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Abstract: Analyzing the run-time behavior of network protocol 
implementations in a distributed setting is difficult. However, 
such analyses are both vital for assuring their functionality and 
for performance optimizations. Common debuggers typically do 
not facilitate the inspection of the global state of a protocol 
implementation that is distributed among several hosts. In this 
paper we present a virtual machine (VM) based approach for 
the analysis of distributed protocol implementations. From each 
of the VMs we extract local state information of choice. By 
consolidating a global soft-state based on this information and 
by providing the virtual machines with a virtual and logical 
progression of time, we facilitate the flexible analysis of x86-
based implementations in a distributed fashion. 

1. INTRODUCTION 
 
A major challenge is the development of adequate tools 
enabling the detailed analysis of distributed network protocol 
implementations. In general, implementing a network 
protocol is a difficult task. First, one has to make sure that a 
protocol implementation (PI) conforms to the protocol 
specification, for example, an RFC. Second, such 
implementations have to be robust against errors, such as 
sudden connection losses or the reception of bogus packets. 
For this purpose, it is necessary to observe their run-time 
behavior in order to ensure a valid execution for all possible 
interaction patterns. For the purpose of carrying out such 
investigations, the ability to closely monitor the distributed 
execution of a PI is vital. However, this is usually anything 
but trivial, as the global state of a protocol implementation is 
distributed among all communication peers. 
Standard debuggers like gdb [2] are inadequate for the run-
time analysis of protocol stacks. First, they are restricted to 
user-space applications, which prevents observations of the 
close interplay of network stacks with other operating system 
(OS) components and network device drivers. While this 
issue may be overcome by using kernel-level debuggers such 
as kgdb, debuggers in general are limited to one machine and 
thus can only deliver information about an implementation’s 
local state. A second major problem with the use of classic 
debuggers consists in the missing synchronization of the 
execution with the other communication peers. For example, 
it might happen that the implementation hits a breakpoint, 
and thus, the execution is suspended while the execution at 
the remote communication peers continues. In many cases 
this may lead to a faulty behavior, for instance due to the 
expiration of retransmission timers or due to of unwanted 
connection time-outs. 

Full system simulators, for example Simics [9], enable the 
investigation of an OS’ run-time behavior with global state 
information at hand. Instead of executing the operating 
system natively, they simulate the entire system hardware and 
potentially a network of such in software. As the hardware of 
every communication peer in the network is entirely 
simulated, one benefits from an unsurpassed degree of 
control and detail. However, a major disadvantage of full-
system simulators is their limited performance and their 
restricted scalability which directly results from the 
simulation complexity. In addition the meticulous level of 
detail is also not needed for most evaluation purposes. 
In this paper, we focus on a different approach for the 
analysis of protocol implementations (PIs). We use virtual 
machines (VM) encapsulating an operating system that hosts 
a PI of choice. Our framework provides global soft-state 
information at any point in time during the analysis. We 
leverage the fact that the VM is fully controlled by a 
privileged control context that is capable of extracting local 
state information from the network stack. The local state 
information is consolidated at a central point in the network 
in order to form a global view on the execution of all 
communication peers. Our framework facilitates both 
interactive and fully automated evaluations by providing the 
developer a convenient access to the global soft-states using a 
straightforward scripting interface. We further delineate the 
concept behind our approach in Section 2 before introducing 
our Xen-based implementation in Section 3. We also give an 
example how it can be applied to distributed protocol 
monitoring. We evaluate our system in Section 4 before we 
relate our work to other approaches in Section 5. Section 6 
concludes this paper with final remarks. 
 

2. A DISTRIBUTED MONITORING FRAMEWORK 
 
2.1 Challenges and Solutions 
Scrutinizing the behavior of PIs in a distributed setting is 
challenging for a couple of reasons. Ideally, such a respective 
analysis framework delivers consistent state information for 
all communication peers at any point of time. We need to 
distinguish between the local state of a PI and the global 
state that is constituted by the local state of all peers at the 
same point in time. 
The extraction of local state information turns out to be 
intricate for the case of PIs. Most importantly, it is vital that 
the investigation of the run-time behavior is non-intrusive, 
and hence does not change the way the implementation 



executes. Otherwise, odd side effects like the occurrence of 
heisenbugs [4], that only occur during the analysis run, could 
be direct consequences. Moreover, the collection of local 
state information is further aggravated as protocol stacks are 
typically integrated tightly into the operating systems kernel. 
We address these challenges by completely abstaining from 
monitoring the local state on the system that executes the 
network stack. Instead, we virtualize the entire system and 
carry out all monitoring operations from an external context 
governing the virtual machine (VM). This way, the entire 
extraction of local state information may be performed in a 
completely transparent fashion. 
A major problem with analyzing the run-time behavior of PIs 
is that local state changes are not only dependent on the 
causal sequence of the network packets being exchanged but 
also on internal mechanisms, most notably protocol timers. 
For example, such protocol timers are commonly used to 
detect packet loss or connection time-outs. In order to 
maintain global consistency, it is essential to suspend the 
execution at all communication peers once one peer’s 
execution is paused for the purpose of closer inspection, say 
when it reaches a break point. We tackle this problem by 
virtualizing the entire progression of time at all 
communication peers. Thus, if the execution of one peer is 
interrupted, all other systems are paused as well. Since we 
execute all systems using a virtual and logical continuous 
time, no communication peer notices such gaps in his 
execution flow. 
In order to obtain a global view on a PI’s distributed state, we 
consolidate local state information from the communication 
peers. The local state of such a peer is quite bulky, as it 
encompasses the entire memory as well as all other system 
resources allocated to the VM. Aiming at an on-line analysis 
of the distributed execution, the size of the state space 
prevents a frequent collection of the entire local state from 
the communication peers. However, only a small fraction of 
the VM state is usually of interest if one is up to analyzing a 
PI. For this reason, we only extract selected local state 
information in order to limit the amount of data retrieved 
from the communication peers. 
A second challenge is the fusion of local state information 
into a globally consistent view. A well-established method in 
this context is the use of logical clocks [7]. By associating 
logical time stamps with every local state, a consistent global 
state can be consolidated. One example where this concept 
has been applied to the analysis of distributed applications is 
D3S [8]. However, the utilization of logical clocks requires 
every state change to be propagated. Instead we propose a 
different approach that utilizes the virtual progression of time 
at the communication peers for the construction of so-called 
global soft-states: We assign tiny slices of virtual time to all 
communication peers. All peers are suspended after they have 
completed their time slice. The next time slice is assigned 
after all systems have reported the completion of the time 
slice. As all communication peers synchronously progress 

through this series of discrete time slices, we obtain an 
implicit sequence of global soft-states whose accuracy is 
determined by the size of the chosen time slices. 
 
2.2 Architecture 
Figure 1 shows the framework that puts our concepts into 
action. It consists of two main building blocks, the 
Monitoring Front-end that controls the entire investigation 
process and the progression of time. The execution of the PIs 
takes place at multiple VMs, from which we collect local 
state information using the Monitoring Back-end attached to 
the VM. 
1) Monitoring Front-end: This building block encompasses 
the synchronizer as well as the monitoring component. All 
analysis tasks are carried out at the monitoring component. It 
retrieves the local state from all back-ends attached to a VM 
using remote procedure calls and consolidates a global soft-
state. A scripting interface provides a flexible interface to the 
global soft-state information. This facilitates both automated 
as well as interactive explorations of the collected state 
information. In addition, the scripting interface allows the set 
of investigated soft-states to be modified at run-time. For 
example, further breakpoints and inspectors may be added in 
a conditional way, as in case of a particular behavior 
observed on one of the VMs. Moreover, the scripting 
interface not only facilitates the passive inspection of state 
information, but it also allows one to change state descriptors 
actively. For instance, this allows tuning protocol parameters 
with “global knowledge” or the simulation of software faults. 
The synchronizer assigns small time slices of virtual run-time 
to the VMs in order to align their local clocks. The next time 
slice is assigned when all VMs have completed the current 
one. Thus, the end of every time slice forms a 
synchronization point for all VMs. We have previously 
employed this approach for the synchronization of event-
driven simulation with VMs. Two aspects are of importance 
when applying this concept for the purpose of synchronizing 
the execution of distributed implementations. First, the time 
drift and hence the elasticity of the global soft-state is bound 
to the duration of the time-slice. As we aim at a high level of 
consistency regarding the global soft-state, the duration of the 
time slices has to be adequately small. Typically, we use time 
slices between 70 and 200 microseconds. Second, the 
periodic interruption of all VMs and the synchronization 
messaging introduces a certain amount of overhead in terms 
of execution time, yielding to an increased amount of overall 
real-world run-time for smaller time slices. This is a direct 

Figure 1: Conceptual Architecture of the monitoring framework 
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consequence of the chosen synchronization approach. It is 
further elaborated in [12] where we apply it to the 
synchronization of event-driven network simulations with 
virtual machines. 
2) Monitoring Back-end: The monitoring back-end 
implements all required primitives to support the operations 
provided to the developer through the scripting interface. The 
primitives are exposed to the front-end using a standard 
remote procedure call (RPC) library. 
The most important primitives implement the access to local 
state descriptors on a virtual machine. In order to locate the 
state information within the memory region allocated to the 
VM, we access the symbol table of the operating system 
executed in the VM. This way, we’re able to directly access 
the corresponding state descriptors while avoiding a potential 
external reimplementation of operating system memory 
management functions such as the traversal of page tables. 
Besides the bare access to the VM’s memory, the back-end 
parses the respective memory content in order to provide the 
developer with a more descriptive representation of the 
inspected state property. 
The monitoring back-end provides further control primitives 
regarding the VM execution. Basic commands such as PAUSE 
and UNPAUSE perform the corresponding actions. More 
sophisticated primitives such as SNAPSHOT allow for storing 
an entire VM state, which also enables the scripting interface 
to initiate global distributed snapshots upon the observation 
of certain behavioral patterns. 
Besides the provision of the required access and control 
primitives, the back-end together with the VM environment 
needs to support the time-slice based execution required by 
the synchronization scheme. For this purpose, the VM 
environment executes a virtual machine for the exact duration 
of the time slice. In addition the VM environment has to 
provide the VMs with a virtual progression of time that is 
aligned to the provisioned time slices. 
 

3. IMPLEMENTATION 
 

Figure 2 depicts our implementation corresponding to the 
proposed architecture. We distinguish between the developer 
machine that exposes the global soft-state within a scripting 
environment and VM hosts executing multiple VM guests on 
top of a customized Xen [1] hypervisor. The VM hosts and 

the developer machine are interconnected using three 
different flows of communication. First, a combined 
observation and control flow based on Apache Thrift [11] 
delivers state information to the developer machine and 
facilitates controlling the VM execution behavior using the 
scripting framework. Second, the provision of time slices 
takes place using a separate synchronization flow. It      
delivers time slice information to the VM hosts using a 
lightweight UDP messaging scheme, minimizing the 
complexity due to the potentially high amount of 
synchronization messages. A custom Xen scheduler then 
executes the VM guest for the specified time slice duration. 
In our previous work [12] we elaborate how Xen was 
modified for the purpose of synchronization in greater detail. 
A third communication flow comprises an Ethernet tunnel in 
order to enable the communication among the protocol stacks 
hosted on multiple VMs. 
 
3.1 Scripting Environment 
The Python-based scripting framework drives the entire 
inspection process. At any point in the logical flow of time, 
the individual local states of all communication peers are 
accessed using a stub that allows for setting breakpoints or 
for reading and modifying state descriptors using the 
common gdb syntax. Listing 1 illustrates how our framework 
can be applied to monitoring the reception of ICMP packets 
at two Linux hosts. Due to the lack of space we omit the 
initialization block that establishes the observation and 
control flow to the sender and to the receiver. The example 
uses the setBreakpoint primitive to interrupt the execution at 
both hosts upon the reception of an ICMP packet, e.g. an 
echo request. It employs two threads in order to cope with the 
parallel execution of the sender and the receiver. Using the 
wait() command, each thread waits until one system hits a 
break-point. In this case, the script outputs the content of the 
socket buffer. Other commands not used in this example 
allow for snapshotting a VM and facilitate a manual control 
of the VM execution. 
We further emphasize that the entire process of 
synchronization is transparent to the scripting environment. 
The provision of small time slices automatically establishes a 
series of global soft-states, formed by the individual local 
states for a particular time slice. As a system is not able to 
signal the completion of its time slice upon hitting a break-

class hostA_thread(threading.Thread)): 
 def run(self): 
  while True: 
   hostA.wait() 
   pp.pprint("host A: *skb:" + hostA.getVariable("*skb",)) 
 
class hostB_thread(threading.Thread)): 
 def run(self): 
  while True: 
   hostB.wait() 
   pp.pprint("host B: *skb:" + hostB.getVariable("*skb",)) 
 
bpA = hostA.setBreakpoint("icmp_rcv",) 
bpB = hostB.setBreakpoint("icmp_rcv",) 

Listing 1: Monitoring the exchange of ICMP frames 

Figure 2: Our framework is implemented on top of the Xen hypervisor 
and facilitates the analysis and the debugging of multiple VMs using the 
Python scripting language. The synchronizer, together with a custom 
Xen scheduler, provides a virtual flow of time to the attached VMs. 



point, the execution at all other communication peers is also 
suspended at the end of the current time slice. 
 
3.2 Back-end Server 
The core task of this component is to deliver local state 
information to the scripting front-end. For the purpose of 
accessing local state information from the Xen domains, we 
rely on Gdbserver-xen [6]. Gdbserver-xen provides a gdb 
interface to the kernel being executed inside the VM. It relies 
on the available symbol table information in order to locate 
symbols, e.g. protocol state descriptors, in the memory range 
of the executed kernel. Gdbserver-xen then internally 
translates the pseudo-physical addresses in the symbol table 
to the corresponding addresses in the physical host’s address 
range. For the purpose of providing a convenient and 
efficient access to kernel-level state descriptors, gdbserver-
xen maps these memory ranges to the address space of the 
privileged control domain (domain 0). 
Besides the exposure of state information, the Back-end 
Server also implements a set of control primitives. For this 
purpose, our implementation executes so-called hypercalls to 
directly control the state and the scheduling behavior of the 
VMs. In addition, few operations such as snapshotting are 
implemented by invoking the corresponding calls to the Xen  
Management daemon. 
 

4. EVALUATION 
 
We now evaluate our system regarding the valid provision of 
virtual time to the VMs. We also investigate the capability of 
our framework to externally monitor state changes of a Linux 
TCP implementation at the packet granularity level. All 
experiments were carried out using two Dell Optiplex 960 
PCs, each equipped with a 3GHz Intel Core2 Quad CPU and 
8 GB of RAM. Each machine executed our Xen-based 
implementation of the monitoring framework. One machine 
in addition hosted the monitoring framework and the 
synchronizer. For all experiments the synchronization 
accuracy was set to 100μs, at which the run-time overhead 
amounts to 42% compared to real-time for one Xen domain. 
 
4.1 Provision of virtual time 
In order to validate the provision of virtual time to the VMs, 
we used a straightforward monitoring script to suspend the 
execution of a VM for a specified amount of time upon the 
reception of an ICMP frame. In order to trigger this behavior, 
ICMP echo replies were sent to the local host at a constant 
rate. On the VM, we measured the average RTT of the Echo 
replies. Figure 3 displays the result: As expected, for non-
synchronized VMs the measured RTT increases for longer 
execution pauses, as ICMP internally utilizes timestamps to 
conduct round-trip measurements. By contrast, if we use our 
implementation to supply a VM with a virtual progression of 
time, the measured round trip times show the desired 
invariance to external interruptions of the VM execution. 

 
4.2 Monitoring Accuracy 
As the state of a PI may change with every packet sent or 
received, it is vital to accurately capture state changes at the 
granularity level of one packet. For the purpose of evaluating 
our implementation against this requirement, we applied our 
framework to the TCP implementation of Linux 2.6. One of 
the TCP protocol states that are subject to change with every 
packet is the TCP receive window. We are aware that our 
VM based monitoring approach is not required for tracing the 
receive window of a TCP connection, as the receive window 
is also part of the TCP header and thus may also be observed 
using a packet capturing tool like Wireshark [14]. However, 
the presence of this information within the TCP packet 
header allows to use it as a reference value and thus allows 
for investigating the accuracy of the state information 
gathered with our framework. 
Consequently we used our framework to monitor the receive 
window on two VMs exchanging data over a bi-directional 
TCP connection. Figure 4 compares the window sizes 
extracted from the VMs using our framework with the 
reference window sizes as reported by Wireshark. The 
window sizes extracted from the VMs well match the 
reference values. From this we conclude that our approach 
enables observations of protocol descriptor state changes at 
the granularity of one packet. 
 

5. RELATED WORK 
 
The related efforts and challenges in the area of distributed 
protocol monitoring fall into two main categories: protocol 
state exposure and global snapshot creation. While the access 
of protocol state information in operating systems is widely 
supported by a number of well-established debugging tools 
such as gdb and Liblog [3], the transparent creation of 
consistent global snapshots remains to be a challenge. In the 
remainder of this section, we discuss the existing approaches 
for deployed protocol monitoring and relate our approach. 
In [8] the authors present D3S, a checker which logs 
distributed protocol states using binary code instrumentation 
in user-space. The defined watch points of interest redirect 
the active program execution to protocol-dependent state 
exposure routines that subsequently transmit the state 
information over the network to a global verifier. Although 

Figure 3: Executing a VM in virtual time rather than real-time makes 
RTTs on the local host invariant to externally imposed execution gaps. 



the performance overhead of less than 8% is reasonable, the 
intrusive binary instrumentation is bound to one specific 
operating system. Moreover, the correctness of the global 
snapshot creation mechanism strictly depends on the 
messages containing virtual timestamps. D3S is a post-
mortem debugger. Once a distributed assertion is violated, it 
is not possible to suspend the distributed system execution 
for further analysis of neither the protocol nor its 
environment. On the contrary, our monitoring framework 
offers full control of VMs along with running protocols 
making distributed event ordering redundant. 
PDB [5] employs Xen to debug both user-space and kernel-
space software of guest operating systems running on a single 
physical machine. PDB provides an extensive interface for 
debugging information access and visualization. In contrast 
to PDB, our approach spans over a number of physical 
machines using synchronized virtual time. By suspending and 
resuming individual VMs we not only synchronize their 
distributed execution but also preserve the timers that steer 
the core of PIs. Moreover, a developer is supported with an 
intuitive script language to formulate and check high-level 
protocol predicates. 
One alternative to using gdbserver-xen is XenAccess [10], 
which we used in our preliminary work [13] to inspect 
protocol state descriptors. XenAccess also provides external 
access to symbol information. However, major drawback of 
XenAccess is its fixed reimplementation of the memory 
management of the guest OS to resolve the symbols. This 
makes it rather inflexible to apply to different operating 
systems or kernels varying in the way they organize the 
system memory. 
 

6. CONCLUSION 
 
In this paper we provided an in-depth discussion of our 
framework allowing for the analysis of distributed network 
protocol implementations. It incorporates the concept of VM 
monitoring with the provision of a consistent and virtual 
progression of time to a set of virtualized communication 
peers. This relieves the investigation of the distributed run-

time behavior from any real-time constraint. Hence, it 
becomes possible to transparently carry out extensive 
analysis tasks like the deep exploration of a network 
protocol’s state space or complex operations such as 
snapshotting an entire system. 
We conclude that our framework eases the analysis of the 
distributed execution of network PIs. First, our framework 
automatically delivers the developer with a series of global 
soft-states, in which any aspect of a PI may be investigated 
using a flexible scripting environment. Second, we emphasize 
that the application of our framework for the purpose of 
monitoring a kernel-level application is straightforward. 
Hence, we regard it to be a very supportive tool for both 
researchers and developers that interested in investigating the 
execution of distributed protocol implementations. 
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Figure 4: Our framework accurately captures state changes of 
kernel-level PIs at packet granularity. The state information 
extracted from the VM well matches the reference values obtained 
from packet traces. 


