
Predicting Runtime Performance Bounds of
Expanded Parallel Discrete Event Simulations

Georg Kunz∗, Simon Tenbusch∗, James Gross‡, Klaus Wehrle∗
∗Communication and Distributed Systems, ‡Mobile Network Performance Group

RWTH Aachen University
{kunz,tenbusch,wehrle}@comsys.rwth-aachen.de, gross@umic.rwth-aachen.de

Abstract—Predicting and analyzing runtime performance
characteristics is a vital step in the development process of par-
allel discrete event simulations. For instance, model developers
need to identify and eliminate performance bottlenecks within a
simulation model in order to derive a model structure that aids
parallel execution. Similarly, developers of parallel simulation
frameworks require means of assessing the efficiency of the
framework. In this paper, we present a performance prediction
methodology that computes the best possible performance bound
for expanded parallel discrete event simulations in the context
of our Horizon simulation framework. The methodology builds
upon a linear program which calculates an optimal event execu-
tion schedule for a given simulation and a set of CPUs. In order to
mitigate the complexity of this NP-complete scheduling problem,
we introduce performance optimizations and relaxations of the
linear program.

I. INTRODUCTION

Parallel discrete event simulation [1] can significantly im-
prove the runtime performance of complex simulation models
[2]. However, developing high-performance parallel simulation
frameworks and the corresponding parallel simulation models
is a difficult and complex task. As a result, developers need
performance analysis and prediction tools which provide an
insight into the behavior of parallel simulations throughout
the development and evaluation process.

Model Development Support: Developing a parallel sim-
ulation model is considerably more complex than creating
an equivalent sequential model. Among the key contributing
factors are restrictions of the programming model, e.g., no
global data structures, and the demand for structuring the
model in a way which allows for efficient parallel execution.
Hence, model developers need to analyze the performance of
a model as early as possible in the development process in
order to identify and eliminate performance bottlenecks.

Simulation Setup: Parallel simulation models exhibit a
certain degree of parallelism given by the maximum number
of events that can be processed in parallel. The degree of
parallelism obviously limits the number of CPUs that can
speed up a parallel simulation run. Thus, accurate knowledge
of the degree of parallelism allows maximizing the utilization
of all available CPUs by assigning only as many CPUs to
a simulation run as actually needed and using the remaining
CPUs for additional simulation runs.

Simulation Framework Performance: Parallel simula-
tion frameworks employ specific synchronization and event

scheduling algorithms which have a major influence on sim-
ulation performance. In order to assess the efficiency of a
given synchronization algorithm, framework developers need
to know the optimal event schedule under consideration of
event inter-dependencies and the number of available CPUs.

In this paper, we present a performance prediction method-
ology that calculates the lower bound on the simulation
runtime for our parallel simulation framework Horizon [3].
Given a Horizon-enabled simulation model and an arbitrary
number of CPUs, the performance prediction methodology
finds an optimal event-to-CPU mapping that minimizes the
simulation runtime. This mapping problem is NP-complete
[4], [5] and is thus typically not considered by existing
performance prediction tools [6], [7], [8], [9]. We address this
complexity problem by modeling the parallelization approach
of Horizon as a linear program (LP). As a result, we leave the
actual problem of finding an optimal schedule to the efficient
heuristics and algorithms of modern LP solvers. Moreover,
to further mitigate the complexity problem, we present per-
formance optimizations and relaxations of the linear program.
Our methodology is split in two steps: First, a sequential run of
the simulation model traces the event execution and records
the timestamps and processing times of all events. Second,
we feed this trace to the linear program which calculates an
optimal event schedule that minimizes the overall simulation
runtime. In summary, we make the following contributions:

1) We introduce a methodology for predicting the runtime
performance of a parallel simulation model based on
linear programming.

2) We present a trace splitting scheme that significantly
improves the scalability of our methodology while main-
taining its accuracy. Furthermore, we prove the correct-
ness of this optimization.

3) We discuss relaxations of the linear program which trade
accuracy for scalability.

The remainder of this paper is structured as follows. First,
we introduce the parallelization scheme underlying Horizon
in Section II before conducting a problem analysis in Section
III. Sections IV and V present our performance prediction
methodology and corresponding performance optimizations,
followed by an evaluation in VI. In Section VII, we discus
the properties of our scheme before finally discussing related
efforts in Section VIII and concluding in Section IX.

e2:encode_packet e3:send_packet

t [simulated time]

e1:index_data

Fig. 1. The expanded events e1 and e2 cannot depend on each other due
to their temporal overlapping and can thus be executed in parallel. e3 must
follow sequentially since it might depend on e1 or e2.

II. BACKGROUND

This section briefly introduces the fundamentals of our
simulation framework Horizon and its underlying paralleliza-
tion scheme. Horizon enables a parallel execution of network
simulation models by means of two properties: i) It intro-
duces a modeling paradigm that extends discrete events with
durations to explicitly and naturally model delays in discrete
event simulation. ii) It defines a parallelization scheme that
exploits the given event durations to determine independent
events for a safe parallel execution. As the latter of the
both properties indicates, Horizon employs a conservative
parallelization scheme [1]. The primary challenge in those
schemes is the identification of independent events that do not
influence each other during parallel execution. Those events
allow for a parallel execution while dependent events require
a sequential execution with respect to each other.

Figure 1 shows a simple example that illustrates how Hori-
zon utilizes event durations to identify independent events. The
figure shows three expanded events e1, e2 and e3 representing
a “packet encoding”, a “packet sending”, and a “data indexing”
process. We observe that in the particular timing chosen for
this example, e1 and e2 overlap in simulated time1 while e3
follows after the end of e2. The overlapping implies that e2
cannot depend on any results generated by e1 because e2
already begins while e1 is still processing, i.e., its results
are not yet available. Consequently, we conclude that both
events are independent and can thus be processed in parallel.
However, we cannot conclude whether or not e3 is independent
of the other two events since it begins after the earlier events
finished. In this example, it is indeed dependent on e2 which
calculates the encoded packet that is sent by e3. We base this
modeling paradigm on pioneering works by Lubachevsky [10]
and Fujimoto [11].

Horizon employs a centralized event scheduling architecture
specifically designed for multiprocessor systems. In contrast
to related parallelization frameworks [12], [13], Horizon re-
tains a centralized event scheduler and a single event queue
(future event set, FES). Similarly to sequential simulators,
the scheduler continuously removes the first event from the
event queue, but then analyzes its overlapping with respect to
previously executed events and finally offloads it to a worker
thread for parallel execution. We demonstrated the viability of
our approach in previous work [3].

1We denote the virtual time within the simulation as “simulated time” in
contrast to “simulation time” which represents the runtime of the simulation
in “wall-clock time”.

III. THE NEED FOR PERFORMANCE PREDICTION

Parallel discrete event simulations can significantly reduce
simulation runtimes [12], [14], [15], [16]. However, parallel
simulations are not generally used in the research community.
We accredit this to the fact that development and handling
is noticeably more complex for parallel simulations than for
sequential ones. Hence, we believe that simulation model
developers need specific tools which support the develop-
ment process of parallel simulations in order to foster their
wide spread use. Before introducing our performance analysis
methodology in detail, we first illustrate the demand for
performance prediction tools in the development process of
parallel simulations. We then discuss the challenges of finding
an optimal event schedule.

Model Development Support: The structure of a simu-
lation model has a significant impact on its parallel runtime
performance. For instance, in order to make use of parallel exe-
cution, a simulation model needs to be partitioned in relatively
independent sub-parts. The key challenge of this process lies
in finding a partitioning which allows for a maximum degree
of parallelism and hence an adequate utilization of the CPUs.
Thus, simulation model developers need means of analyzing
the runtime behavior of a given model in order to i) understand
why a model exhibits a performance bottleneck and ii) derive
optimizations of the model structure to improve its parallel
performance.

Simulation Setup: A given parallel simulation model
exhibits a certain degree of internal parallelism, i.e., the maxi-
mum number of tasks that can be executed in parallel at a given
point in simulated time. Obviously, the degree of parallelism
constitutes an upper bound on the useful number of CPUs:
Increasing the number of CPUs beyond this threshold results
in the surplus CPUs being idle at any point in simulation
time. Accurate knowledge of this number of CPUs, however,
is imperative to maximize the utilization of all CPUs available
to the model developer. This involves primarily reserving the
right number of CPUs to each instance of a parallel simulation
in order to maximize the number of concurrent simulation
instances. The latter is particularly important when conducting
large numbers of independent simulation runs, e.g., as part of a
parameter study or to obtain results with statistical confidence.

Simulation Framework Performance: Parallel simulation
frameworks naturally put a special focus on efficient event
handling to achieve maximum runtime performance. Hence,
it is important to determine the overhead of the simulation
framework to assess the potential for performance improve-
ments. Similarly, developers require a means of measuring and
comparing the effectiveness of event scheduling algorithms. In
the case of Horizon for instance, given a set of independent
events the event scheduler can employ different offloading
strategies such as earliest deadline first (EDF). In order to
determine the efficiency of a scheduling strategy and compare
different strategies against each other, a global lower bound
on the absolute minimum runtime is needed.

Our goal is to design a performance prediction tool that
provides model developers with an optimal event schedule

that minimizes the simulation runtime on a given set of
CPUs. To this end, the prediction tool needs to precisely
reflect the parallelization approach of Horizon in order to
calculate a valid schedule. Specifically, it must respect event
dependencies, partitioning related scheduling restrictions, and
the available processing resources. This mapping problem is a
special case of the NP-complete parallel machine scheduling
problem [4], [5]: Given l (identical) machines and n different
jobs, each with processing times pj , the task is to assign each
job to a machine, such that the maximum of the completion
times cj of the events is minimal: minimizemaxj∈{1...n} cj .
In our variant of the scheduling problem, the goal is to
assign a number of expanded events with corresponding event
durations to a set of CPUs such that the simulation runtime
is minimal. Furthermore, we have to ensure a valid event
ordering, i.e., only overlapping events may be executed in
parallel while non-overlapping events have to be handled in
the order of their starting times. Hence, in contrast to the
classic parallel machine scheduling problem our optimization
problem has to consider two time domains per event: i) the
simulated time which defines (in-)dependencies among events
and ii) the simulation time which specifies the utilization of
processing resources. The solution of this scheduling problem
yields an upper bound on the speedup one can expect when
executing the given model on l CPUs compared to sequential
execution. This bound is tighter and more specific to the
model than the trivial linear speedup bound which predicts
an l-fold speedup when utilizing l CPUs. It is important
to note that the resulting minimal runtime is a bound for
conservative synchronization strategies only. An optimistic
strategy may successfully parallelize events that do not overlap
and therefore achieve an even better performance [17], [18].

IV. PERFORMANCE PREDICTION METHODOLOGY

In this section, we introduce the general concept of our
performance prediction methodology and present the formal
definition of the linear program. Deriving an optimal event
schedule is a two-stage process: The first step involves ex-
ecuting a given simulation model sequentially while tracing
runtime performance information. In a second step, the linear
program takes this information as input and subsequently
calculates an optimal event schedule.

A. Tracing Simulation Runtime Data

In order to calculate an optimal event schedule, the linear
program requires detailed knowledge of the runtime behavior
of a parallel simulation. To this end, the simulation framework
collects the following information for each event during a
sequential simulation run:
• the event ID,
• the starting time in simulated time,
• the completion time in simulated time,
• the processing time in simulation time, and
• the ID of the module2 in which the event is executed.
While the purpose of the event ID and the processing time is

straightforward, the starting and completion times are used to

determine event dependencies according to the “overlapping”-
property of expanded events. Furthermore, to ensure data
consistency within the simulation model, Horizon permits only
one active worker thread per module at a time. Hence, the
module ID is required to distinguish truly independent events
from those which need to be executed sequentially on the same
module.

Due to the centralized architecture of Horizon, the event
scheduler can easily extract this information at runtime and
periodically write them to a trace file on disk. Still, special
care needs to be taken to prevent undesired side effects of
the tracing process on the accuracy of the measurements such
as overestimated event processing times due to an increased
event handling overhead.

B. Problem Definition

In this section we give a formal definition of the event
scheduling problem at hand. First, we define the input parame-
ters and introduce the notation used in following sections. We
then characterize a valid solution of the scheduling problem
and analyze its properties.

Definition 1: The input of an event scheduling problem is a
6-tuple (E,C, p, s, f,m) where:
• E = {e1 . . . en} ⊂ N represents the set of events.
• C = {c1 . . . cl} ⊂ N represents the set of CPUs.
• p : E → R+, e 7→ Event processing time of e.
• s : E → R+, e 7→ Starting time of e.
• f : E → R+, e 7→ Completion time of e.
• m : E → N, e 7→ Module-ID of e.

We assume without loss of generality that events are ordered
with respect to increasing starting times: For d, e ∈ E with
d < e it holds s(d) ≤ s(e). Further, two events d, e ∈ E
overlap iff

s(d) ≤ s(e) ∧ s(e) ≤ f(d) or s(e) ≤ s(d) ∧ s(d) ≤ f(e)

In the following, we denote two overlapping events d and
e with d ‖ e. Finally, it is important to note that f(e) − s(e)
is the duration of event e in simulated time which is not to
be confused with the processing time p(e) of e in simulation
time. The event duration specifies the interval an event spans
in the simulation whereas the processing time is the wall-clock
time it takes to compute the event on a CPU.

After defining the input of the scheduling problem, we can
now specify its output. The solution to a given input of the
scheduling problem is a schedule which i) assigns events to
CPUs, and ii) derives a valid ordering of events for each of
the CPUs. We formally define a schedule as follows:

Definition 2: For an input (E,C, p, s, f,m) a schedule S is
a tuple of mappings (x, y) where:

2An OMNeT++/Horizon simulation model is composed of modules which
implement the actual model logic. In Horizon, modules are similar to the
concept of logical processes in classic parallel discrete event simulation since
they communicate only by sending messages and maintain a local state.

• x : E → C, e 7→ c.
x(e) assigns event e to CPU c for execution.

• y : E → R+, e 7→ t.
y(e) denotes the point t in simulation time at which the
execution of e starts on the CPU assigned by x(e).

Furthermore, we define a feasible schedule as follows:

Definition 3: For an input (E,C, p, s, f,m) a schedule S =
(x, y) is feasible iff:

a) For all d, e ∈ E with x(d) = x(e) or m(d) = m(e):

y(d) ≥ y(e) + p(e) or y(e) ≥ y(d) + p(d)

“Events mapped to the same CPU and events of the same
module are processed sequentially.”

b) For all d, e ∈ E with f(d) < s(e):

y(d) + p(d) ≤ y(e)

“Non-overlapping events are processed sequentially.”

A trivial feasible schedule assigns all events to a single
CPU for sequential processing according to increasing starting
times. Our goal, however, is to find an optimal feasible sched-
ule that minimizes the simulation runtime under consideration
of multiple CPUs. Hence, we define an optimal schedule as
follows:

Definition 4: For an input (E,C, p, s, f,m) a schedule S =
(x, y) is optimal iff:

a) S is feasible
b) For all feasible schedules S ′ = (x′, y′):

R := max
e∈E

(y(e) + p(e)) ≤ max
e′∈E

(y′(e′) + p(e′))

Definition 4 states that an optimal schedule is feasible and
its overall runtime R is less than or equal to the runtime of
any other feasible schedule for the given input.

C. Linear Program Formulation

We now formulate a linear program that takes an input
(E,C, p, s, f,m) and computes an optimal schedule S for that
input. In order to model the schedule S = (x, y), we define
three sets of variables:
• xe,c ∈ {0, 1}, e ∈ E, c ∈ C, with xe,c = 1 if event e is

assigned to CPU c and xe,c = 0 otherwise.
• ye ∈ R+, e ∈ E, representing the starting time of the

execution of event e in simulation time.
• zd,e ∈ {0, 1}, d, e ∈ E, d < e, d ‖ e, with zd,e = 1 if the

execution of event d starts before event e in simulation
time and zd,e = 0 if the execution of e starts before d.

Additionally, we define the variable R which holds the total
runtime of the schedule. Furthermore, M is a large positive
constant. Based on these variables, the linear program is
defined as follows:

Objective function:
minimize R

subject to the following constraints:

∀e ∈ E: ∑
c∈C

xe,c = 1 (1)

ye + p(e) ≤ R (2)

∀c ∈ C, ∀d, e ∈ E with d < e and d ‖ e and m(d) 6= m(e):

ye − yd + (1− zd,e) ·M ≥ (xd,c + xe,c − 1) · p(d) (3)
yd − ye + zd,e ·M ≥ (xd,c + xe,c − 1) · p(e) (4)

∀c ∈ C, ∀d, e ∈ E with d < e and d ‖ e and m(d) = m(e):

ye − yd + (1− zd,e) ·M ≥ p(d) (5)
yd − ye + zd,e ·M ≥ p(e) (6)

∀d, e ∈ E with f(d) < s(e):

yd + p(d) ≤ ye (7)

Constraint 1 ensures that each event is assigned to exactly
one CPU. Additionally, Constraint 2 guarantees that R is an
upper bound on the runtime of the schedule. Constraints 3
to 6 enforce the first condition of a feasible schedule: When
two events are mapped to the same CPU, they are executed
sequentially with the order depending on the value of zd,e
(Constraints 3 and 4). Furthermore, events on the same module
are executed sequentially, again with the order depending on
the value of zd,e (Constraints 5 and 6). Finally, Constraint 7
models the second condition for feasibility: Events that do
not overlap are executed sequentially. In combination with
the minimization goal of the objective function, the aforemen-
tioned constraints enforce the optimality of the schedule. The
values of xe,c and ye in the optimal solution define the optimal
schedule S = (x, y) in the canonic way: y(e) := ye, x(e) := c
if xe,c = 1.

V. SCALABILITY IMPROVEMENTS

Since solving this NP-complete scheduling problem is hard,
we rely on the heuristics and algorithms [19] of modern LP
solvers which still allow for computing a (nearly) optimal solu-
tion in a reasonable amount of time. However, for large inputs,
the scheduling problem becomes computationally intractable.
In this section, we present approaches to counteract the
scalability problem with and without sacrificing the accuracy
of the results.

A. Splitting Schedules

The first approach towards increasing the scalability of
the performance prediction methodology aims at reducing the
input size of the linear program while at the same time retain-
ing the correctness of the resulting schedule. It bases on the
observation that in general the sequence of expanded events
contains regions of non-overlapping events (see Figure 2).
Since the conservative synchronization algorithm of Horizon

executes only safe, i.e., overlapping, events in parallel, the
event scheduler blocks until all events preceding the non-
overlapping region have been processed. Hence, these regions
act as natural synchronization points in the parallel simulation.
It thus suffices to compute an optimal schedule for the event
sequence preceding the synchronization point and the event
sequence succeeding it. We exploit this property by dividing
the full event trace into a set of significantly smaller sub-
traces before feeding those to the linear program. We then
iteratively reconstruct a valid schedule for the full trace from
the set of sub-schedules. Specifically, the total runtime is given
by the sum of the runtimes calculated for each sub-trace. In
the following, we prove that the combined schedule is indeed
an optimal schedule for the full scheduling problem. To this
end, we first define the notion of a split.
Definition 5: For an input (E,C, p, s, f,m) the tuple (E1, E2)
is called a split of E = {e1 . . . en} if the following holds:

a) E1 = {e1 . . . ei} and E2 = {ei+1 . . . en} for some i with
1 ≤ i < n

b) For all d ∈ E1 and e ∈ E2 : f(d) < s(e)

Based on this definition, we now formulate the central
theorem.
Theorem 1: Given an input (E,C, p, s, f,m), with a split
(E1, E2) of E and optimal schedules Sj = (xj , yj) on
(Ej , C, p|Ej , s|Ej , f |Ej ,m|Ej), j ∈ {1, 2}, then, S = (x, y)
with

x(e) := xj(e) for e ∈ Ej

y(e) :=

{
y1(e) for e ∈ E1

max
d∈E1

y1(d) + p(d) + y2(e) for e ∈ E2

is an optimal schedule on (E,C, p, s, f,m).

By iterated application of this theorem, we can compose an
optimal schedule for the entire trace from the individual splits.
In order to prove the optimality of the combined schedule, we
first need to show its feasibility.
Lemma 1: Given an input (E,C, p, s, f,m), with a split
(E1, E2) of E and feasible schedules Sj = (xj , yj)
on (Ej , C, p|Ej

, s|Ej
, f |Ej

,m|Ej
), j ∈ {1, 2}, then S =

(x, y) as defined in Theorem 1 is a feasible schedule for
(E,C, p, s, f,m).

Proof: We prove the two conditions of feasibility for the
combined schedule S.
Definition 3 a): For d, e ∈ E, let x(d) = x(e) or m(d) =
m(e). Since S1 and S2 are feasible, the cases d, e ∈ E1 and
d, e ∈ E2 are fulfilled by definition. Hence, we only have to
consider d ∈ E1, e ∈ E2:

y(d) + p(d) = y1(d) + p(d)

≤ max
e′∈E1

y1(e
′) + p(e′)

≤ max
e′∈E1

y1(e
′) + p(e′) + y2(e)

= y(e). (*)

e2 e4 e9e6 e7

E1 E2 E3

t [simulated time]

e1 e3 e5 e8

Fig. 2. The sequence of expanded events in a simulation might contain
regions of non-overlapping events which allow for splitting the event trace.

Definition 3 b): Again, we only have to consider d ∈ E1, e ∈
E2 since S1 and S2 are feasible. Because (E1, E2) is a split of
E, it follows f(d) < s(e). Finally, from (*) follows Definition
3 b).

We can now prove Theorem 1:
Proof: We show that the combined schedule S fulfills the

two conditions of optimality.
Definition 4 a): Follows directly from Lemma 1.
Definition 4 b): The runtime of the combined schedule is

R = max
e∈E

y(e) + p(e)

(*)
= max

e∈E2

y(e) + p(e)

= max
e∈E2

max
d∈E1

y1(d) + p(d) + y2(e) + p(e)

=

(
max
d∈E1

y1(d) + p(d)

)
+

(
max
e∈E2

y2(e) + p(e)

)
= R1 +R2

Proof by contradiction: Assume there exists a feasible schedule
S ′ = (x′, y′) with R′ = maxe∈E y′(e) + p(e) < R. Because
S ′ has to first compute all events from E1 before starting to
compute events from E2 (or else S ′ would not be feasible
(Definition 3 b)), it takes at least R1 to finish the computation
of E1 since S1 is optimal. After that, S ′ needs at least R2

to finish the computation of E2 since S2 is optimal as well.
Therefore, it follows R′ ≥ R1 +R2 = R. Contradiction.

B. Eliminating Events with Insignificant Processing Times

A further approach towards reducing the input size of the
linear program focuses on eliminating events of very low
computational complexity from the event trace. It bases on
the observation that the event processing times in a simulation
model may span several orders of magnitude [3]. As a result,
long running events can completely dominate short running
events in terms of the total simulation runtime. We conclude
from this that events with very short processing times have
only a marginal impact on the overall simulation runtime while
at the same time contributing equally to the complexity of the
linear program.

By carefully eliminating all events below a given runtime
threshold from the event trace, the complexity of solving the
linear program decreases while the error introduced to the
solution remains within certain bounds. The maximum error of
the lower bound is easily derivable from the total runtime of all
dropped events D, the number of CPUs |C|, and the calculated
total runtime R. When events with a total runtime of D are
dropped from the trace, R + 1

|C| · D is a lower bound even

ta
nd
em
s

serversswitches

Fig. 3. Structure of the closed queueing network utilized in the evaluation.
The servers continuously process and forward incoming tasks. Each switch
distributes incoming tasks randomly to the tandem queues.

when the dropped events can be equally distributed across all
available CPUs. The maximum error in this case is |C|−1|C| ·D
if the events instead need to be computed sequentially.

C. Relaxations

In addition to reducing the input size of the linear program,
its scalability can also be improved by relaxing constraints at
the price of less accurate runtime bounds. In the following,
we discuss two different relaxations.

1) Relaxed CPU Load Limit: Replace Constraints 3 and 4
with a less strict formulation:

∀c ∈ C :
∑
e∈E

(xe,c · p(e)) ≤ R

“The sum of the processing times of all events assigned to
CPU c is bounded by the overall runtime R.”

In contrast to requiring that a CPU must not be overloaded
at any point in time, i.e., handling not more than one event,
the relaxed constraint only specifies that a CPU must not be
overloaded on average over the entire runtime R. This intro-
duces an interesting side effect in combination with the trace
splitting scheme. When applying the relaxed linear program to
a split trace, the average load assignment is enforced on each
sub-trace instead of the entire trace. As a result, R becomes
more precise with an increasing number of splits. In terms of
complexity, the relaxation defines only one constraint for each
CPU instead of one for each pair of overlapping events and
each CPU. It thus considerably reduces the size of the linear
program while still retaining a reasonable lower bound on the
overall simulation runtime.

2) No CPU Scheduling: Remove Constraints 1, 3 and 4
from the linear program.

This relaxation does not consider the workload of CPUs
anymore, but focuses on event dependencies only. Thus, the
predicted simulation runtime is a lower bound on the sim-
ulation runtime with an infinite number of CPUs. It hence
provides information on the degree of parallelism within
the model. From this information, one can easily derive the
maximum possible speedup factor and an upper bound on the
number of useful CPUs.

Concluding, by means of trace splitting, event dropping, and
by carefully applying relaxations, the complexity of the linear

program reduces significantly- We evaluate the exact impact
of the aforementioned techniques in Section VI.

VI. EVALUATION
In the following sections, we evaluate the accuracy, com-

plexity, and performance of the runtime prediction scheme and
its optimizations. To this end, we first introduce the evaluation
methodology before presenting the actual evaluation results.
A. Methodology

1) Evaluation Model: We base the evaluation of our per-
formance prediction methodology on a model of a closed
queueing network as depicted in Figure 3. The network
consists of 10 tandem queues – each composed of a chain of 7
servers and a switch. Initially, each server creates a task with
a time-to-live (ttl) value of 23 and sends it to its neighboring
server. Subsequently, the servers continuously process incom-
ing tasks according to an exponentially distributed service time
(mean 0.1s), decrement the ttl of the task, and forward the
task again. Once the ttl of a task reaches 0, it is discarded.
Furthermore, a switch dispatches incoming tasks to one of
the tandem queues in a uniformly distributed manner. For
simplicity, the links in the network exhibit a static delay of
1.5s. In order to confront the linear program with a wide range
of event processing times, handling a task involves a dummy
computation of uniformly distributed length (0s – 0.3s).

2) Implementation and Setup: We utilize an extended im-
plementation of Horizon which builds upon OMNeT++ 3.3
[20]. The modifications of Horizon mainly target the central
event scheduler and comprise the necessary functionality to
create an event trace during sequential execution. The linear
program is implemented using Zimpl v3.1.0 (Zuse Institute
Mathematical Programming Language) [21]. The Zimpl com-
piler translates the linear program and a given event trace into
a format suitable for the IBM ILOG CPLEX v12.2 LP solver
used in this evaluation. All measurements were conducted on
a 6-core AMD Opteron 2431 CPU using 32GB of RAM.

B. Accuracy
We assess the prediction accuracy of the linear program and

its relaxations by comparing the estimated runtimes against
measurements of the actual simulation runtimes. To this end,
we first establish ground truth by executing the evaluation
model in parallel on different numbers of CPUs, ranging from
2 up to 6. Since we are only interested in analyzing the
parallel runtime performance, we omit the case of sequential
execution on 1 CPU. For each number of CPUs, we then
apply the linear program, Relaxation 1, and Relaxation 2
to an event trace previously collected during a sequential
simulation run. For simplicity, the event trace only includes the
pure processing time of each event, not considering the event
handling overhead of the simulation framework. Furthermore,
because of the regular behavior of the simulation model, we
don’t expect changes in the runtime behavior of the simulation.
Hence, we restrict the ttl of each task to 23 which results in
a relatively short trace of about 1600 events. For all three
versions of the linear program, the LP solver computes a
solution within at least 0.1% optimality.

2 3 4 5 6
Number of CPUs

70

80

90

100

110

120

130
Es

tim
at

ed
 S

im
ul

at
io

n
Ru

nt
im

e
[s

]
Horizon
Optimal LP
Relaxation 1, split trace
Relaxation 1
Relaxation 2

Fig. 4. Predicted simulation runtimes of the linear program and its relaxations
in comparison to the actual runtime of Horizon. We only focus on parallel
runtime performance and hence omit sequential execution on 1 CPU.

Figure 4 illustrates the measured runtimes of Horizon in
comparison to the runtimes predicted by the linear program
and its relaxations. We observe that the runtimes of Horizon
clearly exceed the predicted runtimes. Since the event trace
considers only pure event processing times, this difference
in performance may be caused either by the event handling
overhead of the simulation framework or a sub-optimal event
schedule. However, we argue that the event handling overhead
is negligible in comparison to the processing times which
average around 0.15s. Hence, we conclude that the event
scheduling algorithm of Horizon does not achieve an optimal
event schedule. We identify two primary reasons for this result:
i) The event scheduler of Horizon has no global knowledge as
opposed to the linear program which computes an optimal
schedule for the whole event trace. In particular, at any
point in time in the simulation, the event scheduler can only
incorporate those events in its scheduling decision which are
in the future event set of the simulation. ii) In its current
implementation, the event scheduler only examines the first
event of the future event at any time during the simulation.
Instead, it may achieve a better performance by analyzing sets
of overlapping events in order to increase its knowledge.

As expected, both relaxations compute runtime bounds
which deviate from the optimal schedule. Since these relax-
ations allow overloading of CPUs (Relaxation 1) or do not
at all take CPUs into account (Relaxation 2), the resulting
runtime bounds are too low. However, as pointed out in
Section V-C, Relaxation 1 increases in accuracy when used
in conjunction with our splitting scheme. Figure 4 indicates
that in the evaluation scenario at hand, it indeed achieves better
results which are closer to the optimal schedule when applied
to split traces. Finally, because the solution of Relaxation
2 is independent of the number of CPUs, it only provides
information on the maximum degree of parallelism in the
simulation under investigation.

The charts in Figure 5 compare the optimal schedule against
the one used by Horizon for executing the first 24 events of the

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Simulation Time (wall clock time)

CPU 1
CPU 2
CPU 3

(a) Schedule used by the scheduler of Horizon.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Simulation Time (wall clock time)

CPU 1
CPU 2
CPU 3

(b) Optimal schedule.

Fig. 5. Comparison of the schedule used by Horizon with an optimal schedule
for the first 24 events of the evaluation trace.

200 400 600 800 1000 1200 1400 1600
Number of events per trace

0

5

10

15

20

Nu
m

be
r o

f s
pl

its
 p

er
 tr

ac
e

Number of splits per trace

Fig. 6. Number of splits generated from input traces of specific length. The
regular behavior of the queueing network allows for evenly distributed splits.

simulation. Besides a shorter overall runtime of the optimal
schedule, we observe that the highlighted event blocks the
following events. Given this information, developers can now
analyze this event with respect to its interdependencies and its
runtime demand in order to optimize parallel performance.

C. Scalability
In the following, we evaluate the performance improvements

achieved by the trace splitting scheme and the relaxations of
the linear program.

1) Input Complexity: The primary goal of the trace splitting
scheme is to reduce the input size of the LP-solver by dividing
the full scheduling problem into a set of sub-problems. We
measure the input size of the LP-solver in terms of the number
of constraints and the number of variables. As described in
Section VI-A2, we use Zimpl to specify the linear program
and compile it into an lp-file which CPLEX accepts as input.
During the compilation process, Zimpl reads the input trace
and generates separate constraints for all events that match
a constraint in the Zimpl-specification. For instance, for two
overlapping events e and f in the input trace, Zimpl creates
a set of specific constraints in the lp-file according to all
constraints in the Zimpl-specification that match overlapping
events. Hence, the number of constrains in the resulting lp-file
is dependent on the input data and is thus a direct measure of
the input complexity of CPLEX. Our evaluation bases on event
traces ranging from 200 to 1600 events and a fixed number of 5
CPUs for the scheduling problem. Due to the regular structure
of the queueing network model, the traces are evenly splittable
into sub-traces as illustrated in Figure 6. Please note that in
the following, results regarding split traces always refer to the
sum over all splits.

200 400 600 800 1000 1200 1400 1600
Number of events per trace

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

To
ta

l n
um

be
r

of
 c

on
st

ra
in

ts
1e6

Split trace
Full trace

(a) Number of constraints in the linear program after running Zimpl.

200 400 600 800 1000 1200 1400 1600
Number of events per trace

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

To
ta

l n
um

be
r

of
 v

ar
ia

bl
es 1e4

Split trace
Full trace

(b) Number of variables in the linear program after running Zimpl.

Fig. 7. Size of the linear program in terms of the number of constraints and the number of variables after running Zimpl on full and split input traces of
varying length. The number of CPUs in the scheduling problem is fixed to 5. Results for split traces are the sum over all sub-traces.

Figure 7(a) shows the total number of constraints in the
resulting lp-files. It clearly illustrates that the number of
constraints increases polynomially for full inputs as opposed
to a roughly linear growth for split inputs. In general, the
number of constraints in the lp-files is polynomial with respect
to the input size due to constraints which quantify over all
combinations of events and CPUs, such as Constraints 3-7.
However, the small and equal size of the splits prevents this
polynomial characteristic from gaining considerable impact
per split. Instead, the splitting scheme effectively transforms
the polynomial growth into a linear growth over the number
of splits. In contrast, Figure 7(b) indicates that splitting has
no influence on the number of variables in the lp-files. The
reason for this behavior is that variables are tied to events and
CPUs which remain constant over the sum of all splits (see
Def. 5).

2) Runtime: We analyze the performance improvements
of the splitting scheme and the relaxations by investigating
the runtime of the performance prediction scheme. Since our
implementation builds upon Zimpl and CPLEX, the total
runtime of the prediction scheme is the sum of the runtimes of
both tools. We measure the runtime of Zimpl by means of the
tool time while CPLEX itself provides detailed information
on the time to solve a given problem. Furthermore, we restrict
CPLEX to single threaded execution.

The combined Figures 8 illustrate the runtimes of CPLEX
and Zimpl for the linear program, Relaxation 1 (both with and
without splitting), and Relaxation 2 for traces ranging from
200 to 1600 events. Specifically, Figure 8(a) focuses on the
runtimes of Zimpl. For full event traces, the runtimes for the
linear program and its relaxations increase polynomially. This
is in line with the results of the previous section which show
a polynomial growth in the number of generated constraints.
In contrast, the runtimes grow roughly linearly for split inputs
due to the relatively equal size of the sub-traces. The next
two Figures depict the runtimes of CPLEX. As shown in
Figure 8(b), the runtimes of CPLEX for solving the linear
program dwarf the time demand of all other schemes. This
exponential growth confirms the computational complexity
of the scheduling problem. In fact, the scheduling problem
becomes computationally intractable for our purposes when
the input exceeds 600 events. Hence, we do not present results
for the linear program and such traces.

To allow for a more detailed analysis of the remaining

200 400 600 800 1000 1200 1400 1600
Number of events per trace

0

50

100

150

200

250

Ru
nt

im
e

of
 Z

im
pl

 [s
]

Optimal LP
Relaxation 1
Relaxation 2
Optimal LP, split
Relaxation 1, split

(a) Runtimes of Zimpl.

200 400 600 800 1000 1200 1400 1600
Number of events per trace

0

2000

4000

6000

8000

10000

Ru
nt

im
e

of
 C

pl
ex

 [s
]

>25200 s

Optimal LP
Relaxation 1
Relaxation 2
Optimal LP, split
Relaxation 1, split

(b) Runtimes of CPLEX including the optimal linear program.

200 400 600 800 1000 1200 1400 1600
Number of events per trace

0
100
200
300
400
500
600
700
800
900

Ru
nt

im
e

of
 C

pl
ex

 [s
]

Relaxation 1
Relaxation 2
Optimal LP, split
Relaxation 1, split

(c) Runtimes of CPLEX without the runtimes of the optimal linear program.

Fig. 8. Runtimes of the performance prediction schemes for traces of specific
length. The runtimes of CPLEX for the linear program without splitting for
are omitted for trace of more than 600 events due to excessive runtimes.

schemes, Figure 8(c) zooms in on their runtimes. The runtimes
of Relaxation 1 and 2 follow a similarly shaped slow poly-
nomial growth. Thus, these relaxed scheduling problems are
indeed of significantly reduced complexity in comparison to
the strict linear program. In the case of the linear program with
split inputs, the graph shows alternating regions of no increase
in runtime and regions of considerable increases. We accredit
this to the fact that the runtimes under the splitting scheme
depend on the size of the splits. For a sequence of equally sized
splits, the runtime demand grows linearly whereas varying
sizes introduce fluctuations as visible in the figure. Analyzing
Figure 6 reveals that no splittable region exist between event
1400 and 1600. As a result, the size of the last split of the
1600 event trace increases which results in a longer overall
runtime. Due to the exponential complexity of the scheduling
problem, an increase of the input size has a larger impact on

the runtime than the polynomial complexity of Zimpl. This
is why the results for Zimpl in Figure 8(a) do not show
similar fluctuations. Finally, we observe from Figure 8(c) that
the runtime demand of Relaxation 1 for split input traces
is barely noticeable at the bottom of the figure. Hence, the
combination of the splitting scheme and a relaxed scheduling
problem achieves a highly scalable runtime performance.

VII. DISCUSSION
The evaluation of our performance prediction methodology

illustrates that the trace splitting scheme and the relaxations
of the linear program achieve a significant performance im-
provement over the (non-relaxed) linear program. However,
despite these optimizations, only relatively short event traces
can be handled by our methodology in a reasonable amount
of time. Since a typical simulation run comprises hundreds of
thousands to millions of events, it is certainly outside the reach
of our scheme to predict the runtime of a whole simulation
run. Nevertheless, we argue that the presented performance
prediction methodology is useful particularly in the early
phases of the model development process. Early evaluation
scenarios are still of a small scale while at the same time the
structure of the model can still easily be changed in order to
optimize parallel performance. Furthermore, it is often simply
not necessary to trace and analyze the whole simulation run.
Instead, one might be interested in analyzing just a specific
part of the simulation model or a specific sequence of events.
In this case, selectively tracing the model under investigation
is sufficient and yields traces of acceptable size.

Due to the trace-based approach of our performance predic-
tion methodology, the estimated runtimes are tightly coupled to
the performance of the underlying evaluation hardware. How-
ever, we do not expect asymmetric performance differences in
terms of the event processing times between different hardware
platforms. Instead, the processing times of all events scale by a
linear factor on machines of different performance. Hence, the
relations between events remain constant and thus the event
schedule calculated by the linear program stays valid.

Until now, we assumed that the processing time of an
event is given by the time span needed to actually execute
an event by a worker thread. Hence, any differences between
the calculated lower bound and actual measurements are due
to a combination of a potentially non-optimal schedule and the
overhead of the simulation framework. The latter is caused by
all management operations within the framework such as event
creation, deletion, insertion into the event queue or removal
from the event queue. In order to accurately compare the
quality of a given scheduling strategy against the optimal
schedule, the overhead of the simulation framework should
be included in the event processing times. Since the overhead
is mostly static for all events, it suffices to determine the
overhead once for the simulation framework and subsequently
add it to the traced event processing times.

VIII. RELATED WORK

This section discusses closely related research efforts re-
garding performance prediction of parallel simulations.

Critical Path Analysis: Pioneered by Berry et al. [22],
critical path analysis [23], [24] is among the most widely
used performance analysis techniques for parallel simulations.
Based on an event trace of a simulation run, it first constructs
the dependency graph across all events. In this directed acyclic
graph, every event is annotated with its processing time and
connected to another event if a dependency relationship exists
among them. Then, in a second step, critical path analysis
calculates the path(s) with the largest sum of processing times
through the graph. These paths determine the minimum pro-
cessing time of a parallel simulation run, assuming an infinite
number of processing units. In contrast, our methodology
explicitly considers the available processing resources and thus
allows predicting the simulation performance for a given set of
CPUs. Wieland et al. [6] introduce an alternative construction
algorithm that does not require the construction of a depen-
dency graph. Instead, the critical path is determined recursively
based on the notion of the earliest possible completion time
(called “earliest processing time” (EPT)) of an event e which
is again given by the EPT of all predecessors of e plus the
processing time of e. However, this revised algorithm also
does not consider a specific set of processing units, but again
relies on an infinite number of CPUs. In order to apply
critical path analysis to a limited set of CPUs, Lin et al.
[7] combine critical path analysis with three selected event
scheduling policies. For a given set of virtual CPUs, each
policy defines a specific event-to-CPU assignment strategy
and allows predicting the performance of a parallel simulation
when executed under the selected scheduling policy. Although
this approach allows for a much more realistic performance
prediction, it relies on online event scheduling algorithms. In
general, those algorithms cannot determine the optimal event
schedule due to their limited scope at runtime and thus are not
able to find the true lower bound on the simulation runtime
as achieved by our methodology. As a result, our approach
provides a reference against which online event scheduling
algorithms can be compared.

Synchronization Overhead Estimation: In contrast to crit-
ical path analysis, OSim [25] by Swope et al. utilizes the event
trace to optimally synchronize an actual parallel simulation.
The goal of OSim is to reconstruct event dependencies from
the event trace at runtime and thereby eliminate the need
for actual synchronization protocols such as the null-message
algorithm [26]. As a result, the parallel simulation blocks
solely on data dependencies instead of synchronization related
overhead, such as handling of null-messages. Hence, OSim
allows to identify the overhead of a particular synchronization
protocol. Bagrodia et al. refine the approach of OSim by
defining an efficiency metric for synchronization protocols
on top of the Ideal Simulation Protocol (ISP) [8]. Based on
this metric, the authors analyze the overhead of four selected
conservative synchronization protocols. However, since OSim
and ISP require to actually execute the simulation in parallel,
their performance prediction is restricted to available hardware
and hence cannot predict the performance for an arbitrary
number of CPUs.

Resource-based Performance Analyzers: Juhasz et al. [9]
present a trace-based performance analyzer for distributed
simulations that explicitly takes the characteristics of the
simulation hardware into account. In addition to the relative
performance of the CPUs, it considers the latency and the
topology of the underlying computing network as well as
the overhead of selected synchronization protocols. Moreover,
the performance analyzer calculates event-to-CPU mappings
according to specific assignment policies such as “random”,
“modulo”, and “optimal load-balancing”. However, since the
analyzer targets partition-based parallel simulations instead of
centralized approaches, an event can only be assigned to the
one CPU onto which its “parent” logical process was mapped.
Consequently, the analyzer can only exploit parallelism across
logical processes and not across all events as in a centralized
parallelization scheme.

Finally Liu et al. [27] illustrate an alternative approach to
predicting the performance of a parallel simulator. Based on
detailed overhead measurements of the core components of the
parallel simulator and a selected model, the authors conduct
an educated “back-of-the-envelope” estimation of the parallel
simulation runtime. Despite the simplicity of the methodology,
the authors report surprisingly accurate results. However, their
prediction relies on an equally distributed workload across the
CPUs and hence cannot very well handle load asymmetries
which naturally exist in complex simulation models.

IX. CONCLUSION AND FUTURE WORK

In this paper, we presented a performance prediction
methodology which provides simulation model developers
with an insight into the execution behavior of a parallel simula-
tion model for the Horizon simulation framework. Specifically,
our methodology calculates an optimal event schedule and
thus the lower bound on the runtime of a given parallel
simulation model. This insight supports developers in deriving
performance optimizations for simulation models, frameworks,
and evaluation setups. Furthermore, we presented a novel trace
splitting scheme that transforms the exponential complexity of
the scheduling problem into a linear one.

Our future work focuses on the centralized event scheduler
of Horizon. Currently, the event scheduler relies on a simple
FIFO strategy (with respect to the FES) when offloading
independent events. This results, however, in a suboptimal
simulation performance: Since the scheduler does not take the
processing times of events into account it cannot maximize
the overall CPU utilization. Instead, we intend to develop
and adopt more advanced online scheduling strategies such
as longest processing time first. The evaluation of these
scheduling strategies fundamentally relies on the performance
prediction tool presented in this paper.

Acknowledgments This research was funded by the DFG Cluster of
Excellence on Ultra High-Speed Mobile Information and Communication
(UMIC), German Research Foundation grant DFG EXC 89.

REFERENCES

[1] R. M. Fujimoto, “Parallel Discrete Event Simulation,” Communications
of the ACM, vol. 33, no. 10, 1990.

[2] R. M. Fujimoto, K. Perumalla, A. Park, H. Wu, M. H. Ammar, and
G. F. Riley, “Large-Scale Network Simulation: How Big? How Fast?”
in Proc. of 11th International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems, 2003.

[3] G. Kunz, O. Landsiedel, J. Gross, S. Götz, F. Naghibi, and K. Wehrle,
“Expanding the Event Horizon in Parallelized Network Simulations,” in
Proc. of the 18th International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems, 2010.

[4] T. Cheng, “A state-of-the-art Review of Parallel-machine Scheduling
Research,” European Journal of Operational Research, vol. 47, no. 3,
August 1990.

[5] J. K. Lenstra and A. H. G. R. Kan, “Complexity of Scheduling under
Precedence Constraints,” Operations Research, vol. 26, no. 1, 1978.

[6] F. Wieland, T. Som, P. Reiher, J. Wedel, and D. Jefferson, “A Critical
Path tool for Parallel Simulation Performance Optimization,” in Proc.
of the 25th Hawaii International Conference on System Sciences, 1992.

[7] Y. B. Lin, “Parallelism Analyzers for Parallel Discrete Event Simula-
tion,” Transactions on Modeling and Computer Simulation, vol. 2, no. 3,
July 1992.

[8] R. L. Bagrodia and M. Takai, “Performance Evaluation of Conservative
Algorithms in Parallel Simulation Languages,” IEEE Transactions on
Parallel and Distributed Systems, vol. 11, no. 4, 2002.

[9] Z. Juhasz, S. Turner, K. Kuntner, and M. Gerzson, “A Performance
Analyser and Prediction Tool for Parallel Discrete Event Simulation,”
International Journal of Simulation, vol. 4, no. 1, May 2003.

[10] B. D. Lubachevsky, “Efficient Distributed Event Driven Simulations of
Multiple-loop Networks,” in Proc. of the ACM SIGMETRICS Conference
on Measurement and Modeling of Computer Systems, 1988.

[11] R. M. Fujimoto, “Exploiting Temporal Uncertainty in Parallel and
Distributed Simulations,” in Proc. of the 13th Workshop on Parallel and
Distributed Simulation, 1999.

[12] P. Peschlow, A. Voss, and P. Martini, “Good News for Parallel Wireless
Network Simulations,” in Proc. of the 12th International Conference
on Modeling, Analysis and Simulation of Wireless and Mobile Systems,
2009.

[13] G. Seguin, “Multi-core Parallelism for ns-3 Simulator,” INRIA Sophia-
Antipolis, Tech. Rep., 2009.

[14] L. Bononi, M. Di Felice, M. Bertini, and E. Croci, “Parallel and
Distributed Simulation of Wireless Vehicular Ad hoc Networks,” in
Proc. of the 9th International Conference on Modeling, Analysis and
Simulation of Wireless and Mobile Systems, 2006.

[15] R. Fujimoto, “Performance of Time Warp under Synthetic Workloads,”
Proceedings of the SCS Multiconference on Distributed Simulation,
vol. 22, no. 1, 1990.

[16] G. Chen and B. K. Szymanski, “DSIM: Scaling Time Warp to 1,033
Processors,” in Proc. of the 37th Winter Simulation Conference, 2005.

[17] D. Jefferson and P. Reiher, “Supercritical Speedup,” ACM SIGSIM
Simulation Digest, vol. 21, Apr. 1991.

[18] S. Srinivasan and P. F. Reynolds, “Super-criticality Revisited,” in Proc.
of the 9th Workshop on Parallel and Distributed Simulation, 1995.

[19] T. K. Ralphs, L. Ladányi, and M. J. Saltzman, “Parallel Branch,
Cut, and Price for Large-scale Discrete Optimization,” Mathematical
Programming, vol. 98, no. 1, Sep. 2003.

[20] A. Varga, “The OMNeT++ Discrete Event Simulation System,” in Proc.
of the 15th European Simulation Multiconference (ESM), 2001.

[21] T. Koch, “Zimpl User Guide,” 2011. [Online]. Available: http:
//zimpl.zib.de/

[22] O. Berry and D. Jefferson, “Critical Path Analysis of Distributed
Simulation.” in Proc. of the SCS Conf. on Distributed Simulation, 1985.

[23] C. Q. Yang and B. P. Miller, “Performance Measurement for Parallel and
Distributed Programs: A Structured and Automatic Approach,” IEEE
Transactions on Software Engineering, vol. 15, no. 12, 1989.

[24] S. Srinivasan and P. F. Reynolds, “On Critical Path Analysis of Parallel
Discrete Event Simulations,” May 1993, Technical Report No. CS-93-
29, University of Virginia.

[25] S. M. Swope and R. M. Fujimoto, “Optimal Performance of Distributed
Simulation Programs,” in Proc. of the 19th Winter Simulation Confer-
ence, 1987.

[26] K. M. Chandy and J. Misra, “Distributed Simulation: A Case Study in
Design and Verification of Distributed Programs,” IEEE Transactions on
Software Engineering, vol. SE-5, no. 5, September 1979.

[27] J. Liu, D. Nicol, B. J. Premore, and A. L. Poplawski, “Performance
Prediction of a Parallel Simulator,” in Proc. of the 13th Workshop on
Parallel and Distributed Simulation (PADS ’99), 1999.

