
Scalable Symbolic Execution of Distributed Systems
Raimondas Sasnauskas, Oscar Soria Dustmann,
Benjamin Lucien Kaminski, and Klaus Wehrle
Communication and Distributed Systems (ComSys)

RWTH Aachen University, Germany
firstname.lastname@comsys.rwth-aachen.de

Carsten Weise and Stefan Kowalewski
Embedded Software Laboratory

RWTH Aachen University, Germany
lastname@embedded.rwth-aachen.de

Abstract—Recent advances in symbolic execution have pro-
posed a number of promising solutions to automatically achieve
high-coverage and explore non-determinism during testing. This
attractive testing technique of unmodified software assists devel-
opers with concrete inputs and deterministic schedules to analyze
erroneous program paths.

Being able to handle complex systems’ software, these tools
only consider single software instances and not their distributed
execution which forms the core of distributed systems. The step
to symbolic distributed execution is however steep, posing two
core challenges: (1) additional state growth and (2) the state
intra-dependencies resulting from communication.

In this paper, we present SDE—a novel approach enabling
scalable symbolic execution of distributed systems. The key
contribution of our work is two-fold. First, we generalize the
problem space of SDE and develop an algorithm significantly
eliminating redundant states during testing. The key idea is
to benefit from the nodes’ local communication minimizing the
number of states representing the distributed execution. Second,
we demonstrate the practical applicability of SDE in testing with
three sensornet scenarios running Contiki OS.

I. INTRODUCTION

Symbolic execution [1] of unmodified programs has been
continuously proving its efficacy and practical capabilities
when applied to complex software for testing. The prominent
examples range from unassisted testing of GNU core utilities
[2] and execution synthesis of multi-threaded programs [3],
to reverse engineering of binary device drivers [4] and testing
NASA space networks [5]. Running programs on symbolic
rather than concrete input is an attractive way of software
analysis: First, it explores dynamic execution paths at high-
coverage giving early insight into a program’s behavior and
possible corner-cases. Second, symbolic execution automati-
cally generates concrete test cases for each explored execution
path enabling execution replay with controlled and detailed
post mortem analysis.

The combination of concrete input and deterministic path
information have been the key challenges in distributed sys-
tems’ testing. Even if failures are detected, it is not trivial to
locate, replay, and narrow down their root-causes. Particularly,
the distributed nature of the software and its environment in-
evitably contain a number of non-deterministic failure sources
making testing difficult and labor-intensive.

Extending symbolic execution to distributed systems testing
presents certain challenges: Instead of testing a single node, a
network of k nodes has to be symbolically executed increasing

the inherent problem of state explosion. In addition, the
nodes under test communicate with each other and therefore
require a realistic network model to reflect the tested topology.
Consequently, the emerging execution paths are not isolated
anymore but affect each other during communication over the
network.

We tackle these problems with symbolic distributed exe-
cution (SDE)—our approach enabling efficient and scalable
symbolic execution of distributed systems. The key challenge
in SDE is to keep the minimal set of states representing the
symbolic state of a distributed system. We developed an online
algorithm to solve this problem and show its efficacy applying
SDE to real sensornet software. Next to the evaluation, we
also present the complexity bounds of SDE and discuss its
practical implications. The ideas presented in this paper are
general and thus can be easily integrated into any existing
symbolic execution framework.

The remainder of this paper is structured as follows. Section
II gives a basic overview of symbolic execution and outlines
the problem statement of SDE. We detail on our solutions in
Section III. Next, Section IV presents evaluation results. While
highlighting our contributions we also discuss the limitations
of our approach. We relate SDE to existing efforts in Section
V and conclude in Section VI.

II. PRELIMINARIES

A. Background: Symbolic execution

The basic idea of regular symbolic execution can be de-
scribed as follows: run one instance of an unmodified program
on symbolic input instead of using a concrete or random value.
A symbolic input is a set of possible input values, represented
as a constraint of the values. As long as we have not gained
any further information on possible restrictions of values, the
constraint is simply true, implying all values are valid. For an
unsigned, byte-sized integer, the constraint true would mean
the variable can have any value from 0 to 255.

Upon reaching a branch statement based on a symbolic
value (e.g., symbolic packet header), the execution forks the
active program state and follows both branches in parallel,
collecting according path constraints. As a simple example, if
the execution branches due to a test whether x < 50 where
the original constraint on x was x 6= 0, then the additional
constraints would be x < 50 and x ≥ 50. Afterwards,
the new path constraints would be x 6= 0 ∧ x < 50 and



int x = symbolic_input();
...
if (x == 0)

if (x < 50)

if (x > 10)

Path 1: { x = 0 } 
Path 2: { 10 < x < 50 }
Path 3: { x ≠ 0 ∧ x ≤ 10 }
Path 4: { 50 ≤ x }

Testcase 1: x = 0 
Testcase 2: x = 42
Testcase 3: x = -7
Testcase 4: x = 314

Fig. 1. Given x as symbolic input, regular symbolic execution explores four
unique execution paths. The exploration of each execution path is isolated and
independent from other paths. Here, the branch where the respective condition
is true is drawn on the left side, where in the right branch, the condition is
false.

(x 6= 0 ∧ x ≥ 50) ≡ x ≥ 50. Note that the emerging
execution paths do not affect each other and can be analyzed
independently. Solving these constraints for each explored path
provides developers concrete values, that is, test cases to replay
a bug or particular program behavior (cf. Figure 1).

B. Problem statement

Lifting regular symbolic execution to symbolic distributed
execution (SDE) of k networked programs requires to execute
k-ary sets of states, one for each node. To identify the node of
a program state, we first assign to each state s a node id and
then write node(s). The major challenge in SDE is that states
of different nodes can communicate and thus affect each other
by exchanging data packets. In a concrete network scenario,
a packet has precisely one recipient, namely the destination
node1. If the network was executed symbolically, however,
there may be several states with the same node id. We refer to
the decision, which states are to receive a packet and which
are not, as the state mapping problem (see an exemplary line
topology in Figure 2).

We define the communication history h(s) of a state s as
the sequence of packets that were sent or received by s. The
communication history of a state can be thought of as a log of
all outgoing and all incoming packets, where all packets that
are exchanged in the network are assumed to be unique and
distinguishable from each other. The communication history
is not required to be stored: it is simply a construct to find a
solution for the state mapping problem.

Two states s, t are said to be in direct conflict if their
communication histories are contradictory, i.e., if s sent a
packet to node(t) that was not received by t, or if t received a
packet from node(s) which was not sent by s (and vice versa
for s and t exchanged)2.

Note that two states can be logically conflicted, even if they
are not in direct conflict. For instance, consider a multi-hop
data collection protocol in a line setup with nodes 1, . . . , k that
forward each packet from node i to i+ 1 for i < k. Assume
there are two distinct states s1, s′1 on node 1 and s1 transmits
a packet to its neighbor, node 2, which in turn forwards the
data to node 3. Upon reception of the packet at the state s3
on node 3, s′1 and s3 are intuitively in conflict, because s3

1We can simulate broadcast and mutlicast transmissions by simply sending
a series of unicast packets.

2We may want to model packet drops in SDE, but this is done in an upper
layer. Here, we consider a network model with ideal conditions, i.e., no node
and network failures.

?

node 1 node 2 ... node k

Fig. 2. In SDE, each node spans a number of execution paths having the
same node id. If an execution state on a node transmits a packet, one of the
challenges is to efficiently determine the receiving state(s) on the target node.

received a packet that originated from node 1 = node(s′1)
although the state s′1 did not send it. Nevertheless, s3 and s′1
are not in direct conflict, because no packet was sent from
node 1 to 3 directly or vice versa. However, given a set of
states S with at least two logically conflicted states s, t ∈ S
there is an extension T ⊇ S such that there are at least two
states u, v ∈ T that are in direct conflict.

Thus, our goal is to construct an online algorithm that
decides the state mapping problem efficiently, detecting and
resolving state conflicts during SDE.

III. STATE MAPPING ALGORITHMS

In this section we present three algorithms to solve the
state mapping problem. Starting with a simple solution without
regard of scalability, we demonstrate the idea and challenges
of SDE in more detail. After describing the first algorithm, we
discuss its drawbacks and introduce improvements leading to
a scalable solution.

A. Brute Force Copy on Branch

Any distributed system can be modeled and simulated in a
discrete event simulator where all the communication between
the nodes occurs within one monolithic application, namely the
simulator itself. Given this setup, the “parallel” execution of
the nodes is simulated by a discrete event scheduler or a fair
scheduling such as FIFO, whereas the data communication is
handled by a network model.

This way, we can consider the whole simulator as one single
program state and execute it symbolically. In each step, the
symbolic execution would proceed with one instruction, i.e.,
it would execute one instruction of the simulator code.

In this setting, however, the information of independent
nodes is lost as each state in the symbolic execution rep-
resents a complete distributed system. If the code of any
simulated node branches into separate execution paths, the
entire simulation and therefore all other simulated nodes would
be branched as well, since the symbolic execution agent
cannot distinguish the simulator and the simulated code. The
execution of this hypothetical setting is correct, however, it is
highly impractical. First, the size of each execution state is
very large leading to fast memory growth during branching.
Second, the redundant execution of code cannot be eliminated
since the logic of the distributed system is hidden inside the
state.

The Copy On Branch (COB) algorithm mimics exactly the
described behavior without representing a state as a complete



dscenario 2 dscenario 1
t

dscenario 1
1 2 3

1 1 2 3

1 1 2 2 3 3

1 12 23 3

Fig. 3. The symbolic branch of node 1 would lead to a dscenario with more
than one state on node 1. Thus, the state mapping phase (gray shaded block)
forks the states on node 2 and 3 to create two separate dscenarios as a direct
response to the first branch. Note that the dscenario is changed although there
is no transmission whatsoever.

simulation. Here, the distributed system consists of exactly
one execution state per node.3 These are distinct states that
can branch independently during SDE and send packets to
other states. Upon packet transmission, the state mapping
algorithm must now decide which states shall receive a given
packet. For this purpose, COB introduces distributed scenarios
(dscenario for short). A dscenario is the representation of one
of the execution states in the hypothetical network simulation
discussed earlier. We define a dscenario as a set of states
N = {s1, . . . , sk}.

In this representation, the delivery of a transmission is
processed by identifying the receiver simply by examining the
sender’s dscenario and the destination node of the packet. Such
a lookup can be implemented in constant time. In addition,
execution states may branch during symbolic execution due
to symbolic input (e.g., symbolic user input). We must react
to this situation as there cannot be more than one state per
node per dscenario. Resolving this conflict is done by forking
all remaining states of the respective dscenario, as shown
in Figure 3. Such conflict resolution is done independently
from any packet transmission because the dscenario creation
is triggered by local state branches only. Thus, all states
can communicate arbitrarily without requiring any further
modification of the current state space.

All COB operations can be implemented efficiently, but this
algorithm scales poorly due to the high number of duplicate
states. In this context, duplicate states are two or more states
with the same configuration (e.g. heap, stack, program counter,
path constraints, and the communication history). Executing
duplicate states is pointless, as they cannot discover different
code and are only wasting memory and overall SDE time.
On the other hand, COB is a correct state mapping and any
other algorithm must cover all dscenarios generated by COB.
Therefore, more sophisticated state mapping algorithms must
discover the same code as COB, but produce less duplicate
states, ideally none.

3Both the scheduler and the network model are now a part of SDE.

dstate 1

dstate 2 dstate 1
t

1 2 3

1 1 2 3

1 1 2 3

1 2 3

1 1 2 2 33

1 2 3

Fig. 4. After a symbolic branch, one state of node 1 is about to transmit
a packet (dashed arrow) to node 2. This would change the communication
history of the left state of node 1, such that it conflicts with its sibling. As a
result, any communication of the right state (of node 1) with node 2 would
be inconsistent. Thus, the state mapping phase (gray shaded block) forks the
states on nodes 2 and 3 creating two separate dstates as a direct response
prior the actual packet delivery (solid arrow).

B. Delayed Copy on Write

Keeping track of each possible dscenario, as it could have
developed by a concrete execution, as done by COB, is
very expensive: The large number of duplicate states slows
down the execution without discovering new code. The key
to achieving a low duplication is to broaden the concept
of a dscenario to allow more than one state per node. We
have introduced the notion of dscenarios as a set of k states
in the previous section. In a dscenario, we allowed exactly
one state per node, which is the natural representation of
a distributed system. We will now loosen this requirement,
introducing a dstate (distributed state) allowing several states
per node. However, states of the same node must have the
same communication history (cf. Section II-B) to be allowed
within the same dstate. We call such states conflict-free. Note
that a dstate is not necessarily the maximal set of conflict-free
states; We only forbid conflicted states to be elements of the
same dstate.

In the Copy On Write (COW) algorithm, branching a state
due to symbolic input will simply add the newly created
state to the same dstate as its predecessor without forking
the rest of the dstate’s states. In our example in Figure 3
where the state of node 1 branched into the states s+1 and
s−1 , we simply represent the two distinct dscenarios as just
one dstate {s+1 , s

−
1 , s2, s3}. This is admissible, because the

newly branched states s+1 , s
−
1 have the same communication

history—they only differ in their constraints due to the branch
condition that triggered the fork. Intuitively, a dstate reflects
dscenarios with the same communication history, i.e., the
series of transmissions between all states of the dstate.

In a network without communication, it would be sufficient
to execute all nodes independently. States could be branched
locally without forking the rest of the dstate: As the nodes do
not communicate, the distinction of dscenarios is unnecessary
since there cannot be any conflicts. This way, we could run the
complete symbolic execution with just one dstate. Communi-



cation however implies that a more sophisticated approach is
needed. Assume, for example, a dstate D where node 1 has
more than one state. For example, let s, s′, t, u ∈ D where
node(s) = node(s′) = 1, node(t) = 2, and node(u) = 3.
Now, if s sends a packet to node 2, while s′ does not, this will
introduce a conflict: In the context of s, the state t receives
the packet, while in the context of s′, the state t does not
receive the packet. Consequently, the communication histories
of s and s′ differ—in the history of s there is a packet that is
not in the history of s′.

A prerequisite of COW is that a dstate contains only states
that are pairwise conflict-free. Hence, after the transmission
a dstate cannot contain both s and s′. Therefore, we create a
new dstate for the sending state s and fork all states of the
original dstate except s′. Second, we assign the newly created
states to the new dstate and deliver the packet of s inside this
new dstate (cf. Figure 4).

Before packet delivery both dstates have the same commu-
nication history. During state duplication we only introduce
duplicate states without violating the dstate properties (we
do not introduce any conflicts). After packet delivery the
communication history of some of the states in the new dstate
changes without causing conflicts.

COW performs significantly better than COB (cf. Section
IV) as only pending conflicts upon data transmission trigger
state duplication. Therefore, a network with very little com-
munication will lead to a moderate state growth. However,
there are still duplicate states, namely the states of the nodes
that were neither senders nor receivers regarding one particular
transmission (cf. Figure 4, third node).

C. Super DStates

The COW state mapping algorithm can be implemented
very efficiently and delivers sufficient results for a small num-
ber of communicating nodes or a small number of transmis-
sions (cf. Section IV). However, this algorithm is not scalable
as the state duplication significantly grows with increasing
network size.

To eliminate the remaining duplication sources during state
mapping we have to reconsider the types of the states and
their roles in a conflict situation. Independently from the state
mapping algorithm, for any given packet to be transmitted
from state s to node d there are four types of states:

1) sender: the state s where the packet is originating from.
2) targets: the non-empty state-set of node d that is chosen

by the respective state mapping algorithm to receive the
packet. For COB, this is a singleton set, but for COW,
the set can be arbitrarily large as the number of states
per dstate and node is not limited.

3) rivals: the set of states of the same node as the sender
that could send or receive a packet to or from at least
one of the targets. Since the sender is explicitly excluded
from the rival-set, by design there are never rivals for
COB. For COW, however, this set can be arbitrarily large
for the same reason as for the targets.

node 1

node 2

node 3

node 4

s r r

t t

b b b

b

dstate 1 dstate 2

s: sender
t: targets
r: rivals
b: bystanders

Fig. 5. An exemplary network with four nodes in a line setup (from top
to bottom) during SDE using the COW state mapping algorithm. There are
two dstates in the system and the left execution state in dstate 1 on node 1
is about to send a packet to node 2. As node 2 of dstate 1 has two execution
states, the sender has two targets. The other two states on the sender’s node
are its rivals. The four states on node 3 and 4 are bystanders as the packet is
meant to be transmitted from node 1 to node 2.

4) bystanders: a state b is called bystander, if b could ex-
change packets with s or one of the targets. In addition,
we restrict the set of bystanders to exclude all states
from the nodes d and node(s). For COB and COW the
bystanders are simply all the states in a dscenario/dstate
except the sender, the targets, and the rivals.

The relationship between sender, targets, rivals, and by-
standers is illustrated in Figure 5.

COW does not fork the sender nor any of its rivals, but all
other states in the same dstate as the sender, i.e., all targets
and bystanders. The target copies are not duplicates as they
receive the packet while the original target states do not.
However, all bystanders are forked as well because every state
belongs to exactly one dstate. These are pure duplicates not
differing from their original. If the total number of nodes k
is considered to be significantly larger than 2, the number of
non-bystanders is expected to be negligible compared to the
number of bystanders. Therefore, for each state mapping, the
state duplication rate using COW is expected to be very high.

In the remainder of this section we present our approach
to completely eliminate the duplication of bystanders. We
first present the basic idea and the intuition of the algorithm.
Second, we conclude the section with a detailed description
of the algorithm itself.

Our idea is to fork only the targets and therefore have
an efficient state mapping algorithm in terms of the number
of states required to hold the symbolic state of a distributed
system. As opposed to COW, each state is not limited to be an
element of exactly one dstate: We modify the definition of a
dstate to allow states to be in several (but at least one) dstates.
Note that this does not contradict the restriction that all states
of one dstate must be pairwise conflict-free. However, finding
targets for a packet transmission is not as straight-forward as
for COW, because they may belong to an arbitrary number of
dstates.

We introduce the notion of a super-dstate which is a set
of all dstates one particular state is an element of (i.e., a
super-position of a state’s dstates). Hence, this state mapping



Fig. 6. The concept of virtual states in SDE. Each execution state has
at least one virtual state (single virtual states not shown here). In contrast
to COW, SDS only forks a bystander’s virtual state, but the actual state
remains unchanged. Thus, each execution step of the state sb corresponds
to an execution step of each of its virtual states.

algorithm is called the super dstate mapping algorithm, or SDS
for short. Instead of considering the super-dstates explicitly,
we pretend to branch bystanders just as the COW algorithm
would do. But instead of branching an actual bystander-state
sb we branch a virtual state that is associated with each sb.

A virtual state is simply a reference to the actual state
in SDE (cf. Fig. 6). Conceptually, the SDS algorithm is
equivalent to COW executed on a set of virtual states that
are all associated with the actual states. Introducing virtual
states has the advantage that every virtual state can be in
exactly one dstate, but technically we have to execute logically
equivalent states only once, preserving execution time and
memory consumption. Thus, every state has at least one virtual
state but can be associated with an arbitrarily large number
of virtual states. The virtual states of one state specify its
super-dstate, because each virtual state is in exactly one dstate.
After running COW on the virtual states, all virtual mapping
decisions must be propagated back to the actual states in the
system. In the following, we describe the algorithm in four
consecutive phases.

1) Finding targets: Determining the targets for a given
packet from the sender-state s to the destination node d is
done by examining all virtual states Vs of s. For each vs ∈ Vs,
we determine the virtual targets V t(vs) in the unique dstate of
vs. The targets are then all execution states that are associated
with any virtual state vt ∈

⋃̇
vs∈Vs

V t(vs). Since the sender
can have α ≥ 1 virtual states, we are transmitting α identical
packets in the virtual abstraction. In Figure 8(a), for instance,
the sender state has five virtual targets.

2) Finding rivals: Similar to COW, all virtual states vr that
share the same dstate with a sending virtual state vs, point to
the rivals of s. We refer to the vr as direct rivals. Furthermore,
all virtual states vR that share a dstate with a target but not
the sender are referred to as super-rivals. In Figure 8(a), a
transmission is depicted where the sending state has both direct
rivals and super-rivals. In this case there is one target that
belongs to both dstate 2 and 3. Therefore, all virtual states of
dstate 3 on node 1 are super-rivals. All in all, there is a total
of three virtual states that are direct rivals in dstates 1 and 2.

To find the super-rivals we traverse all dstates D that include
at least one virtual target. Afterwards, every virtual state on the

node 1

node 2

node 3

node 4

s

ttt t

bbb

bbb

dstate 1

RRR

dstate 2

s: sender
t: targets
r: direct rivals
b: bystanders
R: super-rivals

Fig. 7. An input for the SDS algorithm resulting in no direct rival but
a super-rival for the sender. This is resolved by forking the respective target
state and reassigning the available virtual states. Intuitively, this is like cutting
the connection between the virtual states, as they cease to share the same
communication history. Note that the number of virtual states in the involved
dstates is arbitrary, as long as there is at least one state per node.

sender’s node is either a sending virtual state vs, a super-rival
vR, or a direct rival vr.

3) Forking condition: All targets that share at least one
dstate with at least one direct rival are forked to resolve
conflicts. The target state is forked exactly once, as there are
only two possibilities for this state: either to receive or not
receive the packet. The actual number of rivals in the super-
dstate is irrelevant.

A target state whose super-dstate contains no rivals (of any
kind) is not forked, because there is no conflict during the
pending transmission. For such a target state there is only one
state s on the sender’s node, namely the sending state.

4) Virtual forking: After forking the target state t its virtual
states have to be assigned to either t or its new sibling t′, but
not both. Without loss of generality, t will receive the packet,
while t′ will not. Up to this point, t′ has no virtual states yet,
as it was just created. We consider each virtual state vt of the
original target state t separately:

If there are direct rivals in the dstate D of vt, then all virtual
states of this dstate are forked because of the direct rivals. The
thereby newly created virtual states are assigned (1) to a new
dstate which is then added to the respective super-dstates of
t, and (2) to all bystanders in D. This is precisely what COW
does with actual execution states instead of virtual states (cf.
Section III-B).

If there are super-rivals, as depicted in Figure 7, but no
direct rivals, vt is only moved to t′ without changing vt’s
dstate. In this case, we do not have to fork vt, because its
dstate does not contain a sending virtual state. Therefore, t
does not need a copy of it as there is no virtual packet sent
in this dstate.

After the state mapping, the example in Figure 8(a) has been
transformed into Figure 8(b).

D. Discussion

Minimizing state duplication is the key to efficient SDE.
Our first and most basic algorithm, namely COB, produces
a high number of duplicates but is intuitively correct as it
mimics the symbolic execution of a monolithic simulation of
the network. The number of duplicates is reduced by COW



node 1

node 2

node 3

node 4

sr

b b

t t t

b

dstate 1

s r r

t t

b b b

b

dstate 2

R R

dstate 3

s: sender
t: targets
r: direct rivals
b: bystanders
R: super-rivals

(a) The sender state has two virtual states (dashed line), therefore virtual transmissions are made in two dstates, namely dstate 1 and dstate 2.
The rightmost virtual target in dstate 2 belongs to the same state as another virtual state on dstate 3. Thus, all virtual states of node 1 in dstate
3 are super-rivals. In total there are 5 virtual rivals, which may translate to 3–5 execution states. The reason for the lower bound 3 is, that the
maximal number of virtual targets in the same dstate is 3 (in dstate 1) and no two virtual states in the same dstate can be associated with the
same execution state.

node 1

node 2

node 3

node 4

s

t t t

dstate 4dstate 1

s

t t

dstate 5 dstate 2 dstate 3
s: sender
t: targets

(b) After the conflict resolution, all dstates with direct rivals are forked. Note how no bystander has been forked (only their virtual states are
forked). Each target state has been forked not more than once.

Fig. 8. A conflict resolution with SDS. Figure 8(a) shows an input for the SDS algorithm, and its output in Figure 8(b). In both, we show only the virtual
states and indicate when two virtual states belong to the same execution state by drawing a dashed line between them.

which introduces dstates to model non-conflicted dscenarios.
However, there is still significant state duplication in COW
for large networks as for each packet all bystanders are
unnecessarily duplicated. We have removed this duplication
by adding a layer of indirection, namely executing COW on
virtual states.

We sketch the proof for the non-duplication property of
SDS by a contradiction argument, starting from the premise
that the algorithm is correct. By non-duplication we mean
that no duplicates, i.e., states with the same configuration
are ever generated by the algorithm. We assume a general
reactive model that (1) does not analyze a series of state
mappings and (2) does not perform state backtracking. Most
importantly, the state mapping algorithm has neither access
to states’ configurations, nor to the packets’ content and their
time stamps.

Assume that the SDS state mapping algorithm outputs
duplicate states t, t′. By construction, we only fork target states
on the destination node. In addition, no state is ever forked
twice or more in one state mapping invocation. Independent
from the conditions that led to the forking of t and t′, we
will deliver the transmission that triggered the state mapping
to either t or t′, say t, w.l.o.g. However, this is a direct
contradiction to the assumption that t and t′ are duplicates,
because receiving the packet changes the configuration of t,
while the configuration of t′ remains unchanged. Thus, the
assumption that SDS produces duplicate states, must be false.

Note that further SDE optimizations are possible if a differ-
ent execution model is used. This, however, is out of scope of

this work, as we aim at a general approach independent from
any state and packet semantics. Nonetheless, one could, for
example, observe equal packets based on content, time stamp,
and constraint analysis. If such packets are originating from a
sending state and all its rivals, the state mapping can be safely
omitted, further saving duplicates. This optimization, however,
adds additional complexity to SDE such as the interception and
buffering of a number of transmitted packets. These packets
would not be delivered until the execution of all rivals.

E. Complexity

Symbolic execution in general suffers the inherent problem
of state space explosion as the analysis proceeds over time.
The motivation for the following analysis can be summarized
as follows: We want to find an upper bound for how many
instructions we have to execute before SDE finds a bug that
occurs at instruction number u in one of the execution states.
Moreover, we are interested in the number of states we have
to store in the worst case. For convenience, we assume that
the execution states are processed with COB in an ordering,
such that the faulty execution state is always the first one
to reach instruction number u. Additionally, we assume the
worst possible input program in which every instruction is a
branch. For our analysis, we first define the u–completeness
of a dscenario.

Definition. Let N = {s1, . . . , sk} be a dscenario and let #(s)
denote the number of instructions a state s has executed. We
call N u–complete, if all member states of N have executed
exactly u instructions, i.e., ∀s ∈ N : #(s) = u.



We now deduce the time and space complexity of SDE:
Given an `–complete dscenario N = {s1, . . . sk}, we calculate
all succeeding (` + 1)–complete dscenarios before any state
may execute instruction number `+2. We call the calculation
of the successors an N–step.

The N–step starts by executing one instruction of the state
of the first node, yielding at most two succeeding dscenarios.
In both successors the state of the next node will execute
an instruction (i.e., two instructions)—in the worst case each
again yielding two successors, and so forth. Since there are k
nodes to consider per N–step, this leads to a total of

20 + 21 + · · ·+ 2k−1︸ ︷︷ ︸
k summands

= 2k − 1

executed instructions, yielding 2k (`+1)–complete succeeding
dscenarios.

Next, we examine the entire course of the symbolic ex-
ecution of a distributed system. Initially, we start with one
dscenario N0 which is 0–complete, since no instruction was
executed so far.

We represent the course of SDE as a tree of dscenarios, the
root being N0. At level i the succeeding i–complete dscenarios
are generated. Consequently, this tree is constructed down to
a level of u. Assuming the worst-case we obtain a complete
2k–ary tree with height u. In such a tree, on the ith level there
are (2k)i dscenarios. Thus, the space complexity for finding
the bug in instruction u is given by the number of vertices
on the lowest level u multiplied by the number of execution
states per dscenario, so we obtain O(k · 2k·u).

In order to determine the time complexity, we first need the
total number of dscenarios D(u) in the tree, which is given
by

D(u) :=
u∑

i=0

(2k)i =
2k·(u+1) − 1

2k − 1
∈ O(2k·u).

This expresses the total number of dscenarios which were
created and at one point stored in order to analyze every
reachable 0 . . . u–complete dscenario. So the complexity for
storage and creation of dstates is given by O(k ·D(u)).

The number of executed instructions in total I(u) is given
by D(u − 1)—the summed number of all dscenarios on all
but the lowest level (since on the lowest level no instruction
was executed so far)—multiplied by the number of instructions
executed per N–step plus the last instruction which is the bug:

I(u) =
2k·(u−1+1) − 1

2k − 1
· (2k − 1) + 1 = 2k·u

Since the creation and storage of states has greater time
complexity than the execution of instructions, we obtain an
overall time complexity of O(k ·D(u)) + I(u) ∈ O(k · 2k·u),
which is exponential in both the depth of the execution tree u
and the network size k. It is important to notice, thatO(k·2k·u)
is the complexity of the worst-case for the COB algorithm. In
the general case, however, this is in fact the upper bound for
every of the presented algorithms.

sink

source

Fig. 9. Grid topology containing 25 Contiki nodes. Each of the nodes can
reach its first hop neighbors via broadcast. The solid arrows represent the
preconfigured data path towards the sink node in the upper left corner, while
the dashed gray arrows show the broadcast range of a transmission. In this
particular scenario, there are six bystanders (gray shade) not involved in the
communication. Test scenarios with 49 and 100 nodes look analogously.

IV. EVALUATION

We implemented the algorithms in our tool KleeNet [6]
which is the distributed version of the symbolic virtual ma-
chine KLEE [2]. KleeNet simulates a complete distributed
system in a single process. It starts with k states representing
the nodes in the network. As in any simulation, in each step
KleeNet executes an event of a node and advances the time
to the next event in the queue. If the symbolic execution of
an event handler produces new states, they’re simply added to
the state set. The state mapping algorithms are triggered either
at the node’s local branch (COB) or upon a node’s message
transmission (COW, SDS), respectively. Consequently, the
newly created states (if any) are also added to the state set.

For the evaluation, we use the latest Contiki OS [7] CVS
snapshot, specifically the Rime communication stack [8]—a
leightweight protocol stack designed for low-power radios.
Note that KleeNet executes the software without any modi-
fications prior testing. Thus, the evaluation results of SDE are
also applicable to testing of similar distributed systems.

A. Test setup

The exemplary communication scenarios involve 25, 49, and
100 Contiki nodes, respectively. Each scenario is arranged in
a linear grid topology (5x5, 7x7, and 10x10 nodes; cf. Figure
9). After network boot-up a node in the bottom right corner is
configured to send a data packet every second to the sink node
in the top left corner. Each packet of the transmitting node is
perceived by its neighbors which in turn forward the data in
a multi-hop fashion to the nodes towards the destination via a
static route. The simulation time is 10 seconds.

Without any symbolic input configured, KleeNet works as
a simulator for one particular dscenario. Thus, we set-up
KleeNet using a configuration file as follows: nodes on the
data path towards the destination and their neighbors should
symbolically drop one packet. One symbolic drop means that
during reception of the first packet the receiving node’s state
is forked by a network failure model. Then, in one state the
radio receives the packet while in the other the packet is



State mapping algorithm Runtime States RAM

Copy On Branch (COB) 9h:39m (aborted) 1,025,700 38.1 GB
Copy On Write (COW) 1h:38m 30,464 3.4 GB
Super DStates (SDS) 19m 4,159 1.6 GB

TABLE I
TEST RESULTS FOR THE 100 NODE SCENARIO WITH SYMBOLIC PACKET

DROPS ENABLED.

dropped. Further failures (packet duplicates, node failures and
reboots) are implemented and configured in a similar fashion.
Such symbolic failures help us to detect corner-cases before
deployment which can lead to undefined or even erroneous
distributed system behavior [6].

Each scenario was run in KleeNet using COB, COW, and
the SDS algorithm, respectively. The tests were performed on
a user-shared Intel Xeon 3.33GHz CPU machine with 64 GB
of RAM. The memory cap per scenario was limited to approx.
40 GB of RAM to prevent swapping and other side-effects.
For each run we sampled the execution time, the number of
states, and the memory usage of the KleeNet process.

B. Test results

We summarized the results for the largest test scenario (100
nodes) in Table I to give an idea about the performance of
the presented state mapping algorithms. Starting with COB,
we had to abort the test after 9 hours of execution due to
the physical memory limit of the shared machine. KleeNet
generated 1.025.700 states so far which result in 10.257 unique
dscenarios (100 states per dscenario). Upon each symbolic
packet drop during the communication COB forked all its
dstates’ states in the system, quickly exhausting the machine’s
memory and slowing down KleeNet’s execution. Every dupli-
cate state adds to the overall memory usage and is redundantly
executed without discovering new code.

In contrast to COB, COW performs significantly better
resolving state conflicts only upon packet transmission. There-
fore, COW forks its dstate’s states only when the sending
state has at least one rival (cf. Section III). Nevertheless, each
conflict resolution by COW creates duplicates, i.e., copies of
bystanders which are not directly involved in the communi-
cation. Note that bystanders are not only the states which are
not on the data path, but also states on the data path two or
more hops away from the sending state.

Finally, SDS eliminates all state conflicts without creating
redundant duplicates of bystanders. The impact of duplicate
reduction significantly speeds up KleeNet’s execution which
is reflected in both, fast execution time and a low memory
footprint. For a more detailed comparison over time we
depicted the measurement results of all three scenarios in
Figure 10. At the beginning of the execution, all graphs show
a sudden state and memory consumption increase. In each run,
KleeNet first loads the LLVM bytecode [9] containing nodes’
software which requires up to 1 GB of RAM in the 100 node
scenario.

With growing network size, the performance gain of SDS
grows as the number of bystanders increases. This validates
the key idea of SDE—we can profit from the local nodes’
communication and thus avoid unnecessary state duplication
which is extremely expensive in terms of execution time and
memory consumption.

C. Limitations and discussion

On the one hand, SDE scales well taking advantage of the
nodes’ local communication, but on the other hand it is easy
to set-up test scenarios or applications where COW and SDS
algorithms perform nearly as bad as COB. One example would
be a full-meshed network where nodes continuously transmit
data to their k − 1 neighbors. Further examples comprise
communication protocols based on network flooding such as
neighbor discovery or data dissemination. Nonetheless, there
are many distributed protocols and applications which would
profit from SDE during testing.

Another facet of SDE is the process of test case generation
at the end of the symbolic execution. If someone wants to
gather the test cases for all nodes in all dscenarios, the compact
systems’ representation provided by the SDS algorithm has to
be “exploded” to the output of COB to generate concrete test
case values. The process of deliberate state explosion is very
expensive in both execution time and memory but yet can
be done incrementally, i.e., by forking states for a dscenario,
generating test cases, and deleting the states could be done in
one step. Nonetheless, the generation of all test cases at the
end of execution is still by orders of magnitude faster than the
execution using COB.

V. RELATED WORK

In this section we review the related work in the area of
symbolic execution which comes closest to our work. From
the vast number of symbolic execution approaches we only
discuss those in more detail which consider the semantics of
execution path order and their intra-dependencies.

We implemented SDE in KleeNet [6] which is an extension
to the symbolic virtual machine KLEE [2]. KLEE explores
execution paths of single-threaded programs at high-coverage,
but each of these paths is analyzed independently from all
others. With KleeNet, we presented early ideas of SDE as
an approach for 2–3 node scenarios and found subtle bugs in
widely deployed sensornet software. In contrast to KleeNet,
in this paper we generalize the ideas of SDE and detail on the
state mapping algorithms and their efficacy independent from
any specific implementation. Thus, the presented approach can
be easily transferred to any other symbolic execution engine.

Symbolic PathFinder [10] [11] (SPF) is a popular tool
which combines symbolic execution, concrete execution, and
model checking to generate test cases for Java programs.
Being an extension to Java PathFinder [12], SPF employs
its model checking capabilities such as thread interleaving
testing and state backtracking. Consequently, the search is
able to backtrack the execution states during exploration if, for
example, a path condition becomes infeasible. In contrast, SDE



100 101 102 103 104 105

time [s] (log scale)

100

101

102

103

104

105

106
n
u
m

b
e
r 

o
f 

st
a
te

s 
(l

o
g
 s

ca
le

)

C
O

B
 f

in
is

h
e
d

C
O

W
 f

in
is

h
e
d

S
D

S
 f

in
is

h
e
d

States

COB
COW
SDS

(a) 25 nodes scenario: state growth over time.

100 101 102 103 104 105

time [s] (log scale)

102

103

104

105

m
e
m

o
ry

 [
M

B
] 

(l
o
g
 s

ca
le

)

C
O

B
 f

in
is

h
e
d

C
O

W
 f

in
is

h
e
d

S
D

S
 f

in
is

h
e
d

RAM

COB
COW
SDS

(b) 25 nodes scenario: memory growth over time.

100 101 102 103 104 105

time [s] (log scale)

100

101

102

103

104

105

106

n
u
m

b
e
r 

o
f 

st
a
te

s 
(l

o
g
 s

ca
le

)

C
O

B
 f

in
is

h
e
d

C
O

W
 f

in
is

h
e
d

S
D

S
 f

in
is

h
e
d

States

COB
COW
SDS

(c) 49 nodes scenario: state growth over time.

100 101 102 103 104 105

time [s] (log scale)

102

103

104

105

m
e
m

o
ry

 [
M

B
] 

(l
o
g
 s

ca
le

)

C
O

B
 f

in
is

h
e
d

C
O

W
 f

in
is

h
e
d

S
D

S
 f

in
is

h
e
d

RAM

COB
COW
SDS

(d) 49 nodes scenario: memory growth over time.

100 101 102 103 104 105

time [s] (log scale)

100

101

102

103

104

105

106

107

n
u
m

b
e
r 

o
f 

st
a
te

s 
(l

o
g
 s

ca
le

)

C
O

B
 a

b
o
rt

e
d

C
O

W
 f

in
is

h
e
d

S
D

S
 f

in
is

h
e
d

States

COB
COW
SDS

(e) 100 nodes scenario: state growth over time.

100 101 102 103 104 105

time [s] (log scale)

102

103

104

105

m
e
m

o
ry

 [
M

B
] 

(l
o
g
 s

ca
le

)

C
O

B
 a

b
o
rt

e
d

C
O

W
 f

in
is

h
e
d

S
D

S
 f

in
is

h
e
d

RAM

COB
COW
SDS

(f) 100 nodes scenario: memory growth over time.

Fig. 10. Test results for 25, 49, and 100 node scenarios. Each scenario was run three times using COB, COW, and SDS algorithm, respectively. For the 100
node scenario, we aborted KleeNet’s execution using COB since the memory consumption was getting close to the actual physical machine’s limits.



targets a compact representation of the symbolic system state
where execution states could be shared among several SPF
“runs”. Moreover, SDE does not support state backtracking.

Model-based testing of interleaved processes using sym-
bolic execution is introduced in [13]. The authors employ
an executable modeling language to capture distribution,
concurrency, and asynchronous communication. The system
performs a concrete and a symbolic run in parallel gradually
constructing path constraints for a distributed application. The
small case studies of the semi-automated tool are promising,
however, the authors don’t address state conflicts and how
they’re resolved between the test runs.

Execution Synthesis [3] (ESD) is a further technique to
automatically generate deterministic thread schedules and con-
crete inputs guiding multi-threaded programs to known bug
symptoms. Starting with a bug report and a program, ESD
first performs static analysis to derive the search space towards
the goal described in the report. Second, it employs symbolic
execution using KLEE to narrow down the over-approximated
outcome of static analysis to one feasible execution path.
Third, ESD treats the thread scheduler to be symbolic in
order to explore different serialized execution paths of a multi-
threaded program. The decision to preempt or not to preempt
a thread is very similar to the network/node failures used in
KleeNet. Finally, one of the thread schedules hits the bug
which can be replayed and analyzed by the developers.

From the modeling point of view, threads in ESD can
be seen as nodes in SDE. In contrast to ESD, however,
SDE eliminates the execution of redundant paths which have
the same semantics within different execution scenarios, i.e.,
thread schedules. Thus, ESD might profit from the SDE’s
approach to reduce the execution time and memory footprint
during the search.

Recently, a number of concolic approaches [14] [15] [16]
were proposed combining both concrete and symbolic execu-
tion within different execution environments. However, these
only consider a single instance of software under test and
not a distributed execution. In contrast, SDE is applied to
distributed systems capturing asynchronous communication
over the network. Noteworthy, SDE doesn’t model message
interleaving which would lead to additional state growth.

VI. CONCLUSION

We presented SDE—an approach enabling scalable sym-
bolic execution of distributed systems. We developed a state
mapping algorithm which performs efficiently in distributed
systems profiting from the nodes’ local communication. We
demonstrated the merits of SDE by evaluating a Contiki-based
sensornet in KleeNet. Finally, we discussed SDE’s limitations
and identified its potential in related application areas.

In the future, we plan to parallelize SDE’s implementation
in KleeNet to speed up testing on multicore machines. For
the parallelization, we have to identify the sets of states
which can be safely offloaded on other cores and thus can be
independently executed. Furthermore, we aim to implement

incremental test case generation which is important for large-
scale test scenarios.

Overall, we see SDE as a general idea for symbolic exe-
cution of distributed systems which can be utilized in other
tools and frameworks. This would leverage the existing power
of symbolic execution to even more rigorous software testing.

ACKNOWLEDGMENTS

We thank Christopher Gill, our shepherd, and Florian
Schmidt for their help in improving our paper. We are grateful
to Jó Ágila Bitsch Link for his contribution with the automatic
generation of evaluation figures. This work is partly supported
by DFG UMIC research cluster of RWTH Aachen University.

REFERENCES

[1] J. C. King, “Symbolic Execution and Program Testing,” Communications
of the ACM, vol. 19, no. 7, pp. 385–394, 1976.

[2] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and Automatic
Generation of High-Coverage Tests for Complex Systems Programs,” in
USENIX Symposium on Operating Systems Design and Implementation,
2008.

[3] C. Zamfir and G. Candea, “Execution Synthesis: A Technique for
Automated Software Debugging,” in Proceedings of the 5th ACM
SIGOPS/EuroSys European Conference on Computer Systems (EuroSys),
Paris, France, 2010. [Online]. Available: http://dslab.epfl.ch/pubs/esd

[4] V. Chipounov and G. Candea, “Reverse Engineering of Binary Device
Drivers with RevNIC,” in Proceedings of the 5th ACM SIGOPS/EuroSys
European Conference on Computer Systems (EuroSys), Paris France,
April 2010, Paris, France, 2010.

[5] C. S. Pǎsǎreanu, P. C. Mehlitz, D. H. Bushnell, K. Gundy-Burlet,
M. Lowry, S. Person, and M. Pape, “Combining Unit-level Symbolic
Execution and System-level Concrete Execution for Testing NASA
Software,” in Proceedings of the 2008 International Symposium on
Software Testing and Analysis, ser. ISSTA ’08. ACM, 2008.

[6] R. Sasnauskas, O. Landsiedel, H. Alizai, C. Weise, S. Kowalewski, and
K. Wehrle, “KleeNet: Discovering Insidious Interaction Bugs in Wireless
Sensor Networks Before Deployment,” in International Conference on
Information Processing in Sensor Networks (ACM IPSN/SPOTS). New
York, NY, USA: ACM, 2010, pp. 186–196.

[7] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - A Lightweight and
Flexible Operating System for Tiny Networked Sensors,” in LCN, 2004.

[8] A. Dunkels, F. Österlind, and Z. He, “An Adaptive Communication
Architecture for Wireless Sensor Networks,” in Proceedings of the
Fifth ACM Conference on Networked Embedded Sensor Systems (SenSys
2007), Sydney, Australia, Nov. 2007.

[9] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Life-
long Program Analysis & Transformation,” in CGO ’04: Proc. of the
international symposium on Code generation and optimization, 2004.

[10] C. S. Păsăreanu and N. Rungta, “Symbolic PathFinder: Symbolic Execu-
tion of Java Bytecode,” in Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE ’10. New
York, NY, USA: ACM, 2010, pp. 179–180.

[11] S. Anand, C. S. Pasareanu, and W. Visser, “JPF-SE: A Symbolic
Execution Extension to Java Pathfinder,” in TACAS, 2007.

[12] W. Visser, K. Havelund, G. Brat, and S. Park, “Model Checking
Programs,” in Proceedings of the 15th IEEE International Conference
on Automated Software Engineering, ser. ASE ’00. Washington, DC,
USA: IEEE Computer Society, 2000, pp. 3–.

[13] A. Griesmayer, B. Aichernig, E. B. Johnsen, and R. Schlatte, “Dynamic
symbolic execution for testing distributed objects,” in Proceedings
of the 3rd International Conference on Tests and Proofs, ser. TAP
’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 105–120. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-02949-3 9

[14] R. Majumdar and K. Sen, “Hybrid Concolic Testing,” in ICSE, 2007.
[15] K. Sen, D. Marinov, and G. Agha, “CUTE: A Concolic Unit Testing

Engine for C,” in ESEC/FSE-13, 2005.
[16] V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: A Platform for In-

Vivo Multi-Path Analysis of Software Systems,” in Proceedings of the
16th International Conference on Architectural Support for Program-
ming Languages and Operating Systems, 2011.


