
Perfect Difference Sets for Neighbor Discovery:
Energy Efficient and Fair

Jó Ágila Bitsch Link, Christoph Wollgarten, Stefan Schupp, Klaus Wehrle
Communication and Distributed Systems (Informatik 4), RWTH Aachen University

Aachen, Germany
{jo.bitsch,christoph.wollgarten,stefan.schupp,klaus.wehrle}@rwth-aachen.de

ABSTRACT
We present an energy efficient neighbor discovery frame-
work that enables Linux and TinyOS based systems to dis-
cover and connect to neighbors via IEEE 802.11 and IEEE
802.15.4, which are only available sporadically. Using quo-
rum schemes, we schedule on and off times of the wireless
transmitters, to guarantee mutual discovery with minimum
power given a specific latency requirement. Neighbor dis-
covery is fundamental to intermittently connected networks,
such as disruption and delay tolerant networks and optimiz-
ing it, can lead to significant overall energy savings.

Using perfect difference sets, our results indicate that we
reduce the latency by up to 10 times at a duty cycle of 2%
compared to the state of the art. We further define and char-
acterize our neighbor discovery scheme with respect to fair-
ness for asymmetric energy scenarios. Using these results,
we allow energy-harvesting applications to adjust neighbor
discovery based on their current energy requirements as a
well defined trade-off.

Categories and Subject Descriptors
C.2.1 [Computer-Communications Networks]: Network
Architecture and Design—Wireless Communication

General Terms
Algorithms, Design, Measurement

Keywords
Neighbor Discovery, Sporadic Connectivity, Wireless Net-
works

1. INTRODUCTION
Detecting the presence of communication partners in com-

munication range is fundamental to intermittently connected
networks, such as disruption and delay tolerant networks. In
real world deployments, applications spend the majority of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ExtremeCom2011, September 26-30, 2011, Manaus, Brazil.
Copyright 2011 ACM XXX-X-XXXX-XXXX-X/11/09 ...$10.00.

their operating time looking for neighbors. Consider the
case of DTN test in Laponia [4], where over the course of
60 days, between 27 nodes, 9575 contacts were recorded, av-
eraging to one contact every 4 h. While contacts are not
distributed evenly, this already hints at the time spent idly
looking for communication partners. Similarly, in sensor
networks used for the observation zebras in the wild [13],
sensor nodes spend the majority of the time without connec-
tivity. Thus, reducing the energy needed during this time
leads to significant energy savings.

In this paper, we show the feasibility of perfect difference
sets. This scheme results in a provably optimal schedule for
neighbor discovery for two communication partners that are
using the same duty cycle. Then, we consider the case, that
two nodes with different energy levels are using different
duty cycles and generalize our approach to the asymmetric
case.

To the best of our knowledge, there is no general frame-
work for energy efficient neighbor discovery yet for wireless
sensor networks and Linux devices. Therefore, we present
a TinyOS framework, as well as a Linux kernel module and
implementation for use in applications in scenarios facing
sporadic communication.

As an example application, we present an energy efficient
podcast sharing application. In this context we also discuss,
how our system deals with neighbors which do not have new
information available and can be ignored.

1.1 Contributions
The main contributions of this paper are:

1. Energy efficient neighbor discovery based on
PDS: We utilize Perfect Difference Sets to discovery
the presence of a neighbor at the provably smallest
energy cost per given latency.

2. Characterization of asymmetric neighbor dis-
covery using PDS: As different nodes are subject
to different energy restrictions, we characterize the be-
havior of PDS based neighbor discovery when the nodes
use different duty cycles.

3. Integration of neighbor discovery into Linux
and TinyOS: We implemented an easy to use frame-
work for Linux as well as for TinyOS to make use of
neighbor discovery schemes.

4. Energy efficient podcast sharing: To show the fea-
sibility of the approach for real applications, we built
an energy efficient podcast sharing application on top
of our Linux framework.

Figure 1: The grid quorum scheme works on a rect-
angular array. Each node selects an arbitrary col-
umn and row in which it turns on its radio. Thus
we can guarantee at least two intersections per pe-
riod.

2. RELATED WORK
We can classify related work into two categories: (1) Neigh-

bor discovery schemes and (2) opportunistic file sharing ap-
proaches. While different approaches for neighbor discovery
exist, they typically don’t consider the asymmetric, or lead
to suboptimal performance. Opportunistic file sharing ap-
plications are a good initial use case, as they provide a useful
service to a user but do not depend on complicated routing
schemes.

2.1 Neighbor discovery schemes
Neighbor discovery can be modeled as a quorum problem.

For this, we divide time into time slots and select slots in
such a way, that we can guarantee mutual discovery in cer-
tain number of slots. Using quorums in computer science
is not a new idea. Researchers typically use them for mu-
tual exclusion problems, see [9, 14], but also for network
topologies and other fields.

Quorums are a set theoretical construct. The construction
of a quorum system can guarantee the intersection between
subsets is not empty. An example of a very simple construc-
tion bases on a Grid array. Maekawa [14] originally designed
this scheme for mutual exclusion. The core idea is to dis-
tribute the time slots of the desired period on a rectangle.
The quorum is generated by selection of an arbitrary column
and row in this rectangle. Following this construction, no
matter which column and row we choose, nodes are guaran-
teed to have at least two intersections with any other node
in the network, see Figure 1.

Distributing the slots on a Torus instead of a square,
Lang and Mao presented a new construction [12]. Instead
of choosing a row and a column, we choose a column and
a diagonal branch of half the length of the perimeter of the
torus. Making use of the wrap-around of the torus, we can
guarantee that for two nodes at least one branch intersects
with the column of the other node. Instead of two intersec-
tions, we now have only one in most, though not all cases.
E-Torus [8] is an extension to this concept, adding addi-
tional branches to create an arbitrary number of guaranteed
intersections.

In 2008, Dutta and Culler presented Disco [3]. Each node
chooses two primes. The node then turns on its transceiver
during time slots which are multiples of these primes. With
the help of the Chinese remainder theorem we can guarantee
a discovery.

Then in 2010, Khandalu presented U-Connect [11]. Each

node chooses a single prime number p. Nodes are active at
each multiple of that prime. When two nodes choose the
same prime, an intersection cannot be guaranteed. There-
fore each node performs a hyper-cycle at the square of the
chosen prime. This means it sends out beacons for d p

2
e slots.

Following the Chinese Remainder Theorem we can guaran-
tee discovery.

As an example of a probabilistic approach, McGlynn in-
troduced the Birthday protocol [15]. A node randomly chooses
if it turns on its radio or not in each slot using weighted prob-
abilities. Making use of the birthday paradox we can give
probabilistic guarantees, that a node meets a neighbor with
very high probability.

In comparison Bluetooth device discovery [1] and WiFi
IBSS discovery [7] do not make use of any scheduled radio
off-times. Thereby, energy-efficiency is comparatively small.

2.2 Applying neighbor discovery
BlueTorrent [10] and PodNet [6] are cooperative P2P file

sharing applications based on Bluetooth and Ad-hoc-Networking
for neighbor discovery and data exchange. Very similar to
our opportunistic podcast sharing application, they make
use of BitTorrent like approaches to maximize the delivery
probability.

The authors of BlueTorrent try to find optimal settings for
the initial bluetooth inquiry and the connection establish-
ment, but the approach still suffers from the energy hunger
of the Bluetooth device discovery. Similarly PodNet treats
device discovery rather simplistic but rather focuses on the
application.

3. SYMMETRIC NEIGHBOR DISCOVERY
In this section, we assume that each node has the same en-

ergy requirements and characteristics. Each node will there-
fore employ the same schedule with respect to activity of its
transceiver. We will begin by formalizing the problem in a
theoretic formulation. Then, we show how Perfect Differ-
ence Sets provide a provably optimal solution for symmetric
neighbor discovery.

3.1 Theoretic Formulation
We assume time is divided into time slots. Furthermore,

we assume discovery is periodical, we therefore have a set S
of |S| slots. A quorum to be used for neighbor discovery has
to fulfill the following four properties: (1) Non-empty inter-
section, (2) non-triviality, (3) equal size, and (4) rotation
closure.

Each subset of S in the quorum system needs to have a
non-empty intersection with each other subset. If there was
an empty intersection, we could not guarantee discovery.

∀Si, Sj ∈ S, i 6= j : Si ∩ Sj 6= ∅

No subset of S can be a superset of the other. The only
quorum system with one subset being a superset of another
would be the trivial quorum system, with the subset being
identical to S.

∀Si, Sj ∈ S, i 6= j : Si 6⊂ Sj

As each node is assumed to have the same energy require-
ment, we require each used subset to be of the same size.

∀Si, Sj ∈ S, i 6= j : |Si| = |Sj |

1

0

1

0

Figure 2: Rotation closure ensures that no matter
by how far time shifts between two nodes, an inter-
section in the active slots still can be guaranteed.
Here two nodes operate with a time shift slightly
larger than a quarter of the period length and still
obtain the desired intersection. Both use the Grid
algorithm.

Finally, we require rotation closure, see Figure 2. For any
Si, Sj , i 6= j with φi,j being the phase offset between i and
j and Ψ(i, t) being the neighbor discovery schedule of node
i at time t with Ψ(i, t) = 1 if i is active at time t:

∀t∃φi,j : Ψ(i, t) = Ψ(j, t+ φi,j) = 1

This last requirement has two consequences: (1) Each
node has the same schedule. There is no node specific ini-
tialization. (2) Nodes are not required to be synchronized
at all. An arbitrary offset leads to a discovery.

3.2 Perfect Difference Sets
Maekawa [14] proved the lower bound for the quorum size

for mutual exclusion and showed that finite projective planes
fulfill this property. Taking the requirement of equal size,
he derives that a quorum for each element of S exists. He
then defines D, the number of quorums in which an element
of S is represented in. As every element is represented in its
own quorum, it must be contained in D − 1 quorums.

Following this, for K being the desired size of the quorum
system, the number of distinct members in S must equal:

N = (D − 1) ·K + 1

As the number of elements in S must be equal to the union
of the elements of all quorums, it follows that K = D.

N =
K ·N
D

⇒ K = D

Therefore, we obtain:

N = (K − 1) ·K + 1

With K = pn + 1, with pn being a power of a prime,
this corresponds to the number of vertices and edges in a
finite projective plane, for which non-empty intersection also
holds. Following [19], we can therefore reduce the problem
of finding the required quorum with finding the appropriate
finite projective plane. Thus, the order of the size of the
quorums with respect to the size of S, N = |S| is:

Table 1: We show the power latency product for
different algorithms and how long a period takes for
a given duty cycle. Keep in mind that p, pi, pj ∼

√
N .

Algorithm power–latency–product 2% 5% 10% 20%

Disco N
pi

+ N
pj

27719 3473 1199 119

E-Torus
√
N + d

√
N
2
e ·B 15625 2500 900 100

Grid 2 ·
√
N − 1 9801 1521 361 81

PDS
√
N 2451 381 91 31

Torus
√
N + d

√
N
2
e 5625 900 225 49

U-Connect p+ d p
2
e 5366 856 176 51

N = p2n + pn + 1

= pn(pn + 1) + 1

⇒ (pn + 1)2 − pn < (pn + 1)2

⇒ size of quorums O(
√
N)

Thus the size of the resulting quorums meets the lower
bound O(

√
N).

For the actual construction of a discovery schedule, we use
the result of Singer [17, 2]. He constructs perfect difference
sets (PDS) from finite projective planes. These are number-
ings of the nodes in finite projective planes, that allow us to
create all elements 0 to N − 1 as the difference between two
elements of this set.

While perfect difference sets originally have a different in-
terpretation, they perfectly fit the quorum properties needed
for neighbor discovery. For a pn, the power of a prime, we
can create quorums of size pn + 1 to cover p2n +pn + 1 slots.

As we can create all differences between 0 to N − 1 for
N = p2n + pn + 1, it follows directly that we have rotation
closure. All quorums have the same size, as they are the
same schedule rotated. The quorums are not trivial and
there is an intersection between all quorums. Therefore,
the slot schedule is exactly the elements from the perfect
difference sets.

To give an example, consider pn = 21 = 2. This results
in the perfect difference set G = {0; 1; 3} for covering sched-
ules of length p2n + pn + 1 = 7, which is the period where
the schedule repeats. Therefore, the complete schedule is
Ψi = {1; 1; 0; 1; 0; 0; 0}. This schedule has a duty cycle of
∼ 43 %. In Table 1, we show the power latency product
for the different neighbor discovery schemes and associated
period lengths for a given duty cycle.

4. ASYMMETRIC NEIGHBOR DISCOVERY
In the context of perpetually running networks, network

nodes have widely differing energy budgets. Consider Tur-
tleNet [18], where researchers equipped turtles with sensor
nodes. Those nodes also include solar panels to harvest en-
ergy. As a subset of turtles are exposed to the sun more,
there energy budget is higher. Other nodes will have to use
a more restrictive duty cycle. Duty cycles are asymmetric.

In this section we discuss fairness in this asymmetric case.
We then characterize how PDS deals with this situation and
how Grid as a very simple approach handles asymmetry.

4.1 Fairness in Neighbor Discovery
Consider the following scenario: Node A and C harvest

10 times more energy than node B. The latency of a neigh-
bor discovery protocol will depend on the node C, the least
active one. Since nodes A and C can spend more energy
on neighbor discovery, they should not be penalized with a
high latency but rather benefit by having a smaller latency.
We capture this intuitive notion in a more formal way by
defining the Energy Gap.

Given two nodes A and B, that can harvest energy eA and
eB respectively. Let eA, eB > 0 and eA ≥ eB . The Energy
Gap between nodes A and B is defined to be the ratio:

αA,B =
eB
eA

Given the above definition, we can now formalize our Fair-
ness criteria. If the energy gap αA,B between node A and
B is closer to 1, the average latency l̄A,B must be smaller.
So, an algorithm is fair, if the following holds:

∀B,C|αA,B ≥ αA,C : l̄A,B ≤ l̄A,C

4.2 Grid
For simplicity, we consider the Grid neighbor discovery

scheme on a n × n grid. The algorithm chooses one row
and one column to be active in. Therefore, there are 2n− 1
active slots out of a total of n2 slots. Thus the duty cycle
is 2n−1

n2 ∼ 2
n

. Accordingly, a more energy constrained node
chooses a greater n.

If two nodesN andM choose values n andm, with n ≤ m,

the energy gap is αN,M ∼
2
m / 2

n
= n

m
. Thus, we must show,

that for two values m1 and m2, with m1 ≤ m2, the average
latency l̄N,M1 is smaller than the average latency l̄N,M2 . In
the following, we will see that this is possible.

Looking at the actual schedule of the Grid scheme, we see
that there are two types of active periods. A long continuous
period of length n for the chosen row and n− 1 single slots
each separated by n−1 inactive slots for the chosen column,
see Figure 1. For two nodes N and M , with two different
parameters n and m with n ≤ m we can guarantee, that one
of the single slots of node N will always intersect with the
long slot of node M , because the long slot length is larger
than the inter-slot spacing of the short slots by construction.

If we assume an equal distribution of offsets, we are on
average m·m

2
away from said intersection, the worst case

being m2. This average case (as well as the worst case)
only depend on the more energy constrained node M . From
this follows that Grid Neighbor Discovery is indeed fair for
asymmetric neighbor discovery, as defined above.

4.3 Perfect Difference Sets
Unfortunately, the internal structure of a perfect differ-

ence set does not exhibit any usable regularity, we can use
to guarantee average discovery latency. Indeed, for specific
rare offset and schedule combinations, where the schedule
lengths are not coprime, there exist wrap arounds, where
no intersection can be found. Examples of this are sched-
ules for the combination of schedule lengths {91; 273} and
{651; 4557}. We did an exhaustive search, and those where
only combinations where nodes have a duty cycle ≥ 1 %. In
practice, however, Perfect difference sets behave fair, as we
will discuss in Section 6.3.

Figure 3: When a node is discovered, an ini-
tial exchange takes place. From this point on, the
node stores an update counter. The update counter
changes as the system state of a node changes, e.g.
when a new podcast becomes available. Only when
this update counter changes, a neighboring node will
connect to the node.

5. IMPLEMENTATION
We implemented the different neighbor discovery schemes

for three different platforms. Initially, we created (1) a
Python simulation. Driven by sensor network applications,
(2) we implemented TinyOS applications, which we used
also for evaluation in the Motelab [5] testbed. Finally, we
also implemented the different neighbor discovery schemes
for (3) the current Linux kernel and build a energy efficient
podcast sharing application. In the following, we discuss our
practical considerations and abstractions.

5.1 Simulations
Although, our initial use case was in sensor networks, we

decided to first implement a very abstract Python simula-
tion. This allowed us to better investigate different ideas
with respect to perfect difference sets, as well as fairness.
Not having to consider environmental factors, such as link
loss and radio mode switching times, we are able to per-
form exhaustive searches, as in Section 6.3, and gather more
statistics.

5.2 TinyOS
One of the most common sensor network operating sys-

tems is TinyOS [16]. It is organized in a very modular
way, and has a variety of backends. Using the common
ActiveMessageC abstraction, we built a Neighbor Discov-
ery Framework that instantly portable to all sensor network
platforms, TinyOS supports. We organized the structure
of our modules in such a way, that the neighbor discovery
algorithm is exchangeable very easily. For our evaluation,
we then also implemented the algorithms presented in the
related work. 1

5.3 WiFi
We make use of generic callbacks in the Linux Wireless

mac80211 kernel module to the wireless hardware device’s
driver. These callbacks, named IEEE80211 operations, al-
low us to stay independent of the different specific hardware
implementations. We implement one additional method into
the mac80211 module to control the start and stop callback

1We plan to make the source code available after publica-
tion.

0

20

40

60

80

100
P

e
rc

e
n

t

4
9

6

3
5

7
1

2
12

4

1
3 1
3 1

7

7

1
1

Incons is tent Disc.
One-Sided Disc.

Disco
ETorus

Grid
PDS Torus

UConnect

0

5000

10000

15000

20000

25000

30000

P
e
ri
o
d
le
n
g
th

2
7
7
1
9

1
5
6
2
5

9
8
0
1

2
4
5
1

5
6
2
5

5
3
6
6

Disco
ETorus

Grid
PDS Torus

UConnect

Figure 4: Results of tests on Motelab with an ap-
plied duty cycle of 2% to every algorithm. Incon-
sistent and one-sided discovery errors (left). Period
lengths in number of slots (right).

functions and export it to kernel space. In addition, we
build a new kernel module, LiND_pwr, which uses the ex-
ported method and provides a character device to user space.
Thus, applications can control the power of the WiFi de-
vice’s transmitter by writing to /dev/LiND_pwr. Our design
allows an easy exchange of the neighbor discovery applica-
tion, which implements the specific neighbor discovery al-
gorithm. Beacons are injected and captured by setting the
operation state of an additional virtual network interface to
monitor-mode. Our beacons include an integer value, called
“updateCounter”. This value serves as indicator in order to
determine, if it makes sense to contact a previously discov-
ered node again. A request is initiated by sending a reply
beacon, which would inform the intended receiver to stay
continuously active during the exchange of additional data
over TCP/IP, see Figure 3. Data is forwarded BitTorrent-
like. This supports the continuation of previously inter-
rupted transmission via different nodes.

6. EXPERIMENTAL RESULTS
Aside from initial experiments and the exhaustive search

for asymmetric discovery latency for PDS, all experiments
were performed on real nodes. The sensor network experi-
ments were conducted using Motelab [5]. We used a fixed
slot length of 100 ms for the Motelab and for the WiFi tests.

6.1 Motelab
The tests were run for half an hour for each algorithm,

as this is the longest continuous, for which we could contin-
uously access the Motelab testbed. This is a restriction of
Motelab on which we had no influence. The analyzed duty
cycles were 2%, 5%, 10% and 20%.

We used two metrics to measure the quality of an algo-
rithm: (1) Inconsistent Discoveries and (2) One-Sided Dis-
coveries. The former is, when for a fixed nodes, another
node which is known to be in radio range is not detected in
a discovery period, so, how often a discovery fails. The latter
is, when one node discovers the presence of the other, but
not vice-versa, therefore, the asymmetry in the discovery.

As seen in Figure 4, for a duty cycle of 2% only PDS has
a sufficiently short period length of 245.1 s ∼ 4 min, also

0 1000 2000 3000 4000
time [ms]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

p
o
w
e
r
[W

]

Figure 5: This diagram shows the overall power
consumption of the wireless device running in ad
hoc mode.

0 1000 2000 3000 4000
time [ms]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

p
o
w
e
r
[W

]

Figure 6: This diagram shows the power consump-
tion of the ad hoc mode in combination with LiND_pwr

using the U-Connect neighbor discovery algorithm.

compare Table 1. In general, for algorithms that produce
long periods of consecutive active slots, such as Grid, the
above-mentioned quality metrics are better. This coincides
with the requirement of less radio mode switching, which
might lead to better results for higher duty cycles. Keep in
mind, there is no coordination necessary between the nodes
in any way, see Section 3.1.

6.2 WiFi Tests
Switching a WiFi device’s radio transmitter off or on

takes a specific period of time and consumes additional power,
which varies between different hardware models and ven-
dors. To toggle our test device, a TL-WN422G USB adapter,
from off to on or vice-versa, constantly takes 12 ms. During
one complete switch, from off to on and back to off again,
the device is additionally powered 14 ms of the overall pe-
riod of 24 ms. However, using a neighbor discovery scheme
like U-Connect with a maximum discovery latency set to 10
s, we achieved discovery within an average latency time of
3.2 s, while the WiFi transmitter is powered only 17% of the
time. The average energy consumption of our wireless de-
vice during an on state is 90 mW higher than in an off state.
Visualizations of our power measurements, see Figure 5 and
6, recorded with an oscilloscope (Tektronix TDS 2024B), il-
lustrate the significant energy savings of the application of
our LiND_pwr kernel module compared to continuous Ad-hoc
mode.

6.3 Asymmetric Discovery
Figure 7 shows the comparison of a perfect different set

of length 553 to larger perfect difference sets. In general, we

5
5

3

6
5

1

7
5

7

8
7

1

9
9

3

1
0

5
7

1
4

0
7

1
7

2
3

1
8

9
3

2
2

5
7

2
4

5
1

2
8

6
3

3
5

4
1

3
7

8
3

4
1

6
1

4
5

5
7

5
1

1
3

5
4

0
3

6
3

2
1

6
6

4
3

6
9

7
3

8
0

1
1

9
5

0
7

perfect difference set of length

0

1

2

3

4

5

6
m

e
e
ti

n
g
 p

o
in

ts
 n

o
rm

a
liz

e
d

to
 l
e
n
g
th

 o
f

lo
n
g
e
r

o
n
e

95%

100%

perfect difference set of length 553 vs.

Figure 7: We compare the PDS of length 553 to
larger PDSs. While we normalize the y-axis to the
length of the longer PDS, we notice in the boxplots,
that even though the worst case performance, see
the 100 percentile line, is not favorable, the big ma-
jority of discoveries happens within the length of
the longer PDS, also consider the 95 percentile line.
They actually happen faster than with Grid, espe-
cially as we consider longer PDSs.

observe, that while we cannot prove the fairness of perfect
difference sets theoretically, they behave fair and useable
for duty cycles typically found in applications. We therefore
showed, that perfect difference sets are useable and bene-
ficial approach, not only in theory but also in praxis for
symmetrical and asymmetrical asynchronous neighbor dis-
covery.

7. CONCLUSIONS
We presented an energy efficient neighbor discovery scheme

based on perfect difference sets with the provably optimal
power-latency trade-off, which does not require any coordi-
nation between nodes. We defined fairness for asymmetric
neighbor discovery, proved the Grid scheme to be fair, and
showed that our scheme behaves fair for duty-cycles used in
practice. We implemented a neighbor discovery framework
into Linux and TinyOS for general use. Finally, we used our
framework to build a podcast sharing application. In this
context we show, how to deal with nodes which are present,
but do not have new available data and can be ignored.

Acknowledgements
This research was funded in part by the DFG Cluster of Ex-
cellence on Ultra High-Speed Mobile Information and Com-
munication (UMIC), German Research Foundation grant
DFG EXC 89. We would like to thank Ragesh Jaiswal and
Amitabha Bagchi of IIT, Delhi for early feedback.

8. REFERENCES
[1] Bluetooth SIG. Bluetooth technical core specification

version 4.0, 2010. http://www.bluetooth.org/Technical/
Specifications/adopted.htm.

[2] Colbourn, C., and Dinitz, J. Handbook of combinatorial
designs. CRC press, 2006.

[3] Dutta, P., and Culler, D. Practical asynchronous
neighbor discovery and rendezvous for mobile sensing
applications. In Proceedings of the 6th ACM conference on
Embedded network sensor systems (2008), SenSys ’08,
pp. 71–84.

[4] Farrell, S., McMahon, A., Meehan, E., Weber, S.,
Lynch, A., Hartnett, K., and Brodie, S. Report on an
arctic summer dtn 2010 trial. Tech. rep., Trinity College,
Dublin, Ireland, 2011. DRAFT 2011-05-18
Work-in-progress.
http://dtn.dsg.cs.tcd.ie/n4c-summer10/summer10.pdf.

[5] Harvard University. Motelab.
http://motelab.eecs.harvard.edu/.

[6] Helgason, O. R., Yavuz, E. A., Kouyoumdjieva, S. T.,
Pajevic, L., and Karlsson, G. A mobile peer-to-peer
system for opportunistic content-centric networking. In
MobiHeld (Sept. 2010).

[7] IEEE. IEEE Standard for Information technology, Part 11:
Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) specifications, 2007.

[8] Jiang, J.-R., Tseng, Y.-C., Hsu, C.-S., and Lai, T.-H.
Quorum-based asynchronous power-saving protocols for
ieee 802.11 ad hoc networks. Mob. Netw. Appl. 10
(February 2005), 169–181.

[9] Joung, Y.-J. Quorum-based algorithms for group mutual
exclusion. IEEE Transactions on Parallel and Distributed
Systems 14 (2003), 463–476.

[10] Jung, S., Lee, U., Chang, A., Cho, D.-K., and Gerla,
M. Bluetorrent: Cooperative content sharing for bluetooth
users. In Proceedings of the Fifth IEEE International
Conference on Pervasive Computing and Communications
(Washington, DC, USA, 2007), IEEE Computer Society,
pp. 47–56.

[11] Kandhalu, A., Lakshmanan, K., and Rajkumar, R. R.
U-connect: a low-latency energy-efficient asynchronous
neighbor discovery protocol. In Proceedings of the 9th
ACM/IEEE International Conference on Information
Processing in Sensor Networks (2010), IPSN ’10, ACM,
pp. 350–361.

[12] Lang, S., and Mao, L. A torus quorum protocol for
distributed mutual exclusion. In Proc. of the 10th Int’l
Conf. on Parallel and Distributed Computing and Systems
(1998), Citeseer, pp. 635–638.

[13] Liu, T., Sadler, C., Zhang, P., and Martonosi, M.
Implementing software on resource-constrained mobile
sensors: experiences with impala and zebranet. In
Proceedings of the 2nd international conference on Mobile
systems, applications, and services (2004), ACM,
pp. 256–269.

[14] Maekawa, M. A
√
N algorithm for mutual exclusion in

decentralized systems. ACM Trans. Comput. Syst. 3 (May
1985), 145–159.
http://doi.acm.org/10.1145/214438.214445.

[15] McGlynn, M. J., and Borbash, S. A. Birthday protocols
for low energy deployment and flexible neighbor discovery
in ad hoc wireless networks. In Proceedings of the 2nd ACM
international symposium on Mobile ad hoc networking &
computing (2001), MobiHoc ’01, ACM, pp. 137–145.

[16] Pillip Levis et al. TinyOS, 2010.
http://www.tinyos.net/, accessed 24.11.10.

[17] Singer, J. A theorem in finite projective geometry and
some applications to number theory. Trans. Amer. Math.
Soc. 43 (1938), 377–385.

[18] Sorber, J. Into the wild: taming uncertainty in perpetual
mobile networks. In Proceedings of the 2009 MobiHoc S 3
workshop on MobiHoc S 3 (2009), ACM, pp. 41–44.

[19] Tien-Tsin, W.-S. L., shing Luk, W., and tsin Wong, T.
Two new quorum based algorithms for distributed mutual
exclusion. In 17th International Conference on Distributed
Computing Systems (1997), IEEE, pp. 100–106.

http://www.bluetooth.org/Technical/Specifications/adopted.htm
http://www.bluetooth.org/Technical/Specifications/adopted.htm
http://dtn.dsg.cs.tcd.ie/n4c-summer10/summer10.pdf
http://motelab.eecs.harvard.edu/
http://doi.acm.org/10.1145/214438.214445
http://www.tinyos.net/

	Introduction
	Contributions

	Related Work
	Neighbor discovery schemes
	Applying neighbor discovery

	Symmetric Neighbor Discovery
	Theoretic Formulation
	Perfect Difference Sets

	Asymmetric Neighbor Discovery
	Fairness in Neighbor Discovery
	Grid
	Perfect Difference Sets

	Implementation
	Simulations
	TinyOS
	WiFi

	Experimental Results
	Motelab
	WiFi Tests
	Asymmetric Discovery

	Conclusions
	References

