
Runtime Efficient Event Scheduling in Multi-threaded
Network Simulation

Georg Kunz∗, Mirko Stoffers∗, James Gross‡, Klaus Wehrle∗
∗Communication and Distributed Systems, ‡Mobile Network Performance

RWTH Aachen University
∗lastname@comsys.rwth-aachen.de, ‡lastname@umic.rwth-aachen.de

ABSTRACT
Developing an efficient parallel simulation framework for
multiprocessor systems is hard. A primary concern is the
considerable amount of parallelization overhead imposed on
the event handling routines of the simulator. Besides com-
plex event scheduling algorithms, the main sources of over-
head are thread synchronization and locking of shared data.
Thus, compared to sequential simulation, the overhead of
parallelization may easily outweigh its performance benefits.

We introduce two efficient event handling schemes based
on our parallel-simulation extension Horizon for OMNeT++.
First, we present a push-based event handling scheme to
minimize the overhead of thread synchronization and lock-
ing. Second, we complement this scheme with a novel event
scheduling algorithm that significantly reduces the overhead
of parallel event scheduling. Lastly, we prove the correctness
of the scheduling algorithm. Our evaluation reveals a total
reduction of the event handling overhead of up to 16x.

Categories and Subject Descriptors
I.6 [Simulation and Modeling]: Types of Simulation—
Parallel, Discrete event

General Terms
Algorithms, Design, Performance

Keywords
Parallel Network Simulation, Multi-threading, Performance
Optimization

1. INTRODUCTION
Network simulation models are steadily increasing in com-

plexity. For instance, simulation models of wireless networks
typically employ highly detailed link layer and physical layer
models to allow for an accurate evaluation of advanced wire-
less transmission technologies. Similarly, large scale peer-to-
peer or Internet backbone networks demand appropriately
sized topologies to capture the behavioral characteristics of
those networks. Such model complexity regularly results in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OMNeT++ 2011 March 21–25, Barcelona, Spain.
Copyright 2011 ACM ...$10.00.

extensive simulation runtimes which in turn may hamper
thorough evaluations due to excessive time demands.

Parallel network simulation proved to be able to counter-
act this effect and significantly cut simulation runtimes [4, 6,
17]. Particularly the recent proliferation of multiprocessor
hardware has once again brought parallel network simulation
back in the focus of research [1, 3, 15, 18]. Still, develop-
ing an efficient parallel simulation framework that provides
satisfying speedup is challenging. Parallel event handling
typically imposes an increased overhead on the event han-
dling routines of a parallel simulation framework due to more
complex event scheduling schemes and/or locking of shared
data structures. As a result, we face a potential dilemma:
We want to gain performance through parallelization, but
this comes at the price of increased event handling overhead.
The latter has a specifically negative impact on simulation
models whose individual events exhibit only small computa-
tional complexity such as peer-to-peer networks, for exam-
ple. In those models, the ratio of event handling overhead
to useful event processing is particularly disadvantageous.

We address this dilemma from an implementation per-
spective. Based on our parallel simulation extension Hori-
zon [9], we present optimized implementations that slash
the event handling overhead. Horizon builds on top of the
OMNeT++ simulator [19] and enables parallel event execu-
tion on shared memory multiprocessor systems. In Horizon,
discrete events are expanded to span a period of simulated
time. During simulation, overlapping expanded events are
offloaded by a centralized event scheduler to a worker thread
for parallel processing. Aiming at a minimum offloading
overhead, we make the following contributions:

i) We present a push-based event handling scheme that
reduces the offloading delay, i.e., the time between of-
floading and actually processing an event, by enabling
the event scheduler to explicitly and directly assign
events to worker threads.

ii) We introduce a simplified event scheduling algorithm
that eliminates the need for“barrier events”to indicate
the end of expanded events. As a result, the algorithm
removes 50% of the total number of events and the
corresponding overhead. Additionally, we prove the
correctness of the algorithm.

Our evaluation shows that each of our optimizations yields a
considerable performance improvement over an initial proto-
type implementation of Horizon. In combination, both opti-
mizations reduce the event scheduling overhead by a factor
of up to 16.

t [simulated time]

e2:encode_packet

e1:index_data

e3:send_packet

Figure 1: The extended events e1 and e2 cannot de-
pend on each other due to their temporal overlap-
ping and can thus be executed in parallel. e3 must
follow sequentially since it might depend on e1 or e2.

The remainder of the paper is structured as follows. Sec-
tion 2 introduces the parallelization concept underlying Hori-
zon followed by a detailed problem analysis in Section 3.
Based on this analysis, we present our optimizations in Sec-
tion 4 and evaluate their performance in Section 5. Finally,
we discuss related efforts in Section 6 before concluding the
paper in Section 7.

2. BACKGROUND
This section briefly introduces the fundamentals of our

simulation framework Horizon and its underlying paralleliza-
tion scheme. Horizon enables a parallel execution of network
simulation models by means of two properties: i) It intro-
duces a methodology for extending discrete events with du-
rations to explicitly and naturally model delays in discrete
event simulation. ii) It defines a parallelization scheme that
exploits the given event durations to determine independent
events for a safe parallel execution. As the latter of the
both properties indicates, Horizon employs a conservative
parallelization scheme [4]. The primary challenge in those
schemes is the identification of independent events that do
not influence each other during parallel execution. Those
events allow for a parallel execution while dependent events
require a sequential execution with respect to each other.

Figure 1 shows a simple example that illustrates how Hori-
zon utilizes event durations to identify independent events.
The figure shows three expanded events e1, e2 and e3 repre-
senting a “packet encoding”, a “packet sending”, and a “data
indexing” process. We observe that in the particular tim-
ing chosen for this example, e1 and e2 overlap in simulated
time1 while e3 follows after the end of e2. The overlapping
implies that e2 cannot depend on any results generated by
e1 because e2 already begins while e1 is still processing, i.e.,
its results are not yet available. Consequently, we conclude
that both events are independent and can thus be processed
in parallel. However, we cannot conclude whether or not e3
is independent of the other two events since it begins after
the earlier events finished. In this example, it is indeed de-
pendent on e2 which calculates the encoded packet that is
sent by e3. We base this reasoning on pioneering works by
Lubachevsky [11] and Fujimoto [5].

Horizon employs a centralized event scheduling architec-
ture specifically designed for multiprocessor hardware. In
contrast to related parallelization frameworks, Horizon re-
tains a centralized event scheduler and a single event queue
(future event set, FES). Similarly to sequential simulators,
the scheduler continuously removes the first event from the
event queue, but then analyzes its overlapping with respect
to other events and finally offloads it to a worker thread for
parallel execution. We demonstrated the viability of our ap-

1We denote the virtual time within the simulation as “simu-
lated time” in contrast to“simulation time”which represents
the runtime of the simulation.

future event set get next event

event scheduler

worker worker worker

work queue

 determine parallelizability

 offload event to work queue,
notify workers

 check work queue for events,
sleep if empty

 de-queue and process event

CPU CPU CPU… …
event flow synchronization ops. lock / condition variable

 en-queue new events

 worker action scheduler action

Figure 2: Event handling and synchronization oper-
ations in a straightforward, pull-based scheme. Con-
current access to the work queue is coordinated by
classic locks and condition variables.

proach in previous work [9]. In this paper, we focus on the
challenges of implementing runtime efficient event handling
and thread synchronization algorithms.

3. ANALYZING THE EVENT OVERHEAD
The centralized event scheduling approach of Horizon ex-

hibits two primary advantages in comparison to the clas-
sic distributed event handling of parallel simulators. First,
it drastically reduces the overhead incurred by distributed
synchronization algorithms [2, 4, 14]. Instead, all required
information for deriving a safe event scheduling is readily
available in one place (the event queue) and processed by one
entity (the event scheduler). Second, it allows for an even
distribution of work load across CPUs without the need for
specifically designed load balancing algorithms which again
impose overhead. In contrast, Horizon follows a thread-pool
approach in which a set of worker threads dynamically han-
dle events marked for parallel execution.

However, the parallelization scheme of Horizon causes two
specific kinds of event scheduling overhead: Event handling
overhead and event synchronization overhead. In the follow-
ing, we discuss both kinds of overheads in detail:

Event handling overhead. A straightforward implementa-
tion of the centralized event handling scheme of Horizon is
illustrated in Figure 2. In this scheme, the scheduler buffers
all events eligible for parallel processing in a work queue
which is regularly checked by the worker threads. Conse-
quently, this queue needs to be protected by locks to pre-
vent data corruption. If the queue is empty or the protecting
lock is occupied when checked by a worker, this thread is sus-
pended. Even if a thread is suspended due to a lack of work,
its sleeping period is considerably short, hence resulting in
frequent suspend and resume operations. While suspending
and resuming threads is considered to be resource efficient
due to freeing the CPU, this approach generates consider-
able threading overhead because of a large number of context
switches and system calls to the OS kernel. Additionally, it
significantly increases the offloading delay, i.e., the time be-
tween offloading an event and actually processing it. This
is particularly disadvantageous for simulation models that
mainly comprise events of short processing times.

Barrier synchronization overhead. Extended events that
span a period of simulated time are a fundamental design
property of Horizon. Since such events exhibit distinct start-
ing times and completion times, a straightforward integra-
tion in the simulation framework builds upon using two dis-

future event set get next event

event scheduler

worker worker worker

CPU CPU CPU

… …

 determine parallelizability

 find next available worker,
assign event or spin and wait

 check local buffer for event,
process event or spin on buffer

 en-queue new events

jobjobjob

event flow synchronization ops. spinlock
 worker action scheduler action

Figure 3: Event handling and synchronization oper-
ations in an optimized, push-based scheme. Events
are assigned directly to available workers which ac-
tively spin on a local buffer.

crete events to represent both extremes of the interval. For
each extended event, both discrete events are stored in the
central event queue accordingly. The scheduler then con-
tinuously removes the first event from the queue which can
be of either type: If it represents the start of an extended
event, it is handed to the workers, i.e., the event is offloaded
and executed in parallel. If it indicates the completion of an
extended event, the scheduler potentially needs to block un-
til the associated worker has finished processing this event.
Hence, we denote the latter barrier events.

This approach, although easy to understand and imple-
ment, imposes a considerable performance bottleneck on the
simulation framework. It effectively doubles the number of
events the simulation framework needs to handle – includ-
ing operations such as creation, deletion, insertion to and
removal from the event queue. In particular, complex simu-
lations suffer from this extra amount of work because they
already generate a large number of events and thus stress
the scalability of the event-queue data-structure. However,
those simulations are the primary target for parallelization,
thus requiring an efficient handling of barriers.

4. EFFICIENT EVENT SCHEDULING
This section details on the design of our improved event

handling framework. We first present an approach to reduce
the event handling overhead of the thread pool. Then, we
introduce a novel event scheduling algorithm that eliminates
the need for barrier events. Finally, we prove the correctness
of the event scheduling algorithm.

4.1 Cutting Event Handling Overhead
As stated in the previous section, suspending idle threads

is considered resource efficient by freeing CPUs for useful
work. However, we argue that high-performance parallel
simulations typically run on dedicated hardware and thus
do not need to free CPUs for other tasks when a worker is
blocked. Instead, it is more important to swiftly continue
processing events as soon as they become available without
the need for waking up a worker thread. Hence, we explicitly
trade CPU resources for shorter offloading delays.

Our approach replaces the pull-based event handling al-
gorithm (Figure 2), in which the worker threads pull jobs
from the work queue, with a pushed-based scheme (Figure
3). When offloading an event, the central scheduler checks
the current processing state of all workers and explicitly as-
signs the event to an idle one. To this end, each worker
thread maintains a local buffer (job) that can hold exactly

1 s imulate (){
2 tb = ∞
3 O = ∅
4 while (F ∪O 6= ∅){
5 e =checkBarr i e r ()
6 O = O ∪ e
7 F = F \ e
8 o f f l oadEvent (e)
9 }

10 }
(a) Simulation loop.

1 checkBar r i e r (){
2 do{
3 e = min{ts(e)|e ∈ F}
4 i f ts(e) ≤ tb
5 return e
6 else
7 waitFor (w|tb . job=⊥)
8 tb = min{tc(e′)|e′ ∈ O}
9 }while (true)

10 }
(b) Checking the barrier.

1 o f f l oadEvent (e){
2 tb = min{tc(e′)|e′ ∈ O}
3 w = one{w ∈W |w . job=⊥}
4 w . job = e
5 }
6

(c) Event assignment.

1 worker (){
2 waitFor (job 6=⊥)
3 proce s s (job)
4 O = O\ job
5 job=⊥
6 }

(d) Event processing.

Figure 4: The main building blocks of the event
scheduling algorithm. The scheduler (a) continu-
ously checks the current barrier (b) and offloads an
event to one of the workers (c) for processing (d).

one event. If the buffer is empty, the scheduler assumes
that the worker is currently not processing any event and
consequently puts an event into the buffer. Simultaneously,
the worker threads poll their local buffer. As soon as a
buffer is filled, the corresponding worker starts processing
the event and finally empties the buffer again. By means
of this busy waiting scheme, workers immediately recognize
newly offloaded events and the time between assigning a new
event and processing it is reduced to a minimum.

It is important to point out that this approach demands a
static mapping of exactly one worker thread to each CPU in
order to achieve maximum performance. Nonetheless, a par-
ticular side effect of the push-based assignment of events is
that the scheduler is able to identify the case that all workers
are busy. In this situation, the scheduler thread may either
wait for a worker to become available or it may handle the
event itself. The latter case effectively adds a further CPU,
i.e., the one the scheduler is running on, to the total num-
ber of worker CPUs. However, this optimization needs to be
used carefully due to the apparent risk that the scheduler is
blocked with handling a relatively long running event while
the workers are idling after finishing their particular event.

4.2 Eliminating Barrier Events
We eliminate barrier events based on the observation that

it is not necessary to store the completion time of every
extended event in the global event queue. Instead, it is suf-
ficient to maintain the completion times local to each worker
for only those events which are currently being processed.
Out of this subset, the scheduler selects the smallest times-
tamp as this represents the first barrier that will be encoun-
tered. All events starting between the current simulated
time and the barrier are safe for parallel execution.

Our improved event scheduling algorithm is defined as fol-
lows. Let E be the set of all events that occur in a simula-
tion run and F ⊆ E a particular FES. For all events e ∈ E,
ts : E → R denotes the starting time in simulated time and
tc : E → R the corresponding completion time. Further-
more, tb ∈ R represents the currently active barrier, O ⊆ E

is the subset of presently offloaded events, and W is the
set of workers. Finally, ⊥ represents an empty buffer and
“one” : 2W → W returns an idle worker or blocks until one
is available.

At runtime, the scheduler (Figure 4(a)) continuously i)
checks the current barrier tb and ii) offloads independent
events to the worker threads. Checking the barrier (Fig-
ure 4(b)) involves dequeuing the first event e from the event
queue and comparing its starting time ts(e) to the minimum
barrier tb. If the barrier precedes e, the scheduler blocks at
the barrier by waiting for the specific worker which handles
the event that is associated to the barrier (w|tb) to finish.
Subsequently, the scheduler determines a new minimum bar-
rier and again compares the first event from the event queue
to the new barrier. Event offloading (Figure 4(c)) bases
on our push-based event handling approach. The scheduler
first updates the current barrier if the newly offloaded event
e finishes before the established barrier. In this case, the
barrier must be moved to tc(e) to ensure the correctness
of the algorithm. The scheduler then either determines an
idle worker to which it assigns e for processing, blocks un-
til a worker becomes available, or processes the event itself.
Finally, the last component of the overall algorithm consti-
tutes the workers (Figure 4(d)) which continuously process
events according to the push-based event handling scheme
introduced previously.

4.3 Correctness of the Scheduling Algorithm
In this section, we present a proof that shows the cor-

rectness of the optimized barrier synchronization algorithm.
We need to show that the algorithm guarantees causal cor-
rectness, i.e., non-independent events are processed only in
increasing starting time order. For this purpose, we first in-
troduce a formal definition of event overlapping, followed by
a key assumption.

Definition 1. Two extended events e1, e2 overlap in sim-
ulated time (denoted by e1 ‖ e2) if and only if the duration
intervals intersect:

e1 ‖ e2 ⇔ [ts(e1); tc(e1)] ∩ [ts(e2); tc(e2)] 6= ∅.

Assumption 1. If two events overlap, both may be exe-
cuted simultaneously.

Event durations express the fact that processes within a real
system typically span a certain processing time. Thus, if
two expanded events overlap, their corresponding processes
in the real system also overlap and are hence executed in
parallel. Based on this observation, we formulate the fun-
damental modeling paradigm underlying Horizon: Overlap-
ping processes/events must not influence each other and
their respective results must become visible to the rest of
the system only after they are finished. Following a similar
reasoning, we state Definition 2:

Definition 2. An event e can only create new events e′

with ts(e′) ≥ tc(e).

This means that new events may only start after the event
that created them is complete. As pointed out previously,
the results of an expanded event may only become visible to
the entire system after the event has been processed.

We moreover adopt the definition of causal correctness
regarding a parallel simulation run from [4] and modify it
according to Assumption 1:

Definition 3. A discrete event simulation obeys the causal-
ity constraint if and only if each pair of non-overlapping
events is processed in non-decreasing starting time order.

After providing the required basics, we now prove the cor-
rectness of the scheduling algorithm: First, we show that no
events with starting times preceding the barrier are inserted
into F (Lemma 1). By means of this lemma we show that
the scheduler handles events in increasing starting time or-
der (Lemma 2). Note that this does not imply that events
are executed by the worker threads in increasing starting
time order. Then we can show that only overlapping events
are executed in parallel (Lemma 3). Applying Lemma 2
and 3 we finally proof the causal correctness property of our
event scheduling algorithm.

Lemma 1. No event e with ts(e) < tb is inserted into F
by another event e′.

Proof. Based on Definition 2, no event e ∈ O may insert
another event e′ ∈ E into F with ts(e′) < tc(e). Since tb
is the minimum over the completion times of all offloaded
events, i.e., tb = min{tc(e)|e ∈ O} (Figure 4(b), Line 8), it
follows that ∀e ∈ O : e may not insert an event e′ into F with
ts(e′) < tb. This property obviously also holds for all e /∈ O
as a non-offloaded event is not executed and hence cannot
create new events. Concluding, no new event preceding tb
can be inserted into F .

Lemma 2. The central event scheduler handles events in
increasing starting time order.

Proof. By contraposition. Assume two events e1, e2 ∈ E
with ts(e1) < ts(e2), but the scheduler handles e2 even if it
did not handle e1 before. For each possible FES F we derive
a contradiction from this assumption:

Case 1: e2 /∈ F . The scheduler does not handle e2 because
it is not in the FES.

Case 2: e2 ∈ F, e1 ∈ F . Because of the ordering constraint
of F and the fact that the scheduler only removes the event
with the smallest starting time from F (Figure 4(b), Line
3), it first handles e1 and then e2.

Case 3: e2 ∈ F, e1 /∈ F, tb < ts(e2). The scheduler does
not handle e2, but it blocks at tb, because the condition
ts(e2) ≤ tb (Figure 4(b), Line 4) is not met.

Case 4: e2 ∈ F, e1 /∈ F, tb ≥ ts(e2). The scheduler se-
lects e2 for processing. However, e1 cannot be inserted into
F afterwards due to Assumption 2. Thus, e1 was either
processed before or it will never be processed.

All possible cases result in a contradiction. Thus, the
initial assumption is wrong and the converse is proved.

Lemma 3. The central event scheduler never offloads non-
overlapping events.

Proof. The scheduler offloads an event e to the worker
pool for parallel execution only if the starting time of e is
smaller than the current barrier tb:

ts(e) ≤ tb (1)

⇒ ts(e) ≤ min{tc(e′)|e′ ∈ O} (2)

⇒ ts(e) ≤ tc(e′), ∀e′ ∈ O (3)

⇒ (ts(e) ≤ tc(e′)) ∧ (ts(e′) ≤ ts(e))), ∀e′ ∈ O (4)

⇒ (ts(e′) ≤ ts(e) ≤ tc(e′)) ∧ (ts(e) ≤ tc(e)), ∀e′ ∈ O (5)

⇒ [ts(e); tc(e)] ∩ [ts(e′); tc(e′)] 6= ∅ (6)

⇒ e ‖ e′ (7)

(1) follows directly from Line 4 of the algorithm in Figure
4(b). Similarly, (2) results from Line 8 in the same listing.
(3) is a simple logical conclusion from (2). We further derive
from e′ ∈ O that e′ was already handled and offloaded be-
fore e. By applying Lemma 2, we conclude that e′ exhibits
a smaller or equal starting time than e, showing (4). The
first part of the conjunction in (5) is a reformulation of (4),
the second part results from the simple fact that event dura-
tions must not be negative. The ordering of the timestamps
in (5) shows that the intervals do overlap, resulting in (6).
Finally, by applying Definition 1, we conclude that e and e′

overlap.

The above lemmas enable us to show the central theorem:

Theorem 1. The event scheduling algorithm guarantees
causal correctness according to Definition 3.

Proof. Assume two events e, e′ ∈ E. We distinguish two
different cases:

Case 1: e ‖ e′. According to Assumption 1, e and e′

are independent and hence cannot violate causal correctness
which is only defined for non-overlapping events.

Case 2: e 6 ‖ e′. Following from Lemma 3, the events
are not executed in parallel. Instead, the scheduler offloads
them in increasing starting time order according to Lemma 2.
Thus, causal correctness is fulfilled for non-overlapping events.

Concluding, causal correctness is guaranteed for both over-
lapping and non-overlapping events.

5. EVALUATION
This section evaluates the performance of our event han-

dling optimizations. Before discussing the actual results, we
first introduce the evaluation setup and methodology. Then,
we measure the speedup gained by employing push-based
event handling and eliminating barrier events. Finally, we
underline the importance of our optimizations by conducting
a case study based on a real-world simulation model.

5.1 Setup and Methodology
We benchmark the event handling overhead by means of

a specially designed simulation model for two reasons: i) It
is difficult to accurately measure the overhead imposed by
thread synchronization primitives such as locks. There is no
simple way to determine the time consumed by the function
call without also potentially measuring the time a thread was
suspended. ii) Event handling operations are split across the
scheduler and the workers. Hence, determining the overhead
per event as the sum of both does not accurately reflect the
performance behavior as observed by the user. Instead, due
to the parallelization of the scheduler and the workers, both
overheads actually overlap.

As a result, we utilize a “null” simulation model whose
events do not perform any computations except for re-insert-
ing themselves in the event queue – which again is event han-
dling overhead. Thus, the null-model exclusively generates
overhead which allows us to we derive the overall event han-
dling overhead, including overhead parallelization effects, by
measuring the total runtime of this model (without setup
and teardown times). In order to provide parallelism for
the workers, the model consists of 110 independent mod-
ules. Further, the expanded events span a duration of 1s
and are timed at fixed 20s intervals 50000 times per module,
resulting in a total of 5.5 million events. However, since the

null-model does not perform any useful work, the event pro-
cessing times are exceptionally short, thereby limiting the
amount of achievable parallel performance. Consequently,
we do not expect a performance increase when adding more
workers, but instead a performance degradation due to in-
creased contention.

This evaluation of Horizon is based on OMNeT++ 3.3
while a port to OMNeT++ 4.1 is nearly complete. All per-
formance results show average values collected over ten in-
dependent runs and the corresponding 99% confidence in-
tervals. We utilized an AMD Opteron compute server pro-
viding 32GB of RAM and a total of 12 processing cores,
organized in two six-core CPUs running a 64-bit Ubuntu
9.10 server OS.

5.2 Event Handling
In this section, we compare the pull-based event handling

scheme to the push-based one. Figure 5(a) shows the total
simulation time for both approaches over a varying num-
ber of worker threads. For the pull-based implementation,
we observe a linear to super-linear growth in simulation
time when using up to six worker threads. As predicted,
due to the workload characteristics of the null-model, we
do not gain a speedup by adding more workers. Instead,
additional worker threads increase the contention on the
shared work queue and its synchronization primitives, hence
resulting in significantly longer simulation times. When uti-
lizing six up to eleven workers, the total simulation time
remains relatively constant. We attribute this to the fact
that due to the small amount of workload the additional
workers remain mostly suspended, thus limiting the level of
contention. In contrast, we observe constant simulation run-
times for the push-based scheme regardless of the number
of worker threads. Moreover, the total simulation runtimes
are considerably shorter. From this we deduce a significant
reduction in the event handling overhead. Figure 5(b) com-
pares the simulation times of both approaches in terms of the
overhead reduction, i.e., the speedup factor achieved by our
event handling scheme. For a single worker thread, the mod-
ified scheme achieves a speedup of 2 and gains a maximum
speedup of approximately 9.5 for eight and more workers.

In addition to the computation time, we also measured
the amount of context switches during a simulation run. In
Figure 5(c), we observe a cutback in the number of con-
text switches by three orders of magnitude. This confirms
that the push-based event handling scheme prevents exces-
sive numbers of context switches caused by frequent thread
synchronization.

In general, the amount of context switches grows in both
schemes with the number of worker threads. However, in the
pull-based scheme, the number of context switches stagnates
for six or more workers while it still increases notably in the
push-based event handling scheme. In order to understand
this behavior, we recall the conditions that initiate a context
switch: i) The time slice allocated to a thread has expired:
If a thread utilizes a CPU for too long, it is suspended by
the operating system. ii) Synchronization and I/O opera-
tions: A thread voluntarily suspends itself while waiting for
a signal from another thread or the completion of an I/O
operation. Figure 6(a) clearly illustrates that the number of
context switches in the pull-based scheme is dominated by
synchronization related context switches as a result of using
classic locks. However, the amount of both types of context

� � � � � � � 	
 �� ��
�����������������������

�
��
��
��
	�

���
���
���

�
��

��
��

 �
!

"##$�������%��������#��&
"��$�������%��������#��&

(a) Total simulation runtime.

� � � � � � � 	
 �� ��
�����������������������

�
�
�
�
�
�
�
	

��

��
��

��
��

��
��

�
 !�

"

(b) Overhead reduction.

� � � � � � � 	
 �� ��
�����������������������

���
���
���
���
���
���
���
���
��	

�
�
��
���

���
��
��
��
�
!
"�#
��
�

$%%&�������'��������%"�(
$��&�������'��������%"�(

(c) Total number of context switches.

Figure 5: Performance comparison of the pull-based
and push-based event handling implementation.

switches stabilizes for six and more workers due to the fact
that additional threads remain mostly suspended because of
the low level of parallelism achievable by the null-model. In
contrast, we observe in Figure 6(b) that in the push-based
approach the number of context switches caused by expired
time-slices linearly increases while the number of synchro-
nization based context switches levels off for more than six
workers. The former suggests that due to busy waiting, the
worker threads run until their time slices expire and the op-
erating system enforces a context switch. The remaining
synchronization related context switches are caused by bar-
rier events and I/O operations of the simulator.

We finally derive from both figures that the relationship
between the two types of context switches changes: While
the synchronization related context switches dominate the
total number of context switches in the pull-based imple-
mentation, their number drops to a small fraction in the
push-based event handling scheme. Concluding, these re-
sults indicate that in a highly specialized parallel simulation
framework, busy waiting allows for a much more efficient
utilization of the available CPU cycles than suspending and
resuming of threads.

5.3 Event-free Barriers
In this section, we analyze the performance gain achieved

by eliminating barrier events from the push-based event han-
dling scheme. Figure 7(a) illustrates the total simulation
runtimes of both implementations. The event-free barrier

� � � � � � � 	
 �� ��
�����������������������

���
���
���
���
���
���
���
���
��	
��

����
����

�
�
��
���

���
��
��
��
�
!
"�#
��
�

�"����$"#����%"��� &�#�����'()��%����"��

(a) Number of context switches in the pull-based scheme.

� � � � � � � 	
 �� ��
�����������������������

���
���
���
���
���
���
���

�
�
��
���

���
��
��
��
�
!
"�#
��
�

�"����$"#����%"��� &�#�����'()��%����"��

(b) Number of context switches in the push-based scheme.

Figure 6: Detailed examination of the type and the
number of context switches.

algorithm clearly outperforms the scheduling approach that
depends on barrier events. In particular, we observe a drop
in the runtime when adding a second worker. We derive
from this that the modified event scheduling algorithm al-
lows for a better parallelization of its overhead between the
scheduler and the worker threads. Overall, the simulation
runtime for the null-model decreases by a factor of 1.4x for
one worker thread and up to a factor of 1.6x for two and
more workers as shown in Figure 7(b). Considering that
the modified algorithm removes 50% of the total number of
events, this constitutes a satisfying result. Additionally, the
performance improvement is also reflected in the number of
context switches as depicted in Figure 7(c). The event-free
barrier algorithm generates slightly fewer context switches
than the non-optimized version. Still, both algorithms show
the same growth in the number of context switches which
is dominated by time-slice-related context switches as dis-
cussed previously.

Finally, the straight black line in Figure 7(a) illustrates
the runtime of a purely sequential simulation. Hence, the
difference between this line and the one of the improved
scheduling algorithm reveals the remaining parallelization
overhead. However, by efficiently parallelizing a real-world
simulation model, we highlight in Section 5.5 that this ad-
ditional overhead is indeed worth paying for.

5.4 Combined Speedup
Finally, we briefly evaluate the combined performance im-

provement of both event handling optimizations. To this
end, we compare the performance measurements obtained
for the initial prototype implementation to those for the op-
timized version with explicit event assignment and event-
free barriers. Figure 8 shows the corresponding results in
terms of the reduction in the event scheduling overhead. In
accordance with the previously presented results, the total
performance gain ranges between a 3x speedup, obtained for
just one worker, up to a peak value of approximately 16x for
eight or more workers.

1 2 3 4 5 6 7 8 9 10 11
Number of Worker Threads

0

5

10

15

20
Ru

nt
im

e
[s

]

sequential simulation Barrier events
No barrier events

(a) Total simulation runtime.

� � � � � � � 	
 �� ��
�����������������������

���

���

���

���

��	

���

���

��
��
��

��
��
��

!"�

#

(b) Overhead reduction.

� � � � � � � 	
 �� ��
�����������������������

���

���

���

���

���

���

�
�
��
���

���
��
��
��
�
!
"�#
��
�

$���"����%����
�������"����%����

(c) Total number of context switches.

Figure 7: Performance comparison of the event han-
dling schemes with and without barrier events.

5.5 Case Study: LTE Network Model
All benchmarks up to now focused solely on determin-

ing the event handling overhead without evaluating the ac-
tual parallel performance of the simulation framework. To
fill this gap, we now conduct a brief case study based on
a parallelized LTE network simulation model. We demon-
strate that i) our parallelization framework indeed achieves
a considerable parallel speedup, and ii) the performance im-
provements presented in this paper are necessary to enable
an efficient parallelization of simulation models comprised
of events of low computational complexity. For the sake of
brevity, we do not introduce the network model in detail
here but refer the reader to [13]. The evaluation scenario
for this case study consists of a network of ten cells, each
containing five mobile stations which handle VoIP calls.

As pointed out before, the events of the null-model do not
perform any computations except for re-inserting themselves
into the FES. Hence, it does not inflict a real workload on
the simulation framework. In contrast, the LTE model used
in this study generates a diverse workload as illustrated in
Figure 9(a). The histogram shows the distribution of the
event processing times, i.e., how many events of a certain
computational complexity occur in the selected evaluation
scenario. Clearly, the event complexities span four orders
of magnitude, ranging from milli- to microseconds. In com-
parison to [9], the model utilizes a simpler resource alloca-
tion algorithm which results in significantly shorter event

� � � � � � � 	
 �� ��
�����������������������

�
�
�
	

��
��
��
��

��
��

��
��

��
��

�
 !�

"

Figure 8: Overhead reduction with combined opti-
mizations.

���� ���� ���� ���� ���	 ���

����������������������

���

��

��	

���

���

���

��
�
�

���
���

�
��
�

(a) Event processing time distribution in the LTE model.

1 2 3 4 5 6 7 8 9 10 11
Number of Worker Threads

20

40

60

80

100

120

140

Ru
nt

im
e

[s
]

sequential simulation

Non-optimized
Combined optimations

(b) Total simulation runtime of the LTE model.

Figure 9: Performance analysis of a parallel LTE
Network Model.

processing times. As a result, the selected scenario is more
demanding w.r.t. the efficiency of the simulation framework.

Figure 9(b) plots the runtimes for simulating 1s of network
traffic. The graphs show that the non-optimized prototype
implementation is not able to generate any speedup, but in-
stead the runtimes increase with the number of workers as
seen in the null-model. In contrast, the optimized event han-
dling scheme achieves a maximum speedup of approximately
five in the selected scenario. This underlines the viability of
our approach as well as the efficiency of its event handling
algorithms.

6. RELATED WORK
The recent development towards multiprocessor systems

has sparked intensive research in the domain of parallel net-
work simulation. In this section, we present closely related
efforts and discuss how our work deviates from previous ap-
proaches.

In [15], Peschlow et al. present a multi-threaded paral-
lel simulation framework which primarily focuses on wire-
less networks. Parallel execution is coordinated by means of
a conservative barrier synchronization algorithm that bases
on a specifically selected tournament barrier implementa-
tion. A similar synchronization approach is taken by a
multi-threaded extension of the ns-3 simulator [7, 18]. In
the context of these works, thorough performance evalua-

tions of the used thread synchronization primitives revealed
a poor performance of the conventional pthread barriers.
Consequently, the corresponding high-performance imple-
mentations base on specially designed spinlocks. In contrast
to Horizon, the barriers in both simulators achieve a global
synchronization of all threads whereas Horizon utilizes bar-
riers for blocking only the central event scheduling thread.

In order to avoid locking mechanisms altogether, Liu et
al. present a lock-free event scheduling algorithm for parallel
simulations on shared memory machines [10]. The algorithm
makes use of atomic fetch&add operations to asynchronously
determine safe time bounds for conservative event synchro-
nization. In comparison to lock-based implementations, the
asynchronous algorithm avoids unnecessary blocking caused
by slow threads and thus reduces the number of context
switches significantly. As a result, the authors report consid-
erable speedups in comparison to an equivalent lock-based
algorithm. A major disadvantage of the proposed algorithm,
however, is its complexity which causes extensive overhead
for large numbers of threads.

7. CONCLUSION AND FUTURE WORK
In this paper, we present two optimizations to reduce the

event handling overhead of our parallel simulation extension
Horizon for the OMNeT++ simulator. The first optimiza-
tion replaces the classic pull-based event processing scheme
with a push-based one, in which the event scheduler explic-
itly assigns events to worker threads. In combination with
actively spinning worker threads, this approach results in a
significant overhead reduction of a factor of up to 9.5. The
second optimization eliminates the need for barrier events to
represent the end of event durations. Instead, a lightweight
scheduling algorithm continuously determines the relevant
barrier – thereby reducing the scheduling overhead by a fac-
tor of up to 1.6. We furthermore prove that this algorithm
guarantees causal correctness throughout parallel execution.
Finally, by combining both optimizations, we yield an over-
head reduction of up to a factor of 16 in comparison to our
initial implementation.

Motivated by the promising results of our work, we con-
tinue to improve our implementation. Future work primarily
addresses the reduction of cache misses to further increase
performance. Currently, the event scheduler assigns events
to the next available CPU without considering on which
CPU previous events of the same type were executed. This
may result in similar events continuously “moving” across all
CPUs, hence preventing efficient cache re-use. Instead, the
scheduler should keep track of previous event-to-CPU map-
pings and aim to re-assign subsequent events accordingly.
Additional efforts target the locking mechanism which pro-
tects the central event queue. The implementation underly-
ing the evaluation presented in this paper utilizes a relatively
simple TTAS (test-test-and-set) spinlock [8]. It is however
well known that this kind of lock does not scale well with an
increasing number of threads due to severe cache contention.
To provide better scalability particularly on ccNUMA archi-
tectures, we intend to implement more sophisticated hier-
archical spinlocks such as hierarchical backoff locks or the
HCLH lock [12, 16].

Acknowledgments. This research was funded by the DFG
Cluster of Excellence on Ultra High-Speed Mobile Informa-
tion and Communication (UMIC), German Research Foun-
dation grant DFG EXC 89.

8. REFERENCES
[1] L. Bononi, M. Di Felice, M. Bertini, and E. Croci. Parallel

and Distributed Simulation of Wireless Vehicular Ad hoc
Networks. In Proc. of the 9th International Conference on
Modeling, Analysis and Simulation of Wireless and Mobile
Systems, 2006.

[2] K. M. Chandy and J. Misra. Distributed Simulation: A
Case Study in Design and Verification of Distributed
Programs. IEEE Transactions on Software Engineering,
SE-5(5):440–452, September 1979.

[3] S. De Munck, K. Vanmechelen, and J. Broeckhove. Design
and Performance Evaluation of a Conservative Parallel
Discrete Event Core for GES. In Proc. of the 3rd
International Conference on Simulation Tools and
Techniques, 2010.

[4] R. M. Fujimoto. Parallel Discrete Event Simulation.
Communications of the ACM, 33(10):30–53, 1990.

[5] R. M. Fujimoto. Exploiting Temporal Uncertainty in
Parallel and Distributed Simulations. In Proc. of the 13th
Workshop on Parallel and Distributed Simulation, 1999.

[6] R. M. Fujimoto, K. Perumalla, A. Park, H. Wu, M. H.
Ammar, and G. F. Riley. Large-Scale Network Simulation:
How Big? How Fast? In Proc. of 11th International
Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems, 2003.

[7] T. R. Henderson, S. Roy, S. Floyd, and G. F. Riley. ns-3
Project Goals. In Proc. of the 2006 Workshop on ns-2: The
IP network simulator, 2006.

[8] C. P. Kruskal, L. Rudolph, and M. Snir. Efficient
Synchronization of Multiprocessors with Shared Memory.
In Proc. of the 5th Annual ACM Symposium on Principles
of Distributed Computing (PODC), 1986.

[9] G. Kunz, O. Landsiedel, J. Gross, S. Götz, F. Naghibi, and
K. Wehrle. Expanding the Event Horizon in Parallelized
Network Simulations. In Proc. of the 18th International
Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems, 2010.

[10] J. Liu, D. M. Nicol, and K. Tan. Lock-free Scheduling of
Logical Processes in Parallel Simulation. In Proc. of the
15th Workshop on Parallel and Distributed Simulation,
2001.

[11] B. D. Lubachevsky. Efficient Distributed Event Driven
Simulations of Multiple-loop Networks. In Proc. of the
ACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, 1988.

[12] V. Luchangco, D. Nussbaum, and N. Shavit. A Hierarchical
CLH Queue Lock. In Proceedings of the European
Conference on Parallel Computing (EuroPar), 2006.

[13] F. Naghibi and J. Gross. How Bad is Interference in IEEE
802.16e Systems? In Proceedings of the 16th European
Wireless Conference (EW), 2010.

[14] K. S. Perumalla. Parallel and Distributed Simulation:
Traditional Techniques and Recent Advances. In Proc. of
the 38th Winter Simulation Conference, 2006.

[15] P. Peschlow, A. Voss, and P. Martini. Good News for
Parallel Wireless Network Simulations. In Proc. of the 12th
International Conference on Modeling, Analysis and
Simulation of Wireless and Mobile Systems, 2009.

[16] Z. Radovic and E. Hagersten. Hierarchical Backoff Locks
for Nonuniform Communication Architectures. In Proc. of
the 9th International Symposium on High-Performance
Computer Architecture (HPCA), pages 241–252, 2003.

[17] G. F. Riley, M. H. Ammar, R. M. Fujimoto, A. Park,
K. Perumalla, and D. Xu. A Federated Approach to
Distributed Network Simulation. ACM Transactions on
Modeling and Computer Simulation (TOMACS),
14:116–148, April 2004.

[18] G. Seguin. Multi-core Parallelism for ns-3 Simulator.
Technical report, INRIA Sophia-Antipolis, 2009.

[19] A. Varga. The OMNeT++ Discrete Event Simulation
System. In Proc. of the 15th European Simulation
Multiconference (ESM), 2001.

