
Towards Network Centric Development of
Embedded Systems

S. Schürmans∗, E. Weingärtner†, T. Kempf∗, G. Ascheid∗, K. Wehrle†, R. Leupers∗
∗Institute for Integrated Signal Processing Systems, RWTH Aachen University

†Distributed Systems Group, RWTH Aachen University

Abstract— Nowadays, the development of embedded system
hardware and related system software is mostly carried out
using virtual platform environments. The high level of modeling
detail (hardware elements are partially modeled in a cycle-
accurate fashion) is required for many core design tasks. At
the same time, the high computational complexity of virtual
platforms caused by the detailed level of simulation hinders their
application for modeling large networks of embedded systems. In
this paper, we propose the integration of virtual platforms with
network simulations, combining the accuracy of virtual platforms
with the versatility and scalability of network simulation tools.
Forming such a hybrid toolchain facilitates the detailed analysis
of embedded network systems and related important design
aspects, such as resource effectiveness, prior to their actual
deployment.

I. I NTRODUCTION

Over the past decade, embedded systems with communica-
tion features have become a pervasive reality. For example,
cellular phones and wi-fi home routers are embedded systems
with the core task of providing network access to end users.
Many multimedia devices such as set-top boxes or portable
media players implement communication features for the
purpose of retrieving additional content from the Internetor
for sharing media data with other users.

The actual design of embedded systems, especially their
core architecture, is often carried out usingVirtual Platforms
(VPs), which are basically detailed simulators of hardware
platforms and the corresponding software. Well-established
tools in the area of hardware-software co-design, for example
Virtutech Simics [1] or CoWare Platform Architect [2], enable
the flexible composition of new system designs. These consist
of IP (Intellectual Property) blocks, for example processor
cores or communication architectures, as well as custom
hardware modules. Virtual platforms simulate the hardware
of the entire embedded system at its present design state. This
enables the execution of actual software within these envi-
ronments. Therefore it becomes possible to develop system
software like device drivers or operating systems concurrently
to the hardware design phase. Moreover, the ability to observe
and influence the behavior of the simulated system arbitrarily,
e.g., by setting breakpoints and possibly changing the state
of the system in a reproducible fashion, facilitates the robust
implementation of both system software and hardware. How-
ever, VPs are difficult to employ for the investigation of large
network scenarios that involve many communication peers, as
simulating the entire system hardware for every host node is
not feasible due to the high computational effort.

Network protocols are mostly evaluated using distinct dis-
crete event-based network simulation tools that are not based
on SystemC.Network simulators, for example ns-2 [3], ns-
3 [4], OPNET Modeler [5] or OMNeT++ [6], allow to
conveniently model arbitrary network topologies with any

imaginable set of protocols. Besides the high degree of flex-
ibility, scalability is another advantage of this methodology.
Recent network simulators are able to simulate thousands of
nodes on customary hardware, because the nodes are modeled
on a significantly higher level than on a virtual platform.
A key property of network simulations is their tendency to
strongly abstract from all hardware details of the nodes. For
example, most network simulations do not model the end
host behavior at all. In many cases the model implements
only a subset of the respective protocol to provide basic
functionality to the simulation. This makes it difficult to draw
conclusions about the performance of actual implementations
regarding network protocols or network applications using
solely network simulations.

Embedded devices with networking functionalities often
are resource constrained, for example in terms of available
energy, system memory and CPU performance. In order to
validate the resource effectiveness of corresponding hardware
and software, the early analysis of such in the design cycle is
vital. For this purpose, we propose the integration of virtual
platforms with network simulations in this paper, aiming at
the network centric design of embedded system software and
corresponding hardware. We utilize the network simulation
for the context provisioning to the VP. This way, it becomes
possible to analyze the system behavior given stimuli that
closely resemble real-world network scenarios. Moreover,the
detailed system model of today’s VPs makes it possible to
overcome the modeling limitations of current network simula-
tions, especially according to the end host behavior and related
performance metrics, such as CPU utilization, bus load, energy
consumption and memory usage. We discuss our integration
concept in further detail in Section II, before we introduceour
corresponding implementation based on the CoWare Platform
Architect and ns-3 in Section III. We evaluate the feasibility
and the applicability of this approach in Section IV, compare
our work with related approaches in Section V and conclude
this paper with our essential findings in Section VI.

II. CONCEPTUAL DESIGN

We now describe the conceptual design of our approach
(see Figure 1). It facilitates the integration of a discrete
event-based network simulator with a VP that models any
embedded system hardware. The actual integration of the
virtual platform and the network simulation is carried out
using two communication flows. First, we need to enable
the data exchange between simulated hosts and the system
modeled by the VP. Second, the run-time execution of both
must be synchronized, as the VP and the simulation operate
in two distinct timing domains. Otherwise a potential time
drift may corrupt the obtained measurements, as neither the
VP nor the network simulation always execute in a real-time

Fig. 1: Conceptual Design of Simulation Coupling

fashion. The synchronization of the embedded system modeled
by the VP and the simulation is based on the provisioning of
individual time quanta as earlier proposed in [7]: A central
synchronization component, the so-calledSynchronizer, issues
discrete time quanta to the network simulator and the VP.
Whenever the VP or the simulation completes its quantum,
the execution is blocked until the synchronizer assigns the
next quantum. In the following, we discuss important aspects
regarding the VP and the simulation and how we integrate
both to form a hybrid toolchain for both development and
evaluation purposes.

A. Virtual Platform

A virtual platform [8] or virtual system prototype [9]
defines a behavioral model of a system at various levels
of abstraction. Typically, virtual platforms are utilizedas
an executable specification in order to support software and
hardware development. The most important advantages are:

• Development and debugging of software before a hard-
ware prototype is available. Debugging is non-intrusive
and achieves typically better state visibility than debug-
ging directly on the hardware.

• Analysis, optimization and verification of software and
hardware.

• Easy modification and exploration capabilities reduce
time and cost intensive hardware prototyping experi-
ments.

Today the underlying technology of virtual platforms is
based on SystemC [10] and the Transaction Level Modeling
standard 2.0 (TLM-2) [11]. Especially the TLM-2 standard
nicely reflects the common hardware design principle of com-
ponent based design (CbD) [12]. Here a complete hardware
platform is a collection of various IP components that are
connected in order to execute a certain function, e.g. an entire
wireless handset. Fundamental building blocks are processors
(e.g. RISC, DSP), communication architectures (e.g. bus,
crossbar) and components for data exchange like packet radios.

Since communication with the external environment can
only occur over communication interfaces, whether wired
or wireless, these are the natural choices to part the two
simulation environments of virtual platforms and network
simulators. In addition, the component based design paradigm
allows to develop a virtual network adapter that looks to the
virtual platform like a standard radio component, but on the
other hand bridges the gap to the network simulation. Hence,
in the course of this work theNetChip IP component based

on SystemC has been developed, which is further discussed
in Section III-A.

For synchronization of the virtual platform with the network
simulator we developed theSyncVP Component(Section III-
A). This standard SystemC component is a virtual device that
can be easily integrated into every SystemC simulation and
requiresno connection or further hardware specific configura-
tion. The component opens a channel to the synchronization
server and blocks progression of the virtual platform simula-
tion till a command to advance a time quantum occurs. This
simple mechanism ensures synchronization with the network
simulator introduced next.

B. Network Simulation

The task of the network simulator is to model the computer
network to which the VP is connected. Respective simulation
tools, for example ns-2 [3], ns-3 [4], OPNET [5] or OMNeT++
[13], model the communication of network hosts based on the
paradigm of discrete event-based simulation. Essentially, basic
communication primitives, such as sending network packets
or the reception of data, are represented by events with an
associated event execution time. All events are queued based
on their time of execution and processed sequentially by the
simulator. Hence, network simulators share many similarities
with SystemC due to their internal event-based architecture.

For many of these simulators, large repositories of simu-
lation models, such as channel models, protocol models or
application models exist, and hence, one can often directly
start setting up the simulation.

In order to facilitate the communication of the VP with the
simulation, the network simulator needs to convert incoming
packets to its own message representation. In a similar fashion,
outgoing packets are serialized to the message format used
by the VP. The synchronization of the VP with the network
simulation is carried out using a custom event scheduler which
blocks the simulation if the next event in the simulation queue
is scheduled beyond the current time quantum.

III. I MPLEMENTATION

Following the discussion of our integration concept, we
now delineate how we implemented the fusion of a VP and
a network simulation into a modular workbench. As our VP
integration is solely based on standard SystemC, hybrid VP
network simulation setups can be executed using any SystemC
simulation framework. Similarly, the network simulation is
bridged with the VP using two generic and lightweight proto-
cols based on UDP [14] for the exchange of communication
data and synchronization messages. In the following, we lay
out further details of our implementation and its core modules.

A. Virtual Platform Components

In order to integrate the VP into the joined setup, it
needs to be interfaced with both the communication and the
synchronization flows. We link the VP to these interfaces using
two SystemC modules.

The first module, the so-calledSyncVP Component, handles
the synchronization of the VP with the network simulation.
For this purpose, it simply needs to be added to a SystemC
design of choice. As it does not provide any ports nor requires
any connections to other SystemC modules, existing SystemC
designs are not required to be changed in any other way. The
SyncVP component carries out its task using only standard

void SyncVP_thread() {
while (true) {

do {
msg = recv(SYNCHRONIZER);

} while (msg.type != RUN_PERMISSION);
wait(msg.quantum);
send(SYNCHRONIZER, ACK);

}
}

Lst. 1: Pseudocode of SyncVP component

SystemC features. As the pseudocode in Listing 1 illustrates,
it executes the following four subtasks in an endless loop:

1) Reception of a Run Permission Message
The synchronizer sends an UDP packet containing a
run permission message whenever it assigns a new time
quantum to the simulation. As SystemC is an extension
of C, the SyncVP component can use a standard Berke-
ley Socket [15] to receive incoming messages.

2) Suspending the Simulation
Before a time quantum has been assigned by the syn-
chronizer, the entire simulation has to be halted. A
common SystemC module can accomplish this by not
returning control to the SystemC scheduler until the
time quantum has been assigned. This way, the SystemC
kernel does not know if any events will be scheduled
before the code of the module returns control, so the
kernel cannot execute any events after the current point
in time. The SyncVP component executes blocking reads
on the communication socket, which halts execution
without busy waiting. Execution continues in the code of
the SyncVP component when a run permission message
is received.

3) Running the Simulation
By putting itself to sleep for the duration of the assigned
time quantum, the SyncVP component is able to ad-
vance the simulation. This is done by calling SystemC’s
wait() function with the duration of the quantum
as parameter. All other parts of the simulation will
continue to run for this time. Afterwards, thewait()
function returns and control is passed back to SyncVP
component.

4) Acknowledgement of Time Slice Execution
After completing a time quantum, the SyncVP compo-
nent has to inform the synchronizer. This is done by
sending an UDP packet using the socket interface also
used for reception of run permission messages.

The Virtual Network Chipimplements the communication
with the network simulator on the VP side. It has been
modeled to work like a real network chip, except that the
network link is modeled using an UDP based tunnel protocol
for simulated Ethernet frames.

Figure 2 displays the internal structure of the network chip.
In the VP environment, it provides a bus target interface and
an interrupt initiator port. The bus interface enables the access
to a memory buffer of 16kB and to four control registers: a
configuration register, a status register, a command register
and asize register. Incoming messages are not directly written
to the message buffer in order to retain full control of the buffer
via the bus interface. Instead, a reception is indicated in the
status register. The command register can be used to make a
received message available in the buffer and to send the buffer

Fig. 2: Virtual Network Chip

contents as a new message. The configuration register allows
configuring interrupts for the flags set in the status register.

B. Network Simulation

The integration of event-based network simulation tools
with a VP essentially boils down to the implementation of
a custom event scheduler (cf. [7]), as well as the realization
of adequate methods for parsing VP network data and for the
serialization of simulation messages.

At the present development stage, our modular workbench
supports the integration ofOMNeT++ andns-3based network
simulations. While OMNeT++ provides the developer with a
very convenient visualization of the network simulation, our
current work focuses on ns-3 due to its increased flexibility,
its off-the-shelf network emulation features and also due its
growing importance in the network research community.

In order to integrate ns-3 with the VP, we introduce ded-
icatedghost nodesto the simulation. These ghost nodes are
both connected to the simulation and to the VP. Essentially,the
ghost nodes are placeholders for the VPs within the simulated
network topology. If a simulated network packet arrives at the
ghost node, it is wrapped into an UDP packet and tunneled to
the corresponding VP. In a similar fashion, packets originating
at the VP are converted to simulation packets upon their arrival
at the network simulator. The traffic then is injected into the
simulation at the respective ghost node.

IV. EVALUATION

To show the capabilities of our proposed approach, we
introduce a setup depicted in Figure 3. The simulated network
consists out of two hosts connected via a single direct link.The
first host is modeled within the network simulator, whereas the
other one is a ghost node, whose functionality is simulated

Fig. 3: Setup of VP and Network Simulator

1 10 100 1000 10000 100000
0.02

0.04

0.06

0.08

0.1

0.2

0.4
Performance of Synchronization

Time Quantum (q, microseconds)

P
er

fo
rm

an
ce

 (
t S

Y
N

 /
t W

C
)

Fig. 4: Performance of Synchronization

on the VP. For synchronization, the VP utilizes a SyncVP
Component and the rest of the system is build based on
the Virtual Processing Unit (VPU) technology [16]. In this
scenario, a single VPU instance represents an arbitrary RISC
processor core, which is connected via an Advanced High-
Performance Bus (AHB) clocked with 10 MHz to a memory
subsystem and to the NetChip IP component, whose interrupt
line is connected to the VPU.

The software executed on the VPU is a port of the micro
IP (uIP) stack [17] extended with timing annotations to model
realistic timing behavior of packet processing on an embedded
processor core.

The host within the network simulator constantly sends
ICMP echo request (ping) messages containing a payload of
configurable length with a configurable interval between two
consecutive messages. These messages are received by the uIP
stack running on the VP, which replies with the corresponding
ICMP echo reply message.

The setup used for evaluation consists of a version of ns-
3 [4] extended with synchronization capabilities to run the
network and CoWare Platform Architect [2] version 2009.1.1
to run the SystemC simulation. Both simulations are syn-
chronized by the the mechanism described in [7]. All mea-
surements have been performed on an AMD Athlon 64 X2
with 3GHz clock frequency and 6GB main memory running
Scientific Linux 5 as operating system.

A. Performance and Accuracy

The size of the time quantum used for synchronization
controls both performance and accuracy of the hybrid sim-
ulation. To measure the effect of time quantum sizeq on
performance and accuracy, the test scenario is simulated with
a variable time quantum ranging from1µs to 500ms. In each
test configuration the host in the network simulator sends100

ping requests with56 bytes payload with an interval of1s to
be answered by the VP.

For measuring the performance, we relate the simulation
time elapsed at the synchronizertSY N to the wall clock
time required for running the simulationtWC . The quotient
tSY N/tWC over the quantum sizeq is graphed in Figure 4.

As two synchronization messages have to be exchanged
between the synchronizer and both simulations for every time
slot of quantum sizeq, the number of messages needed for

1 10 100 1000 10000 100000

1

10

100

1000

10000

100000

Time Quantum (q, microseconds)

Accuracy of Synchronization

T
im

e
D

ev
ia

tio
n

(∆
t,

m
ic

ro
se

co
nd

s)

Fig. 5: Accuracy of Synchronization

a joint simulation of durationtSY N equals4·tSY N/q. This
is the reason for simulation performance to be worst for
small quantum sizesq and to increase steadily towards longer
quanta. For quantum sizes ofq ≥ 10µs, the steepness of the
increase in performance starts to drop because the time needed
for synchronization is getting smaller compared to the time
needed for execution of the simulation for one time quantum.
The performance is no more increasing forq ≥ 1ms, because
the synchronization overhead is negligible in relation to the
simulation itself.

The accuracy of simulation coupling manifests in the ob-
served time deviations between network simulator and VP.
Every simulated network packet exchanged between network
simulator and VP is seen once in the network simulator and
once in the VP. We denote the time of a network packet
entering/leaving the network simulator bytNS and the time of
it entering/leaving the VP bytV P . Thus, the time deviation is
∆t := |tNS−tV P |. We graph the distribution of the deviations
∆t observed for the200 network packets exchanged in the test
case described above.

Figure 5 shows the median, the 25% and 75% percentiles
as well as the minimum and maximum of the deviations∆t
over the quantum sizeq.

The boundedness of∆t is the most important fact observ-
able in the graph:∆t ≤ q holds for all quantum sizesq.
This shows that the synchronization of simulations is working.
For small quantum sizesq ≤ 2µs, a lot of messages are
observed in the network simulator and in the VP at the same
time, the 25% pecentile is at the bottom of the figure. This is
caused by the observed deviation being almost zero for a large
percentage of packets. Exact timing still occurs occasionally
up toq = 50µs as can be seen from the minimum touching the
bottom. However, the 25% percentile being shifted towards the
maximum shows that most messages are already experiencing
a time deviation. Starting fromq = 100µs, most messages ex-
perience almost the full time deviation possible. Additionally,
no message is arriving at the exact point in time any more.
Both effects can be explained by looking at the simulation
speed of the network simulator and the VP. As the most
dominant timings in the network simulator are in the range of
milliseconds, whereas the VP deals mostly with timings below
microseconds, the VP has to process considerably more events
per simulation time than the network simulator. The network

10 20 50 100 200 500 1000
0.1

0.2

0.4

0.6

0.8

1

2

4

Bus Load on VP

Ping Interval (milliseconds)

B
us

 L
oa

d
(p

er
ce

nt
)

payload 32 bytes
payload 64 bytes
payload 128 bytes
payload 256 bytes

Fig. 6: Bus Load on Virtual Platform

simulator being significantly faster than the VP results in the
VP having just started simulation of a time quantum when the
network simulator has already completed it. Thus all packets
sent from the network simulator to the VP will be seen on
the VP at the beginning of the current time quantum and all
packets sent from the VP to the network simulator will not be
detected by the network simulator until begin of the next time
quantum.

Performance (Figure 4) and accuracy (Figure 5) measure-
ments show that a tradeoff exists between those parameters.
With decreasing quantum size and thus increasing accuracy,
the performance drops. While the increase in accuracy is
uniform over the entire range of quantum sizes, the drop in
performance is only marginal for large quantum sizesq and
starts to become substantial forq < 100µs. Thus, a good
tradeoff between performance and accuracy is achieved for a
quantum size ofq = 100µs.

B. Load on Virtual Platform

Our approach of simulation coupling is intended to help
analyzing network induced effects on the VP. To illustrate this
using a simple example, we measure the effects of incoming
ping requests onto the load observed on the VP.

We first fix the time quantum used for synchronization to
q := 100µs, which provides the best accuracy that can be
obtained without significantly impairing performance. Instead
of q, we now vary the ping payload length from32 to 256 bytes
and the ping interval from10ms to 1s. For every configuration,
we measure the bus load of the VP, which is plotted over the
length of the ping interval for the four different payload lengths
in Figure 6.

With shorter intervals between the ping requests, the number
of network packets to process increases, which leads to a
higher bus load on the VP. For small ping intervals of up
to 100ms, the load is almost proportional to the number of
packets to process per time unit and thus reciprocal to the
length of the ping interval. For longer intervals, the load
imposed by the ping is no more significantly larger than the
background load on the VP unrelated to processing network
packets. Thus, the decrease of the load is getting smaller for
large intervals. The effect of the payload length is similarto
the effect of the ping interval. With increasing payload size,
the load rises. For small payload sizes of32 and 64 bytes,

10 20 50 100 200 500 1000

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Average Round Trip Time in Network Simulator

Ping Interval (milliseconds)

R
ou

nd
 T

rip
 T

im
e

(m
ill

is
ec

on
ds

)

payload 32 bytes
payload 64 bytes
payload 128 bytes
payload 256 bytes

Fig. 7: RTTs observed by Node inside Network Simulation

doubling the size only leads to a growth in load of about one
third. The reason is the constant load needed for reacting toa
packet reception and for processing the header. In contrast, the
bus loads for payload lengths128 and256 differ by almost a
factor of two, because the header processing overhead is less
predominant for those larger packet sizes.

As the VP was not modified or reconfigured during those
measurements and all adaptions were only done to the network
simulator, this example clearly demonstrates how network
effects influencing the status of a platform can be analyzed
using the proposed approach.

C. Round Trip Times

To show that the effects on the platform also impact the
network, we measured the round trip times (RTTs) of the
pings in the network simulator. These measurements were
taken from the simulation runs also used for measuring the
bus load on the VP. Instead of the load, Figure 7 shows the
round trip time on the Y-axis of the diagram while keeping
the interval on the X-axis and the different payloads.

The payload length influences the response time of the VP
and thus the round trip time seen in the network simulator.
Processing of longer packets takes longer as more data transfer
has to happen between network chip and processing core
and more computation has to be performed, for example for
calculating the checksums of the reply. The round trip times
show a dependency on payload length that is composed of
a part proportional to payload length, which is dominant for
the longer payloads of128 and256 bytes, and a constant part,
which is dominant for the shorter payloads of32 and64 bytes.
In contrast, the round trip time is almost independent of the
ping interval. The reason is the round trip time being shorter
than the interval. Thus, a ping request is fully processed and
the VP is idle again before the next ping request arrives.

From these measurements we conclude that processing
efforts on the VP in fact may influence sensitive network
performance metrics, for example round trip times. Thus, the
integration of the VP provides the network simulation with
deeper insight into the timings to expect from the host. The
inclusion of a host simulated in detail on a VP can hence help
to improve the analysis of the network, as it allows to check if
the timing behaviour of the hosts modeled inside the network
simulator are realistic.

V. RELATED WORK

Most Virtual Platforms are based on SystemC [10] and
TLM-2 [11]. There are pure SystemC environments like
[18] that can be used to run any SystemC simulation, but
do not contain building blocks for a VP. CoWare Platform
Architect [2] is a whole development environment for VPs. It
provides a large library of SystemC/TLM-2 modules modeling
processor cores, busses and memories. Next to a graphical
editor used to assemble the VP from pre- and user-defined Sys-
temC modules, a feature-rich SystemC debugging environment
is available to trace and analyze the VP. There are also other
VP products that are fully compliant to SystemC and TLM-2
and provide similar tools and module libraries, for example
Synopsys Innovator [19]. In contrast, Virtutech Simics [20]
and Carbon Design SoCDesigner [21] are two examples of
Virtual Platform solutions not yet fully supporting SystemC,
but including some interfaces to SystemC.

Virtutech Simics Network Simulation [22] is able to simu-
late networks of virtual nodes at different levels of abstraction
while including network simulation as well as platform effects.
However, the platform is not modeled in SystemC, which
excludes the usage of components from most libraries and
of many existing VPs.

A major influence for this work is the concept ofnetwork
emulationas proposed by Fall [23], in which physical ma-
chines are connected to a event-driven network simulation.
Nowadays, many simulators, most notably ns-3 [4], provide
according features. All these approaches suffer from the prob-
lem of requiring the simulation to be real-time capable. In
our previous work [7], we proposed a solution for this issue
by introducing a synchronization scheme and by replacing the
physical hosts with Xen based virtual machines. By contrast,
the integration of VPs with network simulations allows the
reproducible execution of code on a VP and provides the
developer with a much higher possible degree of simulation
accuracy.

VI. CONCLUSION

In this paper, we have proposed the integration of virtual
platforms (VPs) for embedded systems development with
network simulations. This novel hybrid approach facilitates
the close analysis of embedded systems hardware and software
during the design phase inside a large-scale simulated network
context. The actual integration is based on two generic com-
munication flows, one for data exchange and one for run-time
synchronization purposes, which are realized using generic
lightweight protocols. On the VP side, the plain SystemC
implementation ensures a wide compatibility with existing
SystemC environments. As indicated in our evaluation, in-
tegrating a network simulator with a VP is feasible with a
reasonable accuracy while introducing only a slight overhead.
Using this approach, we showed that the networking context
of an embedded system directly impacts the load on the
VP, for example due to a varying network load. In addition,
we were able to demonstrate that the accurate modeling of
VP timings also influences network performance metrics, for
instance round trip times.

All in all, we conclude that integrating virtual platforms
with network simulations extends the applicability of both, as

they mutually benefit from the advantages of each other. We
therefore regard this hybrid approach to be of major interest
for researchers and developers in the domains of system design
and computer networks.

VII. A CKNOWLEDGMENTS

This work has been partially funded by the UMIC Research
Centre and by the DFG Graduate School 643 at RWTH
Aachen University.

REFERENCES

[1] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hållberg,
J. Högberg, F. Larsson, A. Moestedt, and B. Werner, “Simics: A full
system simulation platform,”Computer, vol. 35, no. 2, pp. 50–58, Feb.
2002.

[2] “CoWare Platform Architect,” [Online] Available
http://www.coware.com/products/platformarchitect.php (accessed
08/2009).

[3] “ns-2 Website,” [Online] Available
http://www.isi.edu/nsnam/ns/ (accessed 07/2009).

[4] “ns-3 Website,” [Online] Available
http://www.nsnam.org/ (accessed 07/2009).

[5] O. Inc, “OPNET modeler,” [Online] Available
http://www.opnet.com (accessed 07/2009).

[6] A. Varga and R. Hornig, “An overview of the OMNeT++ simulation
environment,” inSIMUTools 2008, Marseille, France, March 2008.

[7] E. Weingärtner, F. Schmidt, T. Heer, and K. Wehrle, “Synchronized
network emulation: matching prototypes with complex simulations,”
SIGMETRICS Perform. Eval. Rev., vol. 36, no. 2, pp. 58–63, 2008.

[8] “CoWare Virtual Platform,” [Online] Available
http://www.coware.com/products/virtualplatform.php (accessed
08/2009).

[9] G. Hellestrand, “The revolution in systems engineering,” Spectrum,
IEEE, vol. 36, no. 9, pp. 43–51, Sep 1999.

[10] D. L. John Aynsley, IEEE Standard SystemC Language Reference
Manual, IEEE Computer Society Std. 1666, Rev. 2005, March 2006.

[11] J. Aynsley,OSCI TLM-2.0 Language Reference Manual, Open SystemC
Initiative (OSCI) Std. 2.0.1, Rev. JA32, July 2009.

[12] W. Cesario, D. Lyonnard, G. Nicolescu, Y. Paviot, S. Yoo, A. Jerraya,
L. Gauthier, and M. Diaz-Nava, “Multiprocessor SoC platforms: a
component-based design approach,”Design & Test of Computers, IEEE,
vol. 19, no. 6, pp. 52–63, Nov/Dec 2002.

[13] A. Varga and R. Hornig, “An overview of the OMNeT++ simulation
environment,” inSimuTools, S. Molnár, J. Heath, O. Dalle, and G. A.
Wainer, Eds. ICST, 2008, p. 60.

[14] J. B. Postel, “User datagram protocol,” Request for Comments (RFC)
768, Aug. 1980.

[15] W. R. Stevens, B. Fenner, and A. M. Rudoff,UNIX Network Program-
ming, Vol. 1. Pearson Education, 2003.

[16] Kempf, T., Dörper, M., Leupers, R., Ascheid, G. and H. Meyr (ISS
Aachen, DE); Kogel, T. and B. Vanthournout (CoWare Inc., BE), “A
Modular Simulation Framework for Spatial and Temporal TaskMapping
onto Multi-Processor SoC Platforms,” inProceedings of the Conference
on Design, Automation & Test in Europe (DATE), Munich, Germany,
March 2005.

[17] A. Dunkels, “Full TCP/IP for 8-bit architectures,” inMobiSys ’03:
Proceedings of the 1st international conference on Mobile systems,
applications and services. New York, NY, USA: ACM, 2003, pp.
85–98.

[18] OSCI SystemC Language and Examples, Open SystemC Initiative
(OSCI), March 2007.

[19] “Synopsys Innovator,” [Online] Available
http://www.synopsys.com/ (accessed 08/2009).

[20] Virtutech Simics, [Online] Available
http://www.virtutech.com/ (accessed 08/2009).

[21] C. D. S. Inc.,http://carbondesignsystems.com/.
[22] Virtutech Simics Network Simulation, [Online] Available

http://www.virtutech.com/whitepapers/networking.html (accessed
08/2009).

[23] K. Fall, “Network emulation in the VINT/NS simulator,”Proceedings
of the fourth IEEE Symposium on Computers and Communications, Jul.
1999.

