
2011 INTERNATIONAL CONFERENCE ON INDOOR POSITIONING AND INDOOR NAVIGATION (IPIN), 21-23 SEPTEMBER 2011, GUIMARÃES, PORTUGAL

FootPath: Accurate Map-based Indoor Navigation
Using Smartphones

Jó Ágila Bitsch Link, Paul Smith, and Klaus Wehrle
RWTH Aachen University/ComSys, Aachen, Germany.

Email: {jo.bitsch,paul.smith,klaus.wehrle}@rwth-aachen.de

Abstract—We present FootPath, a self-contained, map-based
indoor navigation system. Using only the accelerometer and the
compass readily available in modern smartphones we accurately
localize a user on her route, and provide her with turn-by-turn
instructions to her destination. To compensate for inaccuracies
in step detection and heading estimation, we match the de-
tected steps onto the expected route using sequence alignment
algorithms from the field of bioinformatics. As our solution
integrates well with OpenStreetMap, it allows painless and cost-
efficient collaborative deployment, without the need for additional
infrastructure.

Index Terms—indoor navigation; step detection; mobile phones

I. INTRODUCTION

While navigation systems for outdoor environments are
readily available, navigation within buildings still poses a
challenge. The main reason for this lies in the difficulty to
obtain accurate position information in an easy to set-up way
with minimal infrastructure and to create indoor maps.

Our approach to this problem is twofold: (1) We use simple
step detection and step heading estimation. (2) We match
detected steps onto the expected route from the source to the
destination using sequence alignment algorithms. Instead of a
more general localization problem, we solve the localization
problem on a specified route. This allows us to compensate for
inaccuracies and give the user accurate turn-by-turn directions.

To allow easy incremental deployment of our system, we
integrate our system with OpenStreetMap [1], which already
has rudimentary indoor support [2]. GPS, Pseudolites, UWB,
WiFi access points, and RFID is avoided, making the system
useful for protected environments like historical buildings and
archaeological sites as well as hospitals, where additional RF
gear might interfere with medical equipment.

A. Contributions

1) Infrastructureless indoor navigation: We use simple
step detection and step heading detection, which we then
map onto a route using sequence alignment algorithms.
Additional infrastructure, like GPS, Pseudolites, UWB,
WiFi access points, and RFID can be avoided.

2) Localization on a route: We know the route, the
user intends to take. Using this knowledge, we reduce
inaccuracy at corners opposed to further accumulating
errors. Path matching is precise enough to allow for
accurate indoor turn-by-turn directions.

This research was funded in part by the DFG Cluster of Excellence on
Ultra High-Speed Mob. Inf. and Comm. (UMIC), DFG grant DFG EXC 89.

3) Easy incremental deployment: Deploying the system
for a new building simply consists of entering the floor
plan into OpenStreetMap.

II. RELATED WORK

A multitude of indoor navigation solutions have been pro-
posed. They can be categorized in several categories, however,
in general, they make no assumptions about the route of a
user. (1) Systems based on GPS pseudolites, e.g. [3], allow for
a precision of 0.01m and better, they require very carefully
placed transmitters and an exact calibration, making wide
public deployment impractical and unfeasible for the time
being.

Similarly, (2) localization systems based on WiFi finger-
prints, such as [4], [5], collect the identities and signal
strengths of the WiFi access points in the vicinity at various
points in the covered area. This calibration—war driving—is
time consuming, and easily becomes invalidated when physical
conditions change, e.g. the number of people in the vicinity
or new office equipment, thereby requiring new measurements
to keep the database up to date. While efforts to reduce the
required fingerprint positions are promising, they still depend
on exact 3D-models and are rather labor-intensive to set up.
However, a systematic drawback remains: There needs to be an
adequate number of access points in the vicinity. This may be
problematic in protected environments like historic buildings,
archaeological sites or hospitals. In comparison, our approach
neither depends on war driving nor on additional RF infras-
tructure. Our OpenStreetMap integration makes incremental
deployment possible and painless.

Finally, (3) dead reckoning approaches, such as [6], are
based on detecting steps and step headings, integrating over
them to estimate the current user position. Adaptive Kalman
filters and activity based map matching—e.g. resetting the
user position to the nearest elevator, if elevator like patterns
are detected—improve the position estimate. However, errors
accumulate quickly. Our approach can reset these errors by
matching the steps using sequence alignment. Thereby, it
actually benefits from turns, commonly found in indoor en-
vironments.

Constandache et al. [7] estimate outdoor user location
with a precision of up to 11m using only a compass, an
accelerometer, and AGPS for the initial position. Detected
steps are matched onto the currently closest path derived from
Google Maps, returning the best match as the user’s position.



1

2

3

4

5

6

A

B

A

B

Fig. 1. Flow of information during navigation. (1) The application obtains
map material from OSM. (2) The user selects her current position and her
destination. The phone calculates the best route. (3) The mobile phone detects
steps and directions. (4) The route is transformed into expected steps. (5) The
detected steps are mapped onto the expected steps. (6) The user gets feedback
about her position and her next way-points.

In case of mismatch, AGPS resets the position. Our approach
differs in that we neither need AGPS, nor are we restricted to
outdoor navigation. Also, our path matching through sequence
alignment algorithms, see Section III-C2, is more robust by
handling source to destination routes in their entirety, instead
of per segment.

III. SYSTEM DESIGN

Figure 1 presents an overview of our system. We obtain
map material from OpenStreetMap, this allows easy updating
and incremental deployment on a global scale, see Section
III-A. After the user selects her route, the accelerometer and
compass of the user’s phone are used to detect steps and step
headings, see Section III-B. We then match these steps onto
the map using a first fit and a sequence matching scheme,
see Section III-C. Finally, we present the estimated position
back to the user, together with turn-by-turn directions towards
the destination, see Figure 5 for screen shots of our current
prototype.

A. Generating Maps

OpenStreetMap [1] is an effort to create and distribute free
geographic data, such as street maps, but also indoor maps
of public buildings, albeit indoor support is still rudimentary
[2]. OpenStreetMap allows wiki-style editing, thereby enabling
everyone to contribute easily.

Map data from OpenStreetMap can be accessed as an
XML structure consisting of nodes, ways, areas, and relations,
which can be annotated with arbitrary key value pairs. Indoor
nodes can be annotated using a combination of the following
keywords:
• indoor=yes marks an object as being indoors.
• level=* designates the associated level or floor of an

object.
• wheelchair=yes indicates accessibility by wheelchairs.
• highway=steps denotes steps with the additional key-

word stepcount=* providing its length.
• highway=elevator labels elevators, connecting different

floors.
• highway=door specifies a node to be a door. build-

ing=entrance as a special case denotes the entrance door
to a building.

> p

33

timeoutwindow

Fig. 2. Step detection with FootPath. A step is detected if there is a difference
of at least p = 2m

s2
on the low pass filtered z axis of the accelerometer. The

difference has to occur during a window w of 5 consecutive readings, or
165ms. After each detected step a timeout t = 333ms is used to avoid false
detection. The user can calibrate p and t to improve performance.

• name=* is used to give an object a common name.
The popularity of OpenStreetMap allows us to make use of

a variety of tools—e.g. JOSM [8]—to create and extend maps
incrementally. The OpenStreetMap community has already
mapped the vicinity of our building in great detail, easing
our task to integrate our indoor maps, which we derived from
floor plans with outdoor footpaths and streets.

Editing paths lying on top of each other, i.e., in different
floors, is still cumbersome. We alleviated this by creating one
distinct map file per floor, and annotating nodes to be merged
with a node in another layer with the keyword merge id=*.
This can easily be mitigated by extending JOSM with a better
indoor support plugin.

B. Step Detection

Modern smartphones are typically equipped with an ac-
celerometer and a compass. We make use of this fact and
directly use them for our step detection and step heading
estimation. The accelerometer values display a characteristic
regular pattern, see Figure 2. Therefore, we can detect a step,
by matching the values to a sharp drop in the acceleration,
attributed to the jiggling of the phone in the hand of the
user while she is balancing out her steps. To further improve
detection, we initially apply a low pass filter.

Formally, we detect a step whenever the acceleration value
falls by at least p = 2m

s2 within a window w of 5 consecutive
samples, or 165ms. Additionally, we define a timeout t =
333ms within which no new step is detected. The parameters
p, t, and the low pass filter parameter l can be calibrated to
further improve step detection performance on a per user basis.

Figure 3 shows an exemplary data set where a user first
stands still for 2s and then starts walking, while holding her
phone screen facing up in front of her in her hand. We repeated
this experiment with 15 users and found the parameters to be
robust against body heights and walking styles.

As soon as a step is detected, the phone also records the
current azimuth from the compass and passes the detected step
and step heading to the path matching algorithms.



Fig. 3. Exemplary accelerometer raw data and detected steps. The upper plot
depicts the raw data recorded from the phone’s sensor, while a user first stands
still for 2 seconds and then starts walking. The values display characteristic
jiggling pattern. In the lower plot, we perform step detection on the low pass
filtered z axis values.
C. Path Matching

Upon detection of a step, we trigger path matching. We pro-
pose two strategies for matching detected steps onto expected
steps from a map: (1) First Fit and (2) Best Fit, see Figure 4.
The best fit corresponds to a position on the route, which is
in turn used for user feedback, see Figure 5. In the following,
we describe the path matching strategies.

1) First Fit: This algorithm—similar to CompAcc [7]—
makes use of the assumption that the user’s detected step
heading corresponds directly to the direction of the expected
edge. Upon each detected step and step heading, we try to
match this heading to the direction of the current edge and
move along this edge, this is direct matching mode. If the
heading and the direction do not match for k = 5 consecutive
detected steps, we try to find a new position on the path, using
a lookahead matching mode.

A heading αi and an edge direction βj are directly matching,
if the angle between them �(αi, βj) ≤ 42◦. The position is
then updated by step length l along the edge of the route.

As we progress along an edge, there are two cases: (1) The
step length l was overestimated, and the real user position
is not yet at the end of this edge. This is detected by more
detected steps in the same direction. (2) However, if the step
length was underestimated, we obtain values not matching the
current edge, because the user already walks into a different
direction. These values are regarded as erors and the lookahead
matching mode repositions the location to the next edge.

If steps do not match expected steps they are collected for
further processing in lookahead matching mode. If, within k
steps, a matching heading αi is detected, direct matching op-
eration resumes. However, if no such step heading is detected,
the algorithm will try to find a maximum amount of steps
consecutively matching to a segment on the path. We find
these matches by searching further along the path trying to
find a matching edge for the newest unmatched step headings.
If a match is found, we proceed by backtracking along the
previously unmatched steps trying to match them backwards
to the matching and its preceding edges. If there is more than
one consecutive match of a given minimum length, the longest

M

S

M

S

Best Fit Algorithm

First Fit Algorithm

Direct Matching

Lookahead Matching

M Step Headings expected
from Map

S Detected Step Headings

1 2 ... |S|

Map:

Fig. 4. Matching sequences of detected steps onto sequences of expected
steps. First Fit detects direction changes and finds the next possible match
in a lookahead. Best Fit uses sequence alignment to find the best match
between the sequences. Unmatched parts correspond to overestimated and
underestimated step lengths.

match is chosen. If we do not find a match along the path, we
restart the matching process upon the next detected step.

2) Best Fit: By adapting sequence alignment algorithms [9]
from the field of bioinformatics, we align the detected steps
with the expected steps extracted from a map. The matching
process is formalized as a dynamic programming problem,
where we punish mismatches with a penalty. The best match
is therefore the one with the smallest penalty. Underestimated
and overestimated step lengths are modeled as gaps.

We define M as an array of all step headings M(i) : 1 ≤
i ≤ |M | on the route subdivided into virtual steps according
to the information in the given map. Then, we define S as
the string of all detected step headings S(j) : 1 ≤ j ≤ |S|.
Additionally, we define a matrix D, with D(i, j) = di,j :
1 ≤ i ≤ |M |, 1 ≤ j ≤ |S|. We initialize the matrix with
D(0, 0) = 0, D(i, 0) = ∞ : 1 ≤ i ≤ |M |, and D(0, j) =
∞ : 1 ≤ j ≤ |S|. The other elements are calculated using the
following construction:
D(i, j) = min{D(i− 1, j − 1) + score(M(i), S(j)),

D(i− 1, j) + score(M(i), S(j − 1)) + 1.5,

D(i, j − 1) + score(M(i− 1), S(j)) + 1.5}

score returns the added penalties depending on how far the
two given directions from the step and the considered location
differ:

score(α, β) =


0.0 if �(α, β) ≤ 45◦

1.0 if 45◦ < �(α, β) ≤ 90◦

2.0 if 90◦ < �(α, β) ≤ 120◦

10.0 else

The expected position after j detected steps is therefore at
map step posj with:

posj = argmin
i:1≤i≤|M |

(D(i, j))

As we are only interested in the current location posj , the
calculation of column D( , j) only depends on the previous
column D( , (j − 1)). This makes the implementation very
space efficient.



Fig. 5. Screen shots of the calibration screen and during navigation.

IV. EVALUATION

An outdoor experiment, to be able to compare with GPS
data, was conducted with 15 test users to demonstrate the
functionality of FootPath. In the experiment, the same device
was used for each run. During the run the sensor data, as well
as the GPS location was traced.

An exemplary visualization can be seen in Figure 7. Our
results show that our estimate of the step length from the body
height is not very accurate. Still, FootPath is able to reset the
location if it finds a better match of the user’s position. The
average accuracy of a detected step, defined as the distance to
the Best Fit Traceback, are 11.16m for First Fit and 8.90m
for Best Fit in our 15 test runs.

Considering First Fit, we see that if the directions can not
be matched along the path directly, due to a varying and/or
incorrect initial step size, it jumps ahead after finding at least
four matching steps along the path. If the step size is too large
it will wait for the user to catch up and continue when the user
changes the direction according to the path.

A problem is that this can lead to erroneous progress along
the path if there are faulty directions read which match to
the path. At this point we have to consider the trade-off to
detect the correct position during the lookahead phase and the
amount of steps we have to wait to obtain a new position.

In comparison, Best Fit matches each direction onto the path
to where it received the smallest penalty. Thus, it is possible
that Best Fit lags behind on an edge if the assumed step length
is smaller than the real one. It will respond to values which
correspond to the following edge with locations further along
the same edge, or remain at the same position. As soon as the
penalty for a location ahead on the path becomes smaller, it
will jump ahead. If the directions match better to a previous
position on the path it will fall back and continue from there.

V. CONCLUSIONS

We presented FootPath, a self-contained, map-based indoor
navigation system and demonstrated its feasibility in terms of

Fig. 6. Left-hand side: Displayed are the detected steps and their matched
position on the path. Best Fit and First Fit are our matching algorithms. Best
Fit Traceback is the best trace run on the matrix D, see Section III-C2, which
is visualized in the background. Right-hand side: The absolute differences of
our matching algorithms to the Best Fit Traceback match.

Fig. 7. During the experiment each user walked along a predefined path.
In both figures we see the detected steps and their position corresponding to
the matching algorithms. GPS was tracked for comparison and is displayed
in both figures.

indoor localization accuracy and incremental global deploy-
ability. Furthermore, we showed the feasibility of sequence
alignment for localization on a route.

REFERENCES

[1] OpenStreetMap community, “OpenStreetMap, The Free Wiki World
Map,” March 2011. [Online]. Available: http://www.openstreetmap.org/

[2] ——, “Indoor Mapping – OpenStreetMap Wiki,” March 2011. [Online].
Available: http://wiki.openstreetmap.org/wiki/Indoor Mapping

[3] C. Kee, D. Yun, H. Jun, B. Parkinson, S. Pullen, and T. Lagenstein,
“Centimeter-accuracy indoor navigation using GPS-like pseudolites,” GPS
WORLD, vol. 12, no. 11, pp. 14–23, 2001.

[4] P. Prasithsangaree, P. Krishnamurthy, and P. Chrysanthis, “On indoor
position location with wireless LANs,” in Personal, Indoor and Mobile
Radio Communications, 2002. The 13th IEEE International Symposium
on, vol. 2. IEEE, 2002, pp. 720–724.

[5] Y.-C. Cheng, Y. Chawathe, A. LaMarca, and J. Krumm, “Accuracy
characterization for metropolitan-scale wi-fi localization,” in Proceedings
of the 3rd international conference on Mobile systems, applications, and
services, ser. MobiSys ’05. New York, NY, USA: ACM, 2005, pp.
233–245.

[6] D. Gusenbauer, C. Isert, and J. Krösche, “Self-contained indoor position-
ing on off-the-shelf mobile devices,” in Indoor Positioning and Indoor
Navigation (IPIN), 2010 International Conference on, 2010, pp. 1 –9.

[7] I. Constandache, R. Choudhury, and I. Rhee, “Towards mobile phone
localization without war-driving,” in INFOCOM, 2010 Proceedings IEEE,
2010, pp. 1 –9.

[8] I. Scholz and OpenStreetMap community, “Java OpenStreetMap Editor,”
March 2011. [Online]. Available: http://josm.openstreetmap.de/

[9] R. A. Wagner and M. J. Fischer, “The string-to-string correction problem,”
J. ACM, vol. 21, pp. 168–173, January 1974.

http://www.openstreetmap.org/
http://wiki.openstreetmap.org/wiki/Indoor_Mapping
http://josm.openstreetmap.de/

	Introduction
	Contributions

	Related Work
	System Design
	Generating Maps
	Step Detection
	Path Matching
	First Fit
	Best Fit


	Evaluation
	Conclusions
	References

