
Flexible Analysis of Distributed Protocol Implementations using Virtual Time

Elias Weingärtner∗, Marko Ritter†, Raimondas Sasnauskas∗, and Klaus Wehrle∗
†Communication and Distributed Systems (COMSYS) , RWTH Aachen University, Germany

†Plusserver AG, Germany
E-Mail:∗{lastname}@comsys.rwth-aachen.de, †m.ritter@plusserver.de

Abstract: Analyzing the run-time behavior of network protocol
implementations in a distributed setting is difficult. However,
such analyses are both vital for assuring their functionality and
for performance optimizations. Common debuggers typically do
not facilitate the inspection of the global state of a protocol
implementation that is distributed among several hosts. In this
paper we present a virtual machine (VM) based approach for
the analysis of distributed protocol implementations. From each
of the VMs we extract local state information of choice. By
consolidating a global soft-state based on this information and
by providing the virtual machines with a virtual and logical
progression of time, we facilitate the flexible analysis of x86-
based implementations in a distributed fashion.

1. INTRODUCTION

A major challenge is the development of adequate tools
enabling the detailed analysis of distributed network protocol
implementations. In general, implementing a network
protocol is a difficult task. First, one has to make sure that a
protocol implementation (PI) conforms to the protocol
specification, for example, an RFC. Second, such
implementations have to be robust against errors, such as
sudden connection losses or the reception of bogus packets.
For this purpose, it is necessary to observe their run-time
behavior in order to ensure a valid execution for all possible
interaction patterns. For the purpose of carrying out such
investigations, the ability to closely monitor the distributed
execution of a PI is vital. However, this is usually anything
but trivial, as the global state of a protocol implementation is
distributed among all communication peers.
Standard debuggers like gdb [2] are inadequate for the run-
time analysis of protocol stacks. First, they are restricted to
user-space applications, which prevents observations of the
close interplay of network stacks with other operating system
(OS) components and network device drivers. While this
issue may be overcome by using kernel-level debuggers such
as kgdb, debuggers in general are limited to one machine and
thus can only deliver information about an implementation’s
local state. A second major problem with the use of classic
debuggers consists in the missing synchronization of the
execution with the other communication peers. For example,
it might happen that the implementation hits a breakpoint,
and thus, the execution is suspended while the execution at
the remote communication peers continues. In many cases
this may lead to a faulty behavior, for instance due to the
expiration of retransmission timers or due to of unwanted
connection time-outs.

Full system simulators, for example Simics [9], enable the
investigation of an OS’ run-time behavior with global state
information at hand. Instead of executing the operating
system natively, they simulate the entire system hardware and
potentially a network of such in software. As the hardware of
every communication peer in the network is entirely
simulated, one benefits from an unsurpassed degree of
control and detail. However, a major disadvantage of full-
system simulators is their limited performance and their
restricted scalability which directly results from the
simulation complexity. In addition the meticulous level of
detail is also not needed for most evaluation purposes.
In this paper, we focus on a different approach for the
analysis of protocol implementations (PIs). We use virtual
machines (VM) encapsulating an operating system that hosts
a PI of choice. Our framework provides global soft-state
information at any point in time during the analysis. We
leverage the fact that the VM is fully controlled by a
privileged control context that is capable of extracting local
state information from the network stack. The local state
information is consolidated at a central point in the network
in order to form a global view on the execution of all
communication peers. Our framework facilitates both
interactive and fully automated evaluations by providing the
developer a convenient access to the global soft-states using a
straightforward scripting interface. We further delineate the
concept behind our approach in Section 2 before introducing
our Xen-based implementation in Section 3. We also give an
example how it can be applied to distributed protocol
monitoring. We evaluate our system in Section 4 before we
relate our work to other approaches in Section 5. Section 6
concludes this paper with final remarks.

2. A DISTRIBUTED MONITORING FRAMEWORK

2.1 Challenges and Solutions
Scrutinizing the behavior of PIs in a distributed setting is
challenging for a couple of reasons. Ideally, such a respective
analysis framework delivers consistent state information for
all communication peers at any point of time. We need to
distinguish between the local state of a PI and the global
state that is constituted by the local state of all peers at the
same point in time.
The extraction of local state information turns out to be
intricate for the case of PIs. Most importantly, it is vital that
the investigation of the run-time behavior is non-intrusive,
and hence does not change the way the implementation

executes. Otherwise, odd side effects like the occurrence of
heisenbugs [4], that only occur during the analysis run, could
be direct consequences. Moreover, the collection of local
state information is further aggravated as protocol stacks are
typically integrated tightly into the operating systems kernel.
We address these challenges by completely abstaining from
monitoring the local state on the system that executes the
network stack. Instead, we virtualize the entire system and
carry out all monitoring operations from an external context
governing the virtual machine (VM). This way, the entire
extraction of local state information may be performed in a
completely transparent fashion.
A major problem with analyzing the run-time behavior of PIs
is that local state changes are not only dependent on the
causal sequence of the network packets being exchanged but
also on internal mechanisms, most notably protocol timers.
For example, such protocol timers are commonly used to
detect packet loss or connection time-outs. In order to
maintain global consistency, it is essential to suspend the
execution at all communication peers once one peer’s
execution is paused for the purpose of closer inspection, say
when it reaches a break point. We tackle this problem by
virtualizing the entire progression of time at all
communication peers. Thus, if the execution of one peer is
interrupted, all other systems are paused as well. Since we
execute all systems using a virtual and logical continuous
time, no communication peer notices such gaps in his
execution flow.
In order to obtain a global view on a PI’s distributed state, we
consolidate local state information from the communication
peers. The local state of such a peer is quite bulky, as it
encompasses the entire memory as well as all other system
resources allocated to the VM. Aiming at an on-line analysis
of the distributed execution, the size of the state space
prevents a frequent collection of the entire local state from
the communication peers. However, only a small fraction of
the VM state is usually of interest if one is up to analyzing a
PI. For this reason, we only extract selected local state
information in order to limit the amount of data retrieved
from the communication peers.
A second challenge is the fusion of local state information
into a globally consistent view. A well-established method in
this context is the use of logical clocks [7]. By associating
logical time stamps with every local state, a consistent global
state can be consolidated. One example where this concept
has been applied to the analysis of distributed applications is
D3S [8]. However, the utilization of logical clocks requires
every state change to be propagated. Instead we propose a
different approach that utilizes the virtual progression of time
at the communication peers for the construction of so-called
global soft-states: We assign tiny slices of virtual time to all
communication peers. All peers are suspended after they have
completed their time slice. The next time slice is assigned
after all systems have reported the completion of the time
slice. As all communication peers synchronously progress

through this series of discrete time slices, we obtain an
implicit sequence of global soft-states whose accuracy is
determined by the size of the chosen time slices.

2.2 Architecture
Figure 1 shows the framework that puts our concepts into
action. It consists of two main building blocks, the
Monitoring Front-end that controls the entire investigation
process and the progression of time. The execution of the PIs
takes place at multiple VMs, from which we collect local
state information using the Monitoring Back-end attached to
the VM.
1) Monitoring Front-end: This building block encompasses
the synchronizer as well as the monitoring component. All
analysis tasks are carried out at the monitoring component. It
retrieves the local state from all back-ends attached to a VM
using remote procedure calls and consolidates a global soft-
state. A scripting interface provides a flexible interface to the
global soft-state information. This facilitates both automated
as well as interactive explorations of the collected state
information. In addition, the scripting interface allows the set
of investigated soft-states to be modified at run-time. For
example, further breakpoints and inspectors may be added in
a conditional way, as in case of a particular behavior
observed on one of the VMs. Moreover, the scripting
interface not only facilitates the passive inspection of state
information, but it also allows one to change state descriptors
actively. For instance, this allows tuning protocol parameters
with “global knowledge” or the simulation of software faults.
The synchronizer assigns small time slices of virtual run-time
to the VMs in order to align their local clocks. The next time
slice is assigned when all VMs have completed the current
one. Thus, the end of every time slice forms a
synchronization point for all VMs. We have previously
employed this approach for the synchronization of event-
driven simulation with VMs. Two aspects are of importance
when applying this concept for the purpose of synchronizing
the execution of distributed implementations. First, the time
drift and hence the elasticity of the global soft-state is bound
to the duration of the time-slice. As we aim at a high level of
consistency regarding the global soft-state, the duration of the
time slices has to be adequately small. Typically, we use time
slices between 70 and 200 microseconds. Second, the
periodic interruption of all VMs and the synchronization
messaging introduces a certain amount of overhead in terms
of execution time, yielding to an increased amount of overall
real-world run-time for smaller time slices. This is a direct

Figure 1: Conceptual Architecture of the monitoring framework

Monitoring Frontend

Monitoring Component

Global SoftstateScripting
Interface

Synchronizer

VM Host
Backend

Virtual
Machine

Developer
Machine

Scripting
Framework

Thrift

Synchronizer

Xen Hypervisor
Sync.

Scheduler

Backend Server

VM
Control

Thrift

Sync.
Module

GDBServer
for Xen

Xen Control Domain Guest
Domain

VETH0

Communication (Ethernet)

Synchronization

VM Control

Observation

GDB
Control

Other hosts

consequence of the chosen synchronization approach. It is
further elaborated in [12] where we apply it to the
synchronization of event-driven network simulations with
virtual machines.
2) Monitoring Back-end: The monitoring back-end
implements all required primitives to support the operations
provided to the developer through the scripting interface. The
primitives are exposed to the front-end using a standard
remote procedure call (RPC) library.
The most important primitives implement the access to local
state descriptors on a virtual machine. In order to locate the
state information within the memory region allocated to the
VM, we access the symbol table of the operating system
executed in the VM. This way, we’re able to directly access
the corresponding state descriptors while avoiding a potential
external reimplementation of operating system memory
management functions such as the traversal of page tables.
Besides the bare access to the VM’s memory, the back-end
parses the respective memory content in order to provide the
developer with a more descriptive representation of the
inspected state property.
The monitoring back-end provides further control primitives
regarding the VM execution. Basic commands such as PAUSE
and UNPAUSE perform the corresponding actions. More
sophisticated primitives such as SNAPSHOT allow for storing
an entire VM state, which also enables the scripting interface
to initiate global distributed snapshots upon the observation
of certain behavioral patterns.
Besides the provision of the required access and control
primitives, the back-end together with the VM environment
needs to support the time-slice based execution required by
the synchronization scheme. For this purpose, the VM
environment executes a virtual machine for the exact duration
of the time slice. In addition the VM environment has to
provide the VMs with a virtual progression of time that is
aligned to the provisioned time slices.

3. IMPLEMENTATION

Figure 2 depicts our implementation corresponding to the
proposed architecture. We distinguish between the developer
machine that exposes the global soft-state within a scripting
environment and VM hosts executing multiple VM guests on
top of a customized Xen [1] hypervisor. The VM hosts and

the developer machine are interconnected using three
different flows of communication. First, a combined
observation and control flow based on Apache Thrift [11]
delivers state information to the developer machine and
facilitates controlling the VM execution behavior using the
scripting framework. Second, the provision of time slices
takes place using a separate synchronization flow. It
delivers time slice information to the VM hosts using a
lightweight UDP messaging scheme, minimizing the
complexity due to the potentially high amount of
synchronization messages. A custom Xen scheduler then
executes the VM guest for the specified time slice duration.
In our previous work [12] we elaborate how Xen was
modified for the purpose of synchronization in greater detail.
A third communication flow comprises an Ethernet tunnel in
order to enable the communication among the protocol stacks
hosted on multiple VMs.

3.1 Scripting Environment
The Python-based scripting framework drives the entire
inspection process. At any point in the logical flow of time,
the individual local states of all communication peers are
accessed using a stub that allows for setting breakpoints or
for reading and modifying state descriptors using the
common gdb syntax. Listing 1 illustrates how our framework
can be applied to monitoring the reception of ICMP packets
at two Linux hosts. Due to the lack of space we omit the
initialization block that establishes the observation and
control flow to the sender and to the receiver. The example
uses the setBreakpoint primitive to interrupt the execution at
both hosts upon the reception of an ICMP packet, e.g. an
echo request. It employs two threads in order to cope with the
parallel execution of the sender and the receiver. Using the
wait() command, each thread waits until one system hits a
break-point. In this case, the script outputs the content of the
socket buffer. Other commands not used in this example
allow for snapshotting a VM and facilitate a manual control
of the VM execution.
We further emphasize that the entire process of
synchronization is transparent to the scripting environment.
The provision of small time slices automatically establishes a
series of global soft-states, formed by the individual local
states for a particular time slice. As a system is not able to
signal the completion of its time slice upon hitting a break-

class hostA_thread(threading.Thread)):
 def run(self):
 while True:
 hostA.wait()
 pp.pprint("host A: *skb:" + hostA.getVariable("*skb",))

class hostB_thread(threading.Thread)):
 def run(self):
 while True:
 hostB.wait()
 pp.pprint("host B: *skb:" + hostB.getVariable("*skb",))

bpA = hostA.setBreakpoint("icmp_rcv",)
bpB = hostB.setBreakpoint("icmp_rcv",)

Listing 1: Monitoring the exchange of ICMP frames

Figure 2: Our framework is implemented on top of the Xen hypervisor
and facilitates the analysis and the debugging of multiple VMs using the
Python scripting language. The synchronizer, together with a custom
Xen scheduler, provides a virtual flow of time to the attached VMs.

point, the execution at all other communication peers is also
suspended at the end of the current time slice.

3.2 Back-end Server
The core task of this component is to deliver local state
information to the scripting front-end. For the purpose of
accessing local state information from the Xen domains, we
rely on Gdbserver-xen [6]. Gdbserver-xen provides a gdb
interface to the kernel being executed inside the VM. It relies
on the available symbol table information in order to locate
symbols, e.g. protocol state descriptors, in the memory range
of the executed kernel. Gdbserver-xen then internally
translates the pseudo-physical addresses in the symbol table
to the corresponding addresses in the physical host’s address
range. For the purpose of providing a convenient and
efficient access to kernel-level state descriptors, gdbserver-
xen maps these memory ranges to the address space of the
privileged control domain (domain 0).
Besides the exposure of state information, the Back-end
Server also implements a set of control primitives. For this
purpose, our implementation executes so-called hypercalls to
directly control the state and the scheduling behavior of the
VMs. In addition, few operations such as snapshotting are
implemented by invoking the corresponding calls to the Xen
Management daemon.

4. EVALUATION

We now evaluate our system regarding the valid provision of
virtual time to the VMs. We also investigate the capability of
our framework to externally monitor state changes of a Linux
TCP implementation at the packet granularity level. All
experiments were carried out using two Dell Optiplex 960
PCs, each equipped with a 3GHz Intel Core2 Quad CPU and
8 GB of RAM. Each machine executed our Xen-based
implementation of the monitoring framework. One machine
in addition hosted the monitoring framework and the
synchronizer. For all experiments the synchronization
accuracy was set to 100μs, at which the run-time overhead
amounts to 42% compared to real-time for one Xen domain.

4.1 Provision of virtual time
In order to validate the provision of virtual time to the VMs,
we used a straightforward monitoring script to suspend the
execution of a VM for a specified amount of time upon the
reception of an ICMP frame. In order to trigger this behavior,
ICMP echo replies were sent to the local host at a constant
rate. On the VM, we measured the average RTT of the Echo
replies. Figure 3 displays the result: As expected, for non-
synchronized VMs the measured RTT increases for longer
execution pauses, as ICMP internally utilizes timestamps to
conduct round-trip measurements. By contrast, if we use our
implementation to supply a VM with a virtual progression of
time, the measured round trip times show the desired
invariance to external interruptions of the VM execution.

4.2 Monitoring Accuracy
As the state of a PI may change with every packet sent or
received, it is vital to accurately capture state changes at the
granularity level of one packet. For the purpose of evaluating
our implementation against this requirement, we applied our
framework to the TCP implementation of Linux 2.6. One of
the TCP protocol states that are subject to change with every
packet is the TCP receive window. We are aware that our
VM based monitoring approach is not required for tracing the
receive window of a TCP connection, as the receive window
is also part of the TCP header and thus may also be observed
using a packet capturing tool like Wireshark [14]. However,
the presence of this information within the TCP packet
header allows to use it as a reference value and thus allows
for investigating the accuracy of the state information
gathered with our framework.
Consequently we used our framework to monitor the receive
window on two VMs exchanging data over a bi-directional
TCP connection. Figure 4 compares the window sizes
extracted from the VMs using our framework with the
reference window sizes as reported by Wireshark. The
window sizes extracted from the VMs well match the
reference values. From this we conclude that our approach
enables observations of protocol descriptor state changes at
the granularity of one packet.

5. RELATED WORK

The related efforts and challenges in the area of distributed
protocol monitoring fall into two main categories: protocol
state exposure and global snapshot creation. While the access
of protocol state information in operating systems is widely
supported by a number of well-established debugging tools
such as gdb and Liblog [3], the transparent creation of
consistent global snapshots remains to be a challenge. In the
remainder of this section, we discuss the existing approaches
for deployed protocol monitoring and relate our approach.
In [8] the authors present D3S, a checker which logs
distributed protocol states using binary code instrumentation
in user-space. The defined watch points of interest redirect
the active program execution to protocol-dependent state
exposure routines that subsequently transmit the state
information over the network to a global verifier. Although

Figure 3: Executing a VM in virtual time rather than real-time makes
RTTs on the local host invariant to externally imposed execution gaps.

the performance overhead of less than 8% is reasonable, the
intrusive binary instrumentation is bound to one specific
operating system. Moreover, the correctness of the global
snapshot creation mechanism strictly depends on the
messages containing virtual timestamps. D3S is a post-
mortem debugger. Once a distributed assertion is violated, it
is not possible to suspend the distributed system execution
for further analysis of neither the protocol nor its
environment. On the contrary, our monitoring framework
offers full control of VMs along with running protocols
making distributed event ordering redundant.
PDB [5] employs Xen to debug both user-space and kernel-
space software of guest operating systems running on a single
physical machine. PDB provides an extensive interface for
debugging information access and visualization. In contrast
to PDB, our approach spans over a number of physical
machines using synchronized virtual time. By suspending and
resuming individual VMs we not only synchronize their
distributed execution but also preserve the timers that steer
the core of PIs. Moreover, a developer is supported with an
intuitive script language to formulate and check high-level
protocol predicates.
One alternative to using gdbserver-xen is XenAccess [10],
which we used in our preliminary work [13] to inspect
protocol state descriptors. XenAccess also provides external
access to symbol information. However, major drawback of
XenAccess is its fixed reimplementation of the memory
management of the guest OS to resolve the symbols. This
makes it rather inflexible to apply to different operating
systems or kernels varying in the way they organize the
system memory.

6. CONCLUSION

In this paper we provided an in-depth discussion of our
framework allowing for the analysis of distributed network
protocol implementations. It incorporates the concept of VM
monitoring with the provision of a consistent and virtual
progression of time to a set of virtualized communication
peers. This relieves the investigation of the distributed run-

time behavior from any real-time constraint. Hence, it
becomes possible to transparently carry out extensive
analysis tasks like the deep exploration of a network
protocol’s state space or complex operations such as
snapshotting an entire system.
We conclude that our framework eases the analysis of the
distributed execution of network PIs. First, our framework
automatically delivers the developer with a series of global
soft-states, in which any aspect of a PI may be investigated
using a flexible scripting environment. Second, we emphasize
that the application of our framework for the purpose of
monitoring a kernel-level application is straightforward.
Hence, we regard it to be a very supportive tool for both
researchers and developers that interested in investigating the
execution of distributed protocol implementations.

ACKNOWLEDGEMENTS
This work is partly funded by the German Research
Foundation (DFG). The authors thank Hendrik vom Lehn and
Suraj Prabhakaran for their helpful comments.

REFERENCES
[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.
Neugebauer, I. Pratt, and A. Warfield. Xen and the art of virtualization. In
SOSP’03, Bolton Landing, NY, USA, Oct. 2003. ACM.
[2] Free Software Foundation. GDB documentation: (the GNU source-level
debugger). http://www.gnu.org/software/gdb/documentation/ (accessed
08/16/2010).
[3] D. Geels, G. Altekar, S. Shenker, and I. Stoica. Replay debugging for
distributed applications. In ATEC ’06: Proceedings of the annual USENIX ’
Annual Technical Conference, pages 27–27, Berkeley, CA, USA, 2006.
[4] J. Gray. Why do computers stop and what can be done about it? In
Proceedings of the Fifth Symposium on Reliability in Distributed Software
and Database Systems (SRDS’86), Los Angeles, CA, USA, 1986
[5] A. Ho, S. Hand, and T. Harris. Pdb: Pervasive debugging with Xen. In
GRID ’04: Proceedings of the 5th IEEE/ACM International Workshop on
Grid Computing, pages 260–265, Washington, DC, USA, 2004.
[6] N. Kamble, J. Nakajima, and A. Mallick. Evolution in Kernel Debugging
using Hardware Virtualization With Xen. In Proceedings of the Ottawa
Linux Symposium, 2006.
[7] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558–565, July 1978.
[8] X. Liu, Z. Guo, X. Wang, F. Chen, X. Lian, J. Tang, M. Wu, M. F.
Kaashoek, and Z. Zhang. D3S: Debugging deployed distributed systems,
Proceedings of the 5th USENIX Symposium on Networked Systems Design
& Implementation, NSDI 2008, San Francisco, CA, USA, 2008
[9] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hållberg,
J. Högberg, F. Larsson, A. Moestedt, and B. Werner. Simics: A full system
simulation platform. IEEE Computer, 35:50–58, 2002.
[10] B. D. Payne and W. Lee. Secure and flexible monitoring of virtual
machines. In ACSAC, pages 385–397. IEEE Computer Society, 2007.
[11] M. Slee, A. Agarwal, and M. Kwiatkowski. Thrift: Scalable cross-
language services implementation. Technical Report, Facebook Inc., 2007.
[12] E. Weingärtner, F. Schmidt, T. Heer, and K. Wehrle. Synchronized
network emuqlation: Matching prototypes with complex simulations. In 1st
Workshop on Hot Topics in Measurement & Modeling of Computer Systems
(HotMetrics’08), Annapolis, MD, June 2008.
[13] E. Weingärtner, C. Terwelp, and K. Wehrle. PromoX: A protocol stack
monitoring framework. In Proceedings of the GI/ITG KIVS Workshop on
Overlay and Network Virtualization 2009, Kassel, Germany, 2009.
[14] Wireshark. A network protocol analyzer. http://www.wireshark.org/,
(accessed 08/16/2010).

Figure 4: Our framework accurately captures state changes of
kernel-level PIs at packet granularity. The state information
extracted from the VM well matches the reference values obtained
from packet traces.

