
Secure Resolution of End-Host Identifiers
for Mobile Clients

Samu Varjonen∗, Tobias Heer†, Ken Rimey‡, Andrei Gurtov‡§
∗Helsinki Institute for Information Technology HIIT / University of Helsinki

†RWTH Aachen University, Distributed Systems Group
‡Helsinki Institute for Information Technology HIIT / Aalto University

§CWC, University of Oulu

Abstract—Many efforts of the network research community
focus on the introduction of a new identifier to relieve the IP
address from its dual role of end-host identifier and routable
locator. This identifier-locator split introduces a new identifier be-
tween human readable domain names and routable IP addresses.
Mapping between identifiers and locators requires additional
name mapping mechanisms because their relation is not trivial.
Despite its popularity and efficiency, the DNS system is not a
perfect choice for performing this mapping because identifiers
are not hierarchically structured and mappings are frequently
updated by users. In this paper we discuss the features needed
to resolve flat identifiers to locators in a secure manner. In
particular, we focus on the features and the performance that
identifier-locator split protocols require from a mapping system.
To this end, we consider a mapping system for an identifier-
locator split based mobility solution and evaluate its performance.

Index Terms—Identifier-locator split, Name resolution, Host
Identity Protocol, Security, DNS, DHT, OpenDHT

I. INTRODUCTION

In the evolution of the Internet, IP addresses initially served
hosts as their identifiers and their routable locators. Although
this dual role simplified many design decisions in the commu-
nication stack, it has been called into question because it ham-
pers dynamics and flexibility in today’s networks. Identifier-
locator split protocols address this problem by limiting IP
addresses to being pure locators and by introducing a new
identifier above the network layer. This new identifier is often
not routable and serves purely for host identification. With
this split, these protocols support current requirements in the
Internet, including security, mobility, and multihoming.

While the identifier-locator split has clear benefits, it also
introduces its own problems. In addition to the existing
Domain Name System (DNS) mappings, identifiers must be
resolved to one or more locators. Despite the similarity of
both resolution steps, the identifier-locator split introduces re-
quirements that the current name resolution architecture cannot
handle in practice. First, the pattern of the requests changes
from name-to-locator to name-to-identifier and identifier-to-
locator, where the identifier may belong to a flat namespace
and the locator may change frequently. Second, the system
must support fast mapping updates for mobile hosts. Third,
secure user-generated updates must be supported.

The current DNS was designed for an Internet that consisted
of stationary nodes. As such, the DNS was built for frequent

reads and occasional updates. In contrast, mobile hosts need
to update their location in the identifier mapping system
quickly to stay reachable. Such updates pose new challenges
to performance and security since the DNS is mainly an
administered environment in which end hosts typically do not
have direct write access to their DNS records.

In this paper we present an architecture that maps fully qual-
ified domain names (FQDNs) to end-host identifiers (EIDs)
using the DNS, and that maps the EIDs of a host to its routable
locators (RLOCs) using a distributed hash table (DHT). Our
contribution consists of an in-depth analysis of the problem
domain and the design of a secure resolution architecture for
identifiers and locators for mobile users. As a proof of concept,
we present practical experience with an implementation of the
resolution architecture.

The rest of this paper is structured as follows: In Section II
we give a brief introduction to the identifier-locator split, and
in Section III we discuss the problems that a resolution system
has to face. We also offer a general solution to these problems
and highlight its properties. In Section IV we introduce the
details of the resolution system. In Section V we present a
qualitative analysis of the feasibility of our proposal using
the Host Identity Protocol as an example. We also provide
a high level analysis of the processing times in comparison
with the observed processing times of live systems. Section VI
discusses related work and Section VII concludes the paper.

II. INTRODUCTION TO THE IDENTIFIER-LOCATOR SPLIT

Currently discussed identifier-locator split protocols follow
one of two principles: address rewriting, or mapping and
encapsulating. In the address rewriting method, an IPv6 ad-
dress is divided into a front and a back half. The front half
of the IPv6 address represents the locator of the host, and
the back half represents its identity. The Identifier-Locator
Network Protocol (ILNP) [1] is a protocol that implements
the address rewriting method. The deployment of address
rewriting schemes requires major renumbering in the network
and compulsory support for IPv6 because of the insufficient
address length of IPv4. The current Internet is in a transi-
tion phase in which IPv6 connectivity cannot be guaranteed
everywhere yet. This hampers the immediate deployment of
protocols that rely on IPv6.

IEEE GLOBECOM 2011 - Next Generation Networking Symposium

2780



In mapping and encapsulating schemes, additional identi-
fiers are mapped to locators, and packets are encapsulated
so that locators are only used in the packet headers at the
network layer, while higher layers see the identifiers in the
encapsulated packets. Mapping and encapsulating approaches
can be grouped into two categories: network-based and host-
based encapsulation. The Locator/Identifier Separation Proto-
col (LISP) [2] is an example of a network-based approach. The
Host Identity Protocol (HIP) [3] is an example of a host-based
protocol. Mapping and encapsulating-based approaches have
the benefit that they work on top of IPv4 as well as on top of
IPv6. In addition, mapping and encapsulating schemes do not
require changes to the core routing of the Internet. In this paper
we focus on identifier-locator split protocols that implement
the mapping and encapsulating scheme, and more specifically,
on host-based approaches, which use additional identifiers in
and above the transport layer. These approaches show two
distinct requirements that set them apart from other identifier-
locator split protocols: host-based locator updates and support
for flat namespaces.

III. SYSTEM REQUIREMENTS

The introduction of end-host identifiers changes the way
names are resolved at the beginning of a communication
session. With the identifier-locator split, hosts have to resolve
FQDNs to EIDs and EIDs to RLOCs. An essential question
is whether the existing DNS name resolution infrastructure
can cope with this task and how an alternative system should
function. There are four problem areas that a name resolution
structure for locator-identifier split mappings must tackle: a) In
most cases the EIDs are based on a flat and often cryptographic
namespace (e.g., the EID can be the hash of a public key of
an asymmetric key pair identifying the host). It is known that
DNS does not cope well with data that has no hierarchical
structure. b) The architecture has to support user-generated
and user-updated mappings. In the current DNS, names are
mapped to a relevant authority controlling a subspace of the
namespace. In some cases there is no authority for the user
to turn to. For example, in HIP, the identifiers are self-created
by the users, and in most cases the users do not belong to
any organization that grants them modification rights to a
DNS sub-domain, such that they could store and update their
mappings. c) The architecture has to be secure; for example, it
has to prevent attackers from forging identities and mappings
of clients. Additionally, the system must prevent attackers from
flooding the resolution system with bogus mappings to drown
valid mappings. d) Finally, the system has to operate in an
efficient manner.

A. Support for Flat Namespaces
The nature and structure of identifiers depends on the chosen

identifier-locator split protocol. Identifiers can be divided into
two categories. The first category represents human-readable
identifiers at the application layer. Domain names, the most
prominent human-readable identifier, are managed and struc-
tured in a hierarchical way, reflecting the hierarchy prevalent

in the management of networked systems. The second cat-
egory represents binary identifiers that may or may not be
organized in a hierarchical way. These identifiers can consist
of any sequence of bits without taking human readability
into account. In the network community, there is a trend
towards cryptographic identifiers to provide inherent security
when addressing a host or service. An example of such a
cryptographic identifier is HIP’s Host Identity Tag (HIT), a
form of public key fingerprint. Such cryptographic names have
little or no hierarchical structure, making it difficult to assign
the management of the identity to an organization as the DNS
does for human-readable names.

B. Rapid Mapping of User-generated Updates

Using DNS to store all the required mapping information
(domain name, identifier, and locator) would suffice for sta-
tionary nodes under administrative management, but would not
be a good choice for mobile nodes and for users who do not
have modification rights to the DNS. To allow fast mapping
updates for mobile hosts, which need to change their IP
address mapping rapidly to stay reachable, the DNS Resource
Records (RRs) would have to use low time-to-live (TTL)
values, or caching would have to be disallowed. However,
high TTLs and caching are cornerstones of the scalability and
performance of the DNS. Abandoning them for a considerable
proportion of entries would seriously degrade the performance
of the system as a whole.

This paper considers the proposition that mobile nodes with
access to the DNS should use it to map FQDNs to EIDs,
and as the research community has adopted distributed hash
tables (DHT) to handle flat namespaces, the paper furthermore
assumes that EIDs should be resolved using DHTs. DHTs do
not employ hierarchical caching and thus allow for immediate
mapping updates. However, using a DHT results in a higher
communication overhead within the name mapping system
(c.f. Section V).

C. Securing Mapping Updates

The DNS, as a hierarchical and administered name res-
olution system, is widely regarded as secure. Even without
cryptographic protections like DNSsec [4], fraudulent behavior
requires access to the DNS infrastructure itself and is typically
limited to a single compromised sub-domain. Tampering with
DNS entries on a global scale requires considerable effort. In
addition, DNSsec protects the system against spoofing attacks
in which a malicious user tries to forge an answer from the
DNS or tries to claim that the queried name does not exist.

However, as discussed before, the DNS system was not
designed for large amounts of fast user-generated updates.
Besides technical challenges, security issues arise when al-
lowing users to modify the contents of the mapping system.
The name lookup at the beginning of a communication session
is a vulnerable phase. Tampering with it may allow direct
as well as indirect denial-of-service (DoS) attacks (e.g., by
invalidating the locator mapping or by redirecting traffic

2781



addressed to a popular host to a victim). Therefore, the system
must be protected regardless of the resolution system.

We illustrate the arising issues using the example of
OpenDHT1 as a system that allows user-generated updates.
OpenDHT has been proposed as one choice for a collabora-
tively managed DHT [5] (see Section VI for further examples).
OpenDHT is a publicly available DHT service running in
PlanetLab, a world-wide testbed of several hundred servers.
In contrast to other DHT systems, users do not have to run a
local DHT node to be able to access it. OpenDHT does not
require registration to insert and look up data. The open access
philosophy of OpenDHT matches the requirements for global
name resolution well, because requiring each end host to sign
up for a name mapping service hardly matches the principles
of the Internet. Available storage and bandwidth in OpenDHT
are shared among all users [6].

OpenDHT stores one or several values under each key (e.g.,
the EID in a name lookup system). This convention is prone
to flooding and index poisoning attacks [7]. In these attacks
the malicious user stores as much false or random information
under the attacked key as possible, thereby effectively drown-
ing the original value. This allows malicious users to present
seemingly correct information in the DHT. Index poisoning
in an ID-locator mapping service can even be used to mount
distributed DoS attacks against victim hosts. Consider a case in
which a malicious user uploads the victim’s locator under the
identifiers of some popular services. This would redirect the
traffic destined for the services to the victim’s system, thereby
overloading its downlink.

There are two possible solutions for this problem: a) The
DHT is agnostic with respect to the contents it stores and
leaves it to the end host to implement security or b) the
DHT enforces the correctness of mappings and updates to
mappings before accepting them. Solution a) can be achieved
by attaching additional authentication information to the stored
mappings (e.g., digital signatures). EIDs based on a crypto-
graphic namespace (e.g., HITs in HIP) simplify this approach
because each host can use its EID to sign its locator set. Such
signatures would enable a querier to identify the correct value
among a set of forged locators. However, in an index poisoning
attack, it would also mean that the querier would have to verify
the signatures of many returned locators until it identifies a
valid entry among the flood of bogus mappings. In contrast,
in solution b), DHT nodes would verify the authenticity of
the signatures before accepting a new key-value pair. This
method requires replay protection to prevent attackers from
republishing properly signed but outdated locator mappings.

IV. RESOLUTION SYSTEM DESIGN

This section summarizes the previous discussion and pro-
poses a secure name resolution architecture in which clients
map EIDs to locators using a DHT. We assume that the
EIDs are derived from public keys (as HITs in HIP are)

1In May 2009, the maintainer of OpenDHT informed the community that
the service would be discontinued. However, since it was a widely used service
for years, we still use OpenDHT as a practical example of a DHT.

and that hosts can prove the possession of an EID by using
their private keys. We use HIP as an example of a host-
based identifier-locator split protocol because it includes all of
the security features that our proposed architecture requires.
Moreover, we show how the security features of HIP support
the requirements listed in the previous section.

A. General Design

Since the current DNS is sufficient to store the long-lasting
mappings from FQDNs to EIDs and these mappings may be
independent of the locator-split protocol, we treat the first
name resolution step as an orthogonal issue and assume that
appropriate measures are taken to ensure secure operation
(e.g., by employing DNSsec). However, note that the FQDNs
are resolved to EIDs instead of locators.

In the second name resolution step, a DHT is used to map
the EIDs to locators. We assume that the EID (or a value
that can be securely derived from it) is used as the key in the
DHT. The value stored under the key consists of the public key
of the host, its locators, a sequence number, and a signature
created with the private key of the host. The signature and the
sequence number prove to the clients and the DHT nodes that
the locator mapping is authentic.

In the previous section, we noted that DoS and replay
protection measures are needed to protect the DHT. This
requires a challenge-response mechanism for verifying that
the host owns the public-keys related to the EID for which it
updates the locator mapping. If this verification succeeds, the
mapping is stored; otherwise it will be dropped.

B. An Identifier Resolution System For HIP

The Host Identity Protocol [3][8][9] introduces a new
cryptographic namespace between the transport and IP layers.
The namespace is based on public-key cryptography and
consists of so-called Host Identities, which are RSA and DSA
public keys. Using full-length public keys in packet headers
would result in too much overhead and would be incompatible
with unmodified (legacy) applications. For this reason, public
keys in HIP are also represented in a shorter 128-bit (IPv6-
compatible) format, called the Host Identity Tag. HITs can
be used directly with IPv6-enabled applications because of
their size and format. Since HIP uses cryptographic keys
as identifiers, host authentication and the establishment of a
secure channel between HIP hosts is very simple. Moreover,
HIP is designed to be extensible. A modular packet and
parameter concept allows adding new functionality to HIP
easily. HIP parameters are carried in HIP control packets.

In essence, the HIP base exchange (BEX) is a four-way
handshake and key negotiation phase to create an IPsec secu-
rity association between hosts. The BEX verifies that the peers
own the private keys that were used to create their identities.
The BEX also includes puzzle protection against DoS attacks
and other flooding attacks. In our approach, we use the BEX as
the challenge-response mechanism for verifying the ownership
and freshness of the locators to be stored in the DHT.

2782



In order to initiate the BEX, the initiator (the host that
initiates the communication) needs to know the HIT of the
responder (e.g., a server) and a way to map the HIT to an IP
address. Currently HIP offers two different ways to perform
the resolution. In our solution, both of these approaches are
used. Firstly, DNS can be used to store HIP-related identifiers
using HIP Resource Records (HIP RRs) [10] protected by
signatures. This allows for translation of FQDNs to Host
Identities (HIs). The resolver then issues an A query to map
the HIT into the host’s IP addresses. Alternatively, HIP can
utilize the HIP DHT interface [5]. The HIP DHT Resource
Record (HDRR) is a HIP control-packet-like structure used to
store HIP mappings in OpenDHT. It can contain multiple IPv4
and/or IPv6 addresses, and it also contains the Host Identity
(the public key from which the EID was created). The HDRR
is protected by a signature calculated over the HIP packet
header and the included parameters. For our purposes, this
format lacks only a sequence number to prevent replay attacks.
However, due to the modular parameter concept, the sequence
number is easy to add to the HDRR. We can even reuse
the sequence number used in the basic HIP control packets,
because the parameter format for the HDRR is the same as in
HIP control messages.

We use the client authentication in the HIP BEX to prevent
attackers from inserting forged locators for EIDs of other hosts
into the DHT. By requiring a HIP connection between the
client and the DHT node, the client has to prove that it is
uploading mappings for its legitimate host identity – the key
in the DHT. Implementing this authentication check is simple
and can be done through the standard Berkeley Sockets API.
The HIT, as an IPv6-compatible identifier, can be used directly
by any IPv6-capable DHT. The authentication, as well as the
basic DoS protection, are handled on the HIP layer. The only
modification required to the DHT is a test for equality of
the HIT and the key in the put message. The self-certifying
property of the HIT obsoletes further authentication measures
like client certificates or user registration.

Depending on the security architecture of the DHT, a client
should either perform the BEX with a DHT gateway node, or
with the node storing the EID and locator information if the
DHT system cannot be regarded as secure. Such protection
is only possible if the DHT is used exclusively for HIT-to-
locator resolution, because a general-purpose DHT is not able
to guarantee the cryptographic binding between a host and the
updated keys

V. EVALUATION

In this section we study the feasibility of the system by
analyzing our proof-of-concept implementation. Our prototype
uses the Host Identity Protocol as the identifier-locator split
protocol. HIP was chosen because it readily includes crypto-
graphic identifiers that can be used for authentication, a built-
in challenge-response mechanism, and a cryptographic puzzle
mechanism for DoS prevention. We implemented a DHT

TABLE I
COMPUTATIONAL COMPLEXITY OF CRYPTOGRAPHIC OPERATIONS IN HIP.

operations per sec. ms/operation
HMAC(MD5) 42267 0.02
SHA-1 30809 0.03
DSA signature 1887 0.53
DSA verify 1645 0.61
RSA signature 890 1.12
RSA verify 18502 0.05
DH key generation 51 19.64

Interface [5] for the HIP for Linux (HIPL) implementation2

to store the identifier-locator mappings.
Our resolution system does not pose a need for extensive

infrastructure changes. The support for HIP RR and the
DHT nodes can be provided gradually by the willing Internet
operators. Moreover, there is no need for complete end-system
penetration, e.g. clients that do not support HIP do not need
to support our resolution system and their use of the DNS is
not disrupted.

We begin our performance evaluation by analyzing the
number of required cryptographic operations and messages
for inserting a new entry into the DHT based on our HIP-
centric security solution. We focus on the performance of the
resolution system and not on the performance of mobile nodes.
We also provide measurements of the processing times for
the Bamboo DHT3 and for OpenLookup v2,4 to show the
resolution performance of a real system.

A. Feasibility

Performance is a primary concern for a resolution system
that employs online public-key operations. The HIP BEX
is dominated by the processing times for creating and ver-
ifying the public key signatures. Hence, we measured the
performance of these operations to estimate the number of
clients that a server is capable of serving per second. The
cryptographic operations are only relevant for write operations
because reads do not require authentication. Hence, reads will
be drastically faster. Moreover, we do not consider routing
overhead in the DHT in this measurement either. The goal
of the analysis is not to give an accurate estimation of the
expected performance of a world-wide system, but rather to
provide a general impression of the feasibility of using HIP
for securing a DHT system for HIT-to-IP mapping.

We used a quad core Intel Xeon 5130 running at 2 GHz
with 2 GB of main memory to perform the cryptographic
calculations. However, the cryptographic measurements used
only one core. We conducted the cryptography tests with
the OpenSSL 0.9.8g speed test. The results of the tests are
shown in Table I. We used 1024-bit keys because that is the
default size for the RSA and DSA keys in the HIP for Linux
implementation, which we used for latency measurements. For
the hash functions, we used the maximum block size of 8192
bytes.

2HIPL, http://www.infrahip.net
3http://sites.google.com/site/lxpworkroom/bambooipv6version
4http://openlookup.net/

2783

http://sites.google.com/site/lxpworkroom/bambooipv6version
http://openlookup.net/


Based on the information presented in Tables I and II, we
can calculate that it will take circa 20.8 ms to complete the
cryptographic calculations needed in the BEX on the server
side (1 RSA signature, 1 RSA verification, and 1 Diffie-
Hellman key generation). This amounts to 192 key updates
processed by each DHT node per second. Considering a
system comparable to OpenDHT, which consisted of about
150 nodes on average, the system could process about 28,800
updates per second. These estimations show that even a
moderately-sized system can support a substantial number of
mobile devices.

B. Resolution and Update Delay
The resolution and update delay of the system is a crucial

factor for clients because the resolution step precedes every
communication to each host for which the HIT-to-IP mapping
is not known. The update delay determines how long the
locator information in a DHT stays outdated upon a change
of the locator. In our system, read accesses are protected by a
signature in the DHT resource record while write accesses are
protected using HIP between the client and the DHT. Using
HIP prolongs the update process by the time required for
cryptographic processing plus two RTTs for establishing the
HIP association to the gateway or DHT node.

We measured the mean latency of an IPv6-enabled Bam-
boo DHT and OpenLookup v2 to determine the resolution
performance of these systems. OpenLookup v2 implements
the same XML-RPC client interface as the Bamboo DHT,
but it is not strictly speaking a DHT, and it does not share
data with OpenDHT. OpenLookup v2 is an administratively
decentralized system based on full data replication.

Bamboo DHT and OpenLookup v2 were running on the
same hardware as described in Section V-A. We used a laptop
with Intel Core 2, 2 GHz CPU processor with 2 GB of
main memory as the client. All machines involved in our
measurements were located in our local Gigabit network with a
mean round-trip latency of 0.88 ms (std.dev. 0.03 ms). Since
we only modified the lookup and update API, we focus on
the communication between the end host and the resolution
system. For this reason, we made our measurements using a
Bamboo DHT configuration containing just one node. Thus the
results obtained do not reflect the expected total lookup time
of a world-wide deployment requiring routing within the DHT.
A second reason to exclude the DHT lookup times is that these
strongly differ with the number of DHT nodes and their and
technical specifications. Hence, including lookup times would
blur the statements about the interface performance.

Figure 1 shows that OpenLookup v2 performs slightly
better in the lookup operations in comparison to the Bamboo

TABLE II
CRYPTOGRAPHIC AND COMMUNICATION OVERHEAD OF THE HIP BEX.

Verify Sign DH key
PK HMAC PK HMAC Generation # of msgs

Initiator 2 1 1 1 1 2
Responder 1 1 1 1 1 2

HIP Bamboo Put

HIP Bamboo Rm

Openlookup v2 Put

Openlookup v2 Rm

HIP BEX

Bamboo DHT Get

Bamboo DHT IPv6 Get

OpenLookup v2 Get

OpenLookup v2 IPv6 Get

0 10 20 30 40 50 60 70

HIP Bamboo Put

HIP Bamboo Rm

Openlookup v2 Put

Openlookup v2 Rm

HIP BEX

Bamboo DHT Get

Bamboo DHT IPv6 Get

OpenLookup v2 Get

OpenLookup v2 IPv6 Get

0 10 20 30 40 50 60 70

Lo
ok

up
Se

cu
re

d 
Up

da
te

Fig. 1. Latencies of update and get operations (in ms).

DHT. The larger mean values and standard deviations for
the Bamboo DHT are due to an unnecessary periodic delay
caused by the queue management in the iterative lookup
procedure, resulting in an extra delay for a small fraction
of the requests (approx. 10%). Since the shortest latencies
of the Bamboo DHT (IPv4 3.8 ms, IPv6 4.0 ms) match the
shortest lookup times of OpenLookup v2 (IPv4 4.2 ms, IPv6
4.0 ms) we assume that both systems achieve a similar level
of performance under realistic conditions. The measurements
show that the additional delay for the systems is low. However,
these numbers only consider the Interface delay and not
routing within the lookup structure.

The tested systems do not support updates of keys. However,
by deleting a key and re-inserting it with new locator informa-
tion, updates can be achieved. The latency of updating a record
in the system is 116.4 ms (±0.8ms) for OpenLookup v2 and
127.6 ms (±5ms) for the Bamboo DHT. In Figure 1 we also
show the latencies of the HIP BEX in the test environment
and the latencies of a Bamboo DHT utilizing HIP. Utilizing
HIP in the Bamboo DHT and in OpenLookup v2 did not add
latency, other than the 53 ms (±3.3ms) caused by the BEX.
Otherwise, the Bamboo DHT and OpenLookup v2 utilizing
HIP performed as expected from the results in the get case.
As pointed out in the previous section, the main cause of
the delay introduced by HIP is the cryptographic operations
during the BEX. In contrast to our estimation of the additional
cryptographic load on the DHT gateways, the additional delay
of 53 ms in Figure 1 also includes the processing time of the
client, the packet processing, and the network latency. Our
measurement focused on the performance of the gateway and
do not take into account the higher RTTs between the client
and the gateway under realistic conditions. As expected, HIP
introduces a notable delay for updates; however, at the same
time it eliminates the possibility of index poisoning and forged
locator updates, without requiring additional administrative
measures like user registration.

VI. RELATED WORK

Mathy et al. [11] describe how LISP-DHT serves as an
efficient and secure mapping service for the LISP 3 variant.
LISP-DHT requires every autonomous system (AS) to have its
own DHT node to serve identities in the AS. In LISP-DHT,
security is based mainly on the assumption that the architecture
is administered and joining the DHT requires a valid X.509.v3
certificate. To improve efficiency, LISP-DHT proposes the

2784



use of a Stealth DHT, where client nodes may acquire DHT
routing information (but do not take responsibility for any data
segment on the ring). In this way, the stealth nodes can inject
lookups into the system in a more efficient way than by always
directing queries via a gateway node. LISP reduces latencies
by caching and so hinders mobility. Mobility in LISP and its
influence on name resolution are currently under design [12].

In the Node Identity architecture [13], the node identities are
the public keys of public-private key pairs. Name resolution in
the Node Identity architecture uses the DNS to map FQDNs to
EIDs, while EIDs are mapped to locators using a global DHT
shared by all node identity routers. The Node Identity archi-
tecture is similar to LISP in the sense that both are network-
based and need customized routers to work. The security of
the mappings in the architecture is only briefly addressed by
stating that the security is inherited from registration security.
However, the registration security is not discussed in detail.

DHT-MAP [14] proposes a mapping system, useful for LISP
and similar protocols. The difference relative to other solutions
is that EIDs are mapped in the DHT to the address of a server
that handles the resolution to a host’s real RLOC. Mobility
is supported by allowing the mobile host to register with the
resolution server of the access network to which it attaches. In
this way, DHT-MAP avoids triangular routing and the concept
of a home network. Luo et al. [14] state that their approach
may allow EID spoofing attacks, and they suggest a challenge-
response mechanism similar to the mechanisms provided by
HIP.

Baumgart [15] proposes a distributed two-stage name res-
olution service (P2PNS) built on top of a DHT. That paper
presents requirements and solutions similar to ours but does
not discuss mobility. In P2PNS, flooding attacks are hampered
by introducing computational puzzles that have to be solved
before the mappings can be inserted. As an additional feature,
the number of values under a key is restricted. When a key is
queried from P2PNS, it is queried in parallel from all replicas
that have the key and its value. Based on the received values,
the issuer of the query makes a majority decision.

VII. CONCLUSION

In this paper, we presented a discussion about identifier
resolution for identifier-locator split protocols and pointed out
the shortcomings of the current Domain Name System (DNS).
Based on our observations, we described an architecture for
secure identifier-locator mappings based on a distributed hash
table. In particular, we discussed three core problems of name
resolution for host-based identity locator split protocols: a)
support for flat namespaces, b) rapid user-generated updates,
and c) the security of the mappings.

We address these problems by implementing secure key up-
dates based on the cryptographic properties of the identifiers in
the Host Identity Protocol (HIP). Our system works with user-
generated identities and does not require any user management
or the deployment of a global PKI system because it makes use
of the self-certifying identities in HIP. With its identity concept
and IPv6 compatibility, HIP integrates nicely into existing

lookup systems and enhances their security features with DoS
resilience and authenticated locator updates. Our performance
analysis of the HIP-enabled DHT API demonstrates the fea-
sibility of the architecture and indicates that employing HIP
as a security solution provides acceptable performance with
considerably increased security.

REFERENCES

[1] R. Atkinson, “ILNP Concept of Operations: draft-rja-ilnp-intro-03,” Feb.
2010, work in progress.

[2] D. Farinacci, V. Fuller, D. Meyer, and D. Lewis, “Locator/ID Separation
Protocol (LISP): draft-ietf-lisp-06.txt,” Jan. 2010, work in progress.

[3] R. Moskowitz and P. Nikander, “RFC 4423: Host Identity Protocol (HIP)
Architecture,” May 2006.

[4] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose, “Protocol
Modifications for the DNS Security Extensions,” RFC 4035 (Proposed
Standard), Internet Engineering Task Force, March 2005, updated by
RFC 4470. [Online]. Available: http://www.ietf.org/rfc/rfc4035.txt

[5] J. Ahrenholz, “HIP DHT Interface: draft-ahrenholz-hiprg-dht-06,” Nov.
2009, work in progress.

[6] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S. Shenker,
I. Stoica, and H. Yu, “OpenDHT: A Public DHT Service and Its Uses,”
in Proceedings of ACM SIGCOMM 2005, Aug. 2005.

[7] J. Liang, N. Naoumov, and K. Ross, “The index poisoning attack in p2p
file sharing systems,” in INFOCOM. IEEE, 2006.

[8] R. Moskowitz, P. Nikander, P. Jokela, and T. R. Henderson, “RFC 5201:
Host Identity Protocol,” Apr. 2008.

[9] A. Gurtov, Host Identity Protocol (HIP): Towards the Secure Mobile
Internet. Wiley and Sons, 2008.

[10] P. Nikander and J. Laganier, “RFC 5205: Host Identity Protocol (HIP)
Domain Name System (DNS) Extension,” Apr. 2008.

[11] L. Mathy and L. Lannone, “LISP-DHT: Towards a DHT to map
identifiers onto locators,” in Proc. of ACM ReArch 2008, Dec. 2008.

[12] D. Farinacci, V. Fuller, D. Lewis, and D. Meyer, “LISP Mobility
Architecture: draft-meyer-lisp-mn-01,” Feb. 2010, work in progress.

[13] B. Ahlgren, J. Arkko, L. Eggert, and J. Rajahalme, “A node identity
internetworking architecture,” in Proc. of INFOCOM 2006. 25th IEEE
International Conference on Computer Communications., Apr. 2006.

[14] H. Luo, Y. Qin, and H. Zhang, “A DHT-Based Identifier-to-Locator
Mapping Approach for a Scalable Internet,” in IEEE Transactions on
Parallel and Distributed Systems. IEEE Computer Society, Feb. 2009.

[15] I. Baumgart, “P2PNS: A Secure Distributed Name Service for P2PSIP,”
in Proc. of 2008 Sixth Annual IEEE International Conference on
Pervasive Computing and Communications, 2008.

2785

http://www.ietf.org/rfc/rfc4035.txt

	Introduction
	Introduction to the Identifier-locator Split
	System Requirements
	Support for Flat Namespaces
	Rapid Mapping of User-generated Updates
	Securing Mapping Updates

	Resolution System Design
	General Design
	An Identifier Resolution System For HIP

	Evaluation
	Feasibility
	Resolution and Update Delay

	Related Work
	Conclusion
	References

