselves and does not
contain management operations. Still, it can be used for the
simulation of ad hoc networks, even though the behavior is
not fully compliant with real 802.11 networks. The complete
Wi-Fi model consists of several classes which form a stack
of sub-layers.

3.1.2 The 802.11 gateway node
The 802.11 gateway node bridges the logic of the ns-3

Wi-Fi model with the Wi-Fi device driver. Figure 3 illus-
trates the module composition that forms a gateway node
in our 802.11 framework. Due to the clean design of ns-
3, we were able to implement the simulation part of our
emulation framework by just adding two essential classes:
The WifiEmuBridge module and the WifiEmuComm adapter.
It centrally manages the data exchange between multiple
gateway nodes and associated Wi-Fi device drivers.

The WifiEmuBridge module is the central cornerstone of
our gateway node implementation. In order to enable the
wireless software to send data over the simulated 802.11
network, it receives raw data frames via the WifiEmuComm

adapter that originate from the Wi-Fi device driver (cf. Fig-
ure 2). In a similar fashion 802.11 data frames received on
the simulated Wi-Fi channel are relayed to the driver using
our WifiEmuComm adapter.

During the instantiation of the gateway node, the Wi-

fiEmuBridge module uses callbacks to register at the dif-
ferent sublayers of the ns-3 802.11 model. This is required
to gather status information and statistics from lower layers
during an emulation run. For example, the WifiEmuBridge

obtains RSSI values from the WifiPhy component. Table 1
lists all the 802.11 status values that are supported by our

WiFiEmuBridge

WiFiNetDevice

WiFiMac

MacMiddle

MacLow

WiFiPhy

WiFiRemote
StationManager

Device Driver

Communication Path
Simulation Mapping

other
Gateway Nodes

WiFiEmuComm

Figure 3: Structure of our ns-3 gateway node imple-
mentation: The WifiEmuBridge integrates the data
transfer with the ns-3 Wi-Fi stack and maps sim-
ulation properties and actions to the model. The
actual data communication with the device driver is
carried out by one singleton object.

Wi-Fi emulation framework. All of these are made accessible
to the Wifi software via the Wi-Fi emulation device driver,
either by implementing respective Linux Wireless Extension
calls or using RadioTap headers.

The WifiEmuComm adapter centrally manages the data ex-
change between multiple gateway nodes and associated Wi-
Fi device drivers. It is implemented as a singleton object,
which is instantiated only once for the entire emulation sce-
nario. If data frames are received from a Wi-Fi emulation
device driver, WifiEmuComm dispatches them to the corre-
sponding gateway node using a identifier sent along with
the data frame. This design decision was made mainly for
the reason of decreasing the complexity of the gateway node
implementation. A second helper class encapsulates the low-
level communication. This enables alternative implementa-
tions of the message exchange mechanism between WifiEmu-

Comm and the device driver.
We further emphasize that our Wi-Fi emulation exten-

sions only require minor changes to the 802.11 model, such
as the addition of a few callbacks to access 802.11 status
values. One important extension is scanning support; it
is required to get common Wi-Fi software such as iwlist

working. In order to enable scanning in a Wi-Fi emula-
tion scenario, we extended an early prototype by Gustavo
Carneiro [7] and incorporated it into our implementation.

3.2 Wi-Fi emulation device driver
The network driver which is part of our 802.11 emulation

framework is implemented for the Linux operating system.
The open nature of Linux makes it suitable to form the basis
of a device-driver enabled wireless emulation tool-chain, as
all parts of the system can be easily inspected and modified.
However, from a conceptual point of view additional device
drivers could be also implemented in an analogous way for
any operating system providing general support for network
communication.

Since the main goal of this driver is to represent the simu-
lated wireless network card, it has to interact with the Linux

802.11 property Description
RSSI Received Signal Strength Indicator
Operation Mode 802.11 Infrastructure, Monitor or

Ad Hoc mode
PHY standard 802.11 standard in use: a,b
Data Rate The current data rate of the the in-

terface, eg. 54Mbit
SSID The SSID of the access point the

gateway node is currently associ-
ated to

BSSID The Basic Service Set Identifier of
the network the gateway node cur-
rently belongs to

Channel The number of the 802.11 channel
currently used

Table 1: 802.11 status values and statistics sup-
ported by our Wi-Fi emulation framework. They
are either accessible to the Wi-Fi software via Ra-
dioTap headers or the common API defined by the
Linux Wireless Extensions.

network stack exactly like a driver of a regular wireless net-
work card. Hence it has to make use of the interfaces Linux
provides to access wireless network cards, whereby 802.11
wireless network cards are handled by Linux through the
same kind of interface as Ethernet network cards. This in-
terface [31] works as follows: During initialization or when
hardware is found, a network card driver registers itself at
the networking subsystem, providing a list of function point-
ers. These functions are called later during the execution by
the networking subsystem to pass data which has to be sent,
to retrieve statistics or to start and stop the network card.
In turn, the network driver can call functions of the net-
working subsystem to start and stop its sending queue or to
transfer received packets.

While this general network card interface already allows
the driver to exchange network packets with the networking
subsystem, it does not support any wireless network card
specific features. For this purpose, the so-called wireless
extensions [33] (wext) are added on top of this interface.
Through a number of additional pointers to functions pro-
vided by the network driver, the Linux kernel can set or get
additional parameters or retrieve statistics of the wireless
network card. Starting from Linux version 2.6.22, a new in-
terface called cfg80211 [8] can be used instead of the wireless
extensions. Our implementation, however, makes use of the
classic wireless extensions, as they provide all necessary fea-
tures and are available in previous as well as current Linux
kernel versions.

3.3 Message Exchange
In order to integrate the 802.11 model and our gateway

node implementation of ns-3 with the emulation Wi-Fi de-
vice driver, we have implemented a lightweight messaging
interface that supports all communication primitives dis-
cussed in Section 2.3. In order to fulfill the low latency
requirement, we need to keep the delays caused by message
processing as low as possible. For this reason we developed a
straightforward lightweight UDP protocol that embeds both
data frames as well as status information in binary form.

This enables a rather efficient conversion of data structures
using static typecasts in contrast to protocols that would
introduce a far higher messaging complexity, for example
protocols based on XML messages.

To provide efficient access to statistics and status infor-
mation such as RSSI and BSSID, the gateway nodes push
changes of this information to the device driver using our
messaging interface. This decision was made for perfor-
mance reasons, as the wireless interface of Linux splits access
to 802.11 status messages into a series of system calls. By
pushing all status information to the driver, all such requests
can be answered locally without further interactions with the
gateway nodes. In contrast to that, a pure polling approach
would require a much higher amount of interaction between
the emulation Wi-Fi driver and the network simulation and
thus would introduce a higher messaging overhead.

In addition, we also equipped the driver with a virtual
transmission buffer to emulate the limited capacity of send-
ing queues found in real 802.11 network cards. If this fea-
ture is enabled, the device driver counts the number of bytes
transferred to the gateway node. After the gateway node has
sent the data on the simulated Wi-Fi channel, it instructs
the driver to subtract the number of transmitted bytes from
the counter again. Hence, the counter amounts to the num-
ber of bytes that are currently waiting to be sent. If this
counter exceeds a certain configurable threshold, the virtual
buffer is full and the emulation device driver blocks the net-
work stack from sending new data frames.

4. EVALUATION
We now evaluate the accuracy of our driver-enabled 802.11

emulation framework regarding throughput and end-to-end
latency. Later in this section, we also investigate the timing
behavior of our driver-based integration of the ns-3 Wi-Fi
model with Linux more precisely. All emulation runs were
performed on a Dell Optiplex 960 machine, equipped with
a 3 GHz Quad Core CPU, 8 GB of main memory and a 320
GB hard disk.

4.1 802.11 Throughput
We first investigate the throughput between two hosts

in an 802.11 emulation scenario. Both nodes communicate
with each other over a simulated Wi-Fi channel modeled by
ns-3. For this experiment, we used a Xen [5] hypervisor with
two virtual machines (VM) hosting Linux and the emulation
driver as well as one VM that executed the Wi-Fi emulation
framework based on ns-3. Figure 4 compares the through-
put for both emulated 802.11a and 802.11b with real-world
802.11 measurements in infrastructure mode. The real-world
measurements were obtained on a plain meadow (low inter-
ference) using two MacBooks running Linux and a Linksys
WRT610N wireless router that serves as access point. The
TCP_STREAM and UDP_STREAM tests of netperf [12] were used
to measure the throughput for both the emulated as well-as
the real-world 802.11 networks. The upper bounds are taken
from [2].

For both 802.11 sub-standards and investigated transport
protocols, our Wi-Fi emulation framework produces realistic
throughput measurements in the right magnitude. Regard-
ing 802.11a the throughput obtained using the emulation is
slightly higher than the one measured in the real-world. It is
the other way around for 802.11b: the measurements taken
in the real-world outperform those of the emulated scenario.

Such discrepancies according to the 802.11 throughput are
well-known and not a specific property of our 802.11 emula-
tion framework. For example, the measurements presented
in [2, 11] show that the achieved throughput in 802.11 net-
works may be strongly influenced by the Wi-Fi hardware
used.

4.2 802.11 Round Trip Times
Analogous to the throughput measurements we now com-

pare the round trip time (RTT) between two hosts in an em-
ulated and real-world scenario. Figure 5(a) and 5(b) display
the RTT distributions for 802.11a and 802.11b. Most no-
tably the round trip times taken using our emulation frame-
work are constantly lower than the RTTs measured in real-
ity. We regard this difference as natural disparity caused by
the abstractions of the ns-3 802.11 simulation model from
the real-world behavior of Wi-Fi. The level of abstraction
of the ns-3 Wi-Fi model for good reason increases at lower
layers, as it is the case for most wireless simulation models.
For instance, the Yans channel model [19] only approxi-
mates the typical delays of the 802.11 channel access. Other
sources of delay, for example those imposed by the design of
Wi-Fi hardware are also not reflected by the 802.11 model,
as their implications on performance evaluations of network
protocols and applications are mostly irrelevant. The po-
tential delay differences between a Wi-Fi emulation set-up
and a corresponding real-world scenario can be easily com-
pensated, e.g. by introducing additional static or random
delays in the 802.11 channel model.

4.3 Timing Analysis
We now investigate the timing behavior of our 802.11 em-

ulation framework in more detail. Figure 6 breaks down
the round trip times between a simulated host and a Linux
VM into the individual communication actions between the
Linux device driver and the ns-3 802.11 models. The box-
plots visualize the absolute delay distributions of the indi-
vidual communication actions. The color bar at the bottom
of the plot shows how the average delays of the individ-
ual communication actions accumulate the total round trip
time.

By far the largest fraction of the RTT is constituted by
the ns-3 Wi-Fi simulation (denoted by Simulated Wifi),
which also contains the time for accessing and data trans-
mission on the simulated 802.11 channel. According to the
communication actions introduced by our 802.11 emulation
framework, Simulation TX accounts for the largest part of
the delay overhead. It encompasses all delays caused by mes-
sage processing inside the WiFiEmuBridge component when
a packet is relayed over the simulated wireless channel over
the gateway node. Altogether, the delay overhead caused by
this and the other communication actions introduced by our
802.11 emulation framework amounts to less than a third of
the overall communication delay. This fraction is certainly
not negligible, however we have previously shown in Section
4.2 that our framework constantly achieves lower RTTs than
a comparable real-world 802.11 deployment.

We conclude that the timing behavior of our driver-enabled
802.11 emulation framework is well suited for the analysis of
Wi-Fi software, especially because the measured RTTs are
constantly well below the reference measurements taken in
a low-interference real-world deployment.

0 5 10 15 20 25 30 35
Throughput [Mbit/s]

 Measured (Infrastructure)

 Emulated (Infrastructure)

T
h
e
o
re

ti
ca

l
B

o
u
n
d
a
ry

(a) TCP, 802.11a

0 5 10 15 20 25 30 35
Throughput [Mbit/s]

 Measured (Infrastructure)

 Emulated (Infrastructure)

T
h
e
o
re

ti
ca

l
B

o
u
n
d
a
ry

(b) UDP, 802.11a

0 1 2 3 4 5 6 7 8
Throughput [Mbit/s]

 Measured (Infrastructure)

 Emulated (Infrastructure)

T
h
e
o
re

ti
ca

l
B

o
u
n
d
a
ry

(c) TCP, 802.11b

0 1 2 3 4 5 6 7 8
Throughput [Mbit/s]

 Measured (Infrastructure)

 Emulated (Infrastructure)

T
h
e
o
re

ti
ca

l
B

o
u
n
d
a
ry

(d) UDP, 802.11b

Figure 4: Throughput of emulated 802.11 compared with real-world measurements. Our 802.11 emulation
framework reaches realistic throughput performance for both UDP and TCP.

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0
RTT [ms]

Infastructure
Access Point

Infrastructure
Station

Emulated
Measured

(a) 802.11a

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0
RTT [ms]

Infastructure
Access Point

Infrastructure
Station

Emulated

Measured

(b) 802.11b

Figure 5: Round trip times of 802.11 measured in a real experiment and in an emulated network. (whisker
length: 1.5 IQR)

5. APPLICATION
A main motivation behind the concept of device-driver

enabled wireless network emulation and our corresponding
802.11 emulation framework is to enable the easy investi-
gation of arbitrary wireless networking software in a fully
simulated network. In this section we describe our Wi-Fi
emulation framework from a user’s perspective and show
how we address this goal.

5.1 Network Simulation
In order to use an existing ns-3 Wi-Fi simulation scenario

for network emulation only a few lines have to be added to
the simulation program (see Figure 7): As in any standard
network emulation set-up, we first instruct ns-3 to use its

real-time scheduler to pin the execution of events to wall
clock time. We also need to switch on the calculation of
checksums for all packets to enable the communication with
real-world hosts. In order to prepare the interaction with
the device driver, one simply needs to instantiate a Wi-

fiEmuBridge and install it onto a simulated node (node 0
in this example), which forms the gateway node. Anything
else in the simulation stays untouched, and of course, any
feature or model of ns-3 may be used in conjunction with
our 802.11 Wi-Fi extensions.

5.2 Device Driver
Figure 8 illustrates how the Linux device driver provides

a virtual 802.11 networking device serving as entry point
to the simulated network. First, two insmod commands are

0 100 200 300
Time [us]

Driver TX

Driver to Simulation

Simulation TX

Simulated Wi-Fi

Simulation RX

Simulation to Driver

Driver RX

Host System

(a) 802.11a

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
Time [ms]

Driver TX

Driver to Simulation

Simulation TX

Simulated Wi-Fi

Simulation RX

Simulation to Driver

Driver RX

Host System

(b) 802.11b

Figure 6: Timing analysis of our device-driver enabled 802.11 framework: The largest amount of a RTT is
caused by the ns-3 Wi-Fi model and not by the interaction between device driver and gateway node. The
color bar shows the accumulated average delay of the individual communication actions.

GlobalValue ::Bind ("SimulatorImplementationType",
StringValue ("ns3:: RealtimeSimulatorImpl"));

GlobalValue ::Bind ("ChecksumEnabled",
BooleanValue (true));

WifiEmuBridgeHelper wbridge;
wbridge.SetAttribute("ClientId", IntegerValue (42));
wbridge.Install(c.Get(0), staDevice.Get(0));

Figure 7: Any ns-3 Wi-Fi simulation can be easily
turned into an 802.11 emulation scenario using few
lines of code

root@wifi-test2:~/wifi-emu-kern# insmod ./wifi-emu.ko client_id=42
&& insmod ./wifi-emu-udp.ko peer_addr=192.168.1.2

root@wifi-test2:~/wifi-emu-kern# iwconfig wemu0
wemu0 IEEE 802.11b ESSID:"wifi-b" Nickname:"wifi-emu"

Mode:Master Frequency:2.447 MHz
Access Point: 00:00:00:00:00:02 Bit Rate:11 Mb/s
Link Quality=45/100 Signal level=-56 dBm
Noise level=-101 dBm
Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0
Tx excessive retries:0 Invalid misc:0 Missed beacon:0

root@wifi-test2:~/wifi-emu-kern# iwconfig wemu0 mode Monitor
root@wifi-test2:~/wifi-emu-kern# ifconfig wemu0 up

Figure 8: Terminal output showing how to load and
configure the wireless emulation driver for use in
Monitor mode.

used to load and to initialize the emulation Wi-Fi device
driver. The only parameters needed to instantiate the driver
are the remote location of the network simulation and the ID
of the gateway node to which the driver is associated. If the
device driver is running, the output of iwconfig shows that
the network device and its properties resemble a wireless
networking card. Finally we configure the interface to oper-
ate in the 802.11 monitor mode, which instructs the gateway
node to relay any frame received on the MAC layer to the
the wemu0 interface. The interface acts like a real 802.11
network card and supports the Linux wireless extensions.

5.3 Wireless Software
Once the ns-3 Wi-Fi simulation is running and the driver

has been initialized, any networking software may access
the emulated 802.11 network device. Figure 9(a) displays
a screen-shot of the Wireshark network protocol analyzer

(a) Wireshark

(b) Kismet

Figure 9: Our 802.11 network emulation framework
enables arbitrary unmodified networking software
for Linux to be investigated in a Wi-Fi scenario mod-
eled by ns-3.

monitoring an 802.11 infrastructure network modeled by ns-
3. Here Wireshark is used to examine the RadioTap header
of a packet received from an access point. The parameters
shown correspond to the state descriptors of the MAC layer
of the gateway nodes.

Figure 9(b) shows an unmodified version of the Kismet [15]
wireless network scanner monitoring the simulated Wi-Fi
network. The topology contains a number of access points
and wireless stations, for which Kismet displays the MAC
addresses corresponding to the ns-3 simulation scenario. The
main purpose of Kismet is to passively scan for 802.11 sta-
tions. It internally makes use of the Linux wireless exten-

sions to implement Wi-Fi scanning and for gathering miscel-
laneous 802.11 information. The fact that our 802.11 frame-
work is able to execute programs such as Kismet in an en-
tirely simulated context demonstrates its ability to provide
an investigation platform for wireless software that requires
deep interaction with the wireless network device driver.
Hence we expect our 802.11 emulation framework especially
to be supportive for the analysis of ad hoc routing protocol
implementations or Wi-Fi network management software.

6. RELATED WORK
The common ground across all wireless network emula-

tion approaches is that the wireless channel is replaced by
an artificial model which allows for an easier evaluation of
wireless effects. Such modifications can be either performed
as part of the wireless network hardware or in software.

Approaches performing these modifications in hardware
range from attenuated wireless channels [14], over switch-
able antenna ports [27] to a complete emulation of wireless
transmission through direct modification of the wireless sig-
nal [13]. The advantage of such approaches is that they
make use of regular wireless network cards and therefore
provide a very authentic environment to the software under
test. However, they require even more hardware as in the
case of of a regular wireless network testbed. This makes
them costly and difficult to set up.

Performing wireless network emulation in software usu-
ally means to completely abandon wireless network hard-
ware and to perform the emulation on a per-packet level.
Approaches as the one presented by Noble et al. in [22] or
MobiEmu [34] use wired local area networks in which they
drop or delay packets according to a wireless network model.
Others as NEMAN [26] or CORE [1] do not make use of a
complete network, but instead provide virtual network in-
terfaces through which the emulated wireless network is ac-
cessed. A disadvantage of such approaches is that they are
limited by the fixed set of actions with which they modify
the packet flow and the fact that they require a separate
software instance for each station of the wireless network.

Wireless network emulation based on discrete event-based
network simulation is more flexible in this regard, as it allows
the inclusion of fully simulated nodes that are fully imple-
mented as part of the network simulation. Similar to our
wireless emulation framework, a few other wireless network
emulation systems [17,28,29] are also based on discrete-event
simulation. JiST/MobNet [17] provides wireless network
emulation support based on the JiST network simulator. It
provides virtual network interfaces in the system executing
the network simulator which allow the transmission of IP
packets over the simulated wireless network. This kind of
interface, however, has some disadvantages: First of all, the
integration at the network layer prevents the investigation of
network protocols other than IP. The local instantiation of
all network interfaces furthermore limits scalability and can
lead to problems with regard to the routing functionality of
the host operating system. Moreover, the provided interface
does not support any wireless-specific functionality.

A system overcoming the last-mentioned limitation is pre-
sented by Seipold in [28]. It is based on ns-2 and provides
similar network interfaces which support the Linux wireless
extensions. However, it only supports locally executed ap-
plications that are limited to transmitting IP packets.

VirtualMesh [29] is an emulation framework based on OM-

NeT++. Like our wireless network card driver it provides an
integration at the MAC layer and can instantiate emulation
interfaces on both local and remote machines. It also sup-
ports the use of wireless-specific functionality, but provides
its own custom interface for that. Hence, it is required to
modify all software making use of this feature, for example
for tools such as iwconfig or Kismet. By contrast, the wire-
less network card driver of our emulation framework pro-
vides the same interfaces as ordinary wireless network card
drivers and hence allows the evaluation of arbitrary wireless
network software without any changes to the software.

7. CONCLUSION
In this paper we presented a new architecture for the em-

ulation of wireless networks. We employ a custom device
driver that is tightly integrated with the MAC layer of a
wireless network simulation. This way we form an emulation
environment that not only emulates the wireless communi-
cation characteristics, but also the operating system inter-
face. In contrast to other approaches this enables arbitrary
unmodified and even potentially closed-sourced networking
software to be investigated in a fully simulated wireless en-
vironment.

We have presented an in-depth discussion of our 802.11
emulation framework for ns-3 and Linux wireless software
that was designed in accordance to this architecture. From
our evaluation results we conclude that our framework is
well suited for testing and for performance evaluations of
wireless software. As we have shown, our 802.11 emulation
framework is applicable to unmodified networking applica-
tions such as Kismet that make use of the Linux Wireless
extensions. This opens up the possibility to apply wireless
network emulation for the analysis of other software domains
such as ad hoc routing protocols implementing link-layer
awareness or 802.11 localization frameworks. We regard the
validation of our framework for such kinds of use as future
work.

As we believe that our Wi-Fi emulation framework will
be useful for a number of researchers and developers, we
have made the source code1 available to the public. Our
Wi-Fi framework is already integrated with SliceTime [32],
which enables network emulation scenarios that incorporate
network simulations of arbitrary complexity.

Acknowledgements
The authors thank Florian Schmidt, James Gross and Suraj
Prabhakaran for helpful comments and discussions. This
research was partially funded by different DFG grants and
the UMIC excellence cluster, DFG EXC 89.

8. REFERENCES
[1] Ahrenholz, J., Danilov, C., Henderson, T., Kim,

J., and Works, B. Core: A real-time network
emulator. In Proeedings of the IEEE MILCOM
(2008), pp. 1–7.

[2] Atheros. White paper – 802.11 wireless LAN
performance. http://www.atheros.com/whitepapers/
atheros_range_whitepaper.pdf, 4 2003. (accessed
May 23, 2010).

1All source files are available at
http://www.comsys.rwth-aachen.de/research/
projects/slicetime

[3] Avvenuti, M., and Vecchio, A. Application-level
network emulation: the emusocket toolkit. J. Netw.
Comput. Appl. 29 (November 2006), 343–360.

[4] Baldo, N., Requena, M., Nunez, J., Portoles,
M., Nin, J., Dini, P., and Mangues, J. Validation
of the ns-3 IEEE 802.11 model using the EXTREME
testbed. In Proceedings of SIMUTools Conference,
2010 (March 2010).

[5] Barham, P., Dragovic, B., Fraser, K., Hand, S.,
Harris, T., Ho, A., Neugebauer, R., Pratt, I.,
and Warfield, A. Xen and the art of virtualization.
In Proc. SOSP’03 (Bolton Landing, NY, USA, Oct.
2003), ACM.

[6] Barr, R., Haas, Z. J., and van Renesse, R. JiST:
an efficient approach to simulation using virtual
machines. Softw, Pract. Exper 35, 6 (2005), 539–576.

[7] Carneiro, G. Ns-3: Wifi scanning patch.
http://www.nsnam.org/contributed/

ns-3-wifi-scanning.tar.bz2, 2009. accessed Oct 27,
2010.

[8] cfg80211 – Linux Wireless. http://wireless.kernel.
org/en/developers/Documentation/cfg80211.
accessed May 10, 2010.

[9] Chen, F., and Dressler, F. A Simulation Model of
IEEE 802.15.4 in OMNeT++. In 6. GI/ITG KuVS
Fachgespräch Drahtlose Sensornetze, Poster Session
(Aachen, Germany, July 2007), pp. 35–38.

[10] Fall, K. R. Network emulation in the Vint/NS
simulator. In 4th IEEE Symposium on Computers and
Communication (1999).

[11] Giustiniano, D., Bianchi, G., Scalia, L., and
Tinnirello, I. An explanation for unexpected 802.11
outdoor link-level measurement results. In INFOCOM
2008. The 27th Conference on Computer
Communications. IEEE (2008), pp. 2432 –2440.

[12] Jones, R., Choy, K., and Shield, D. Netperf.
[Online] Available http://www.netperf.org

December 21, 2009.

[13] Judd, G., and Steenkiste, P. Repeatable and
realistic wireless experimentation through physical
emulation. ACM SIGCOMM Computer
Communication Review 34, 1 (2004), 63–68.

[14] Kaba, J. T., and Raichle, D. R. Testbed on a
desktop: strategies and techniques to support
multi-hop manet routing protocol development. In
Proceedings of ACM MobiHoc 2001 (New York, NY,
USA, 2001), ACM, pp. 164–172.

[15] Kershaw, M. Kismet wireless network detector and
sniffer. http://www.kismetwireless.net (accessed
Oct.2010).

[16] Koepke, A., Swigulski, M., Wessel, K.,
Willkomm, D., Haneveld, P., Parker, T.,
Visser, O., Lichte, H., and Valentin, S.
Simulating wireless and mobile networks in
OMNeT++: The MiXiM vision. In Proc. SIMUTools
2008 (2008), pp. 1–8.

[17] Krop, T., Bredel, M., Hollick, M., and
Steinmetz, R. JiST/MobNet: combined simulation,
emulation, and real-world testbed for ad hoc networks.
In Proc. WinTECH’07 (New York, NY, USA, 2007),
ACM, pp. 27–34.

[18] Lacage, M. Direct Code Execution with ns-3. Talk
given during the ”Workshop on ns-3”, March 15th,
2010, Malaga, Spain. http://www.nsnam.org/
workshops/wns3-2010/code-execution.pdf, 3 2010.
Accessed Februrary 4, 2011.

[19] Lacage, M., and Henderson, T. Yet another
network simulator. In Proceeding from the 2006
workshop on ns-2: the IP network simulator (2006),
ACM, p. 12.

[20] long Qiu, Q., Chen, J., di Ping, L., fei Zhang,
Q., and zeng Pan, X. LTE/SAE model and its
implementation in ns-2. pp. 299 –303.

[21] McCanne, S., Floyd, S., Fall, K., Varadhan, K.,
et al. Network simulator ns-2, 1997.

[22] Noble, B., Satyanarayanan, M., Nguyen, G.,
and Katz, R. Trace-based mobile network emulation.
In Proc. SIGCOMM’97 (1997), ACM New York, NY,
USA, pp. 51–61.

[23] Ns-3: Wifi models. http://www.nsnam.org/
doxygen-release/group___wifi.html. accessed May
9, 2010.

[24] ns-3 Website. http://www.nsnam.org/ (accessed Oct.
2010.

[25] Papanastasiou, S., Mittag, J., Strom, E. G., and
Hartenstein, H. Bridging the gap between physical
layer emulation and network simulation. pp. 1 –6.

[26] Pužar, M., and Plagemann, T. NEMAN: A
network emulator for mobile ad-hoc networks. Tech.
Rep. 321, Department of Informatics, University of
Oslo, 3 2005.

[27] Sanghani, S., Brown, T., Bhandare, S., and
Doshi, S. EWANT: the emulated wireless ad hoc
network testbed. In Proc. IEEE WCNC 2003 (2003),
pp. 1844–1849.

[28] Seipold, T. Emulation of radio access networks to
facilitate the development of distributed applications.
JOURNAL OF COMMUNICATIONS 3, 1 (2008), 1.

[29] Staub, T., Gantenbein, R., and Braun, T.
VirtualMesh: an emulation framework for wireless
mesh networks in OMNeT++. In Proc. SIMUTools’09
(Brussels, Belgium, 2009), pp. 1–8.

[30] Varga, A., and Hornig, R. An overview of the
OMNeT++ simulation environment. In Proc.
SIMUTools 2008 (Marseille, France, March 2008).

[31] Wehrle, K., Pählke, F., Ritter, H., Müller, D.,
and Bechler, M. Linux Networking Architecture –
Design and Implementation of Networking Protocols in
the Linux Kernel. Prentice-Hall, 5 2004.

[32] Weingaertner, E., Schmidt, F., vom Lehn, H.,
Heer, T., and Wehrle, K. Slicetime: A platform
for scalable and accurate network emulation. In
Proceedings of the 8th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
’11) (3 2011), USENIX.

[33] Wireless Tools for Linux.
http://www.hpl.hp.com/personal/Jean_

Tourrilhes/Linux/Tools.html\#wext. accessed May
10, 2010.

[34] Zhang, Y., and Li, W. An integrated environment
for testing mobile ad-hoc networks. In Proc.
MobiHoc’02 (New York, NY, USA, 2002), ACM,
pp. 104–111.

