
Demo Abstract: Integrating Symbolic Execution with Sensor net
Simulation for Efficient Bug Finding

Fredrik Österlind, Adam Dunkels
Swedish Institute of Computer Science

fros@sics.se, adam@sics.se

Raimondas Sasnauskas,
Oscar Soria Dustmann, Klaus Wehrle

Communication and Distributed Systems,
RWTH Aachen University, Germany

{lastname}@comsys.rwth-aachen.de

Abstract
High-coverage testing of sensornet applications is vital

for pre-deployment bug cleansing, but has previously been
difficult due to the limited set of available tools. We integrate
the KleeNet symbolic execution engine with the COOJA net-
work simulator to allow for straight-forward and intuitive
high-coverage testing initiated from a simulation environ-
ment. A tight coupling of simulation and testing helps detect,
narrow down, and fix complex interaction bugs in an early
development phase. We demonstrate the seamless transition
between COOJA simulation and KleeNet symbolic execu-
tion. Our framework enables future research in how high-
coverage testing tools could be used in cooperation with sim-
ulation tools.

1 Introduction
Debugging sensornets is a notoriously difficult and te-

dious task. The embedded nature of resource-constrained
devices and their non-deterministic environment inevitably
contains a large number of unforeseen error sources. There-
fore, integrated debugging tools play an essential role in in-
creasing sensornets’ reliability before deployment.

Proof-of-concept tools such as T-Check [1] and
KleeNet [3] have shown that high-coverage testing is a
viable tool for finding sensornet bugs. We present a tool that
allows high-coverage testing to be executed directly from a
large-scale sensor network simulation, thereby significantly
extending the usefulness of high-coverage testing for sensor
network bug finding.

Our contribution in the context of this demonstration is
an integrated framework for high-coverage testing of Con-
tiki applications using KleeNet. Aiming at usability with low
manual effort we offer the community an automated sym-
bolic execution engine with configuration and bug replay ca-
pabilities in the COOJA network simulator [2]. Moreover,
we demonstrate how different testing setup strategies affect
the testing coverage.

2 Bug finding in COOJA/KleeNet
The workflow of bug finding with COOJA/KleeNet is

summarized in Figure 2. First, a COOJA simulation scenario
is created containing the simulated applications, the network

Copyright is held by the author/owner(s).
SenSys’10,November 3–5, 2010, Zurich, Switzerland.
ACM 978-1-4503-0344-6

Figure 1. The COOJA simulation is seamlessly exported and high-
coverage tested in KleeNet. When the test phase is completed, the re-
sulting execution paths and symbolic accesses can be replayed in simu-
lation.

size, and the network topology. The scenario may be re-
peatedly simulated using different initial random seeds, thus
forming multiple execution paths. Varying the random seeds
is commonly used to increase test coverage of simulation,
however, in comparison to symbolic execution the test cov-
erage remains low.

Second, the simulation is configured for execution in
KleeNet: the user chooses which variables should be ac-
cessed symbolically and specifies (distributed) assertions to
be checked during applications’ execution. For example, to
test a flooding algorithm the contents of the first radio trans-
mission may be set to be symbolic, with the application as-
sertion that the packet is eventually received by the entire
network. In addition, KleeNet supports node failures and
reboots, radio packet loss, corruption and duplication. The
simulation scenario is now exported and recompiled for ex-
ecution in KleeNet. The export is seamless in the sense that
the same code can be both simulated, symbolically executed,
and later replayed.

During execution, KleeNet simultaneously executes and
tests multiple execution paths, resulting in high-coverage
testing. Explored paths and any triggered assertions are pre-
sented during runtime; see the screenshot in Figure 1.

When the KleeNet execution is finished, a summary of
all the explored paths and assertion failures are presented,
allowing the user to load and replay the scenarios in simula-
tion. During replay, the symbolic variables will assume the



Figure 2. COOJA/KleeNet workflow: after configuring the network and th e application assertions in simulation, a developer migrates to symbolic
execution in KleeNet. Assertion failures found by KleeNet are finally replayed and debugged in simulation.

values of the loaded scenario, thus repeating the same execu-
tion path that previously triggered the assertion in KleeNet.
Since the application is now simulated, the user has full ac-
cess to simulation tools.

3 Integrating COOJA and Kleenet
Both COOJA and KleeNet can test unmodified Contiki

applications in various network scenarios. Although being
architecturally different, they execute the same code at the
same level of abstraction. We argue that this is a major pre-
requisite for accurate integration of any testing tool intoa
existing network simulator. Nevertheless, during the integra-
tion phase we had to implement the following extensions:

Simulation scenario export. A simulation setup in
COOJA is configured over the GUI where a user can select
different mote types, applications, and radio mediums for a
particular network scenario. Each simulation scenario can
now be directly exported as KleeNet test executable.

Execution model. COOJA—as any other discrete event
simulator—employs an event queue for efficient simula-
tion execution. We extended KleeNet with an event queue
searcher to switch between the explored execution paths in a
COOJA compliant manner.

Distributed scenario replay. During its execution,
KleeNet generates test cases for each explored distributed
scenario, bug, or distributed assertion violation. In COOJA,
we parse the resulting test cases, display a summary, and al-
low the user to replay a distributed scenario of choice. Con-
sequently, all symbolic variables are replaced by concrete
test case values. Upon reaching the detected bug, the simu-
lation is paused for detailed failure analysis and debugging.

4 Demo Setup
We demonstrate the benefits of a tight integration of high-

coverage testing and sensornet simulation. More specifi-
cally, we show how to prepare a sensornet application for
symbolic execution, and discuss advantages and limitations
of the symbolic execution approach within sensor networks.
We further demonstrate how a triggered assertion is replayed
into simulation, to finally locate the bug that caused the as-
sertion failure.

Simulation scenarios. We prepare simulation scenarios
with sensornet failures due to (1) packet-loss at the network
level, (2) mote outage/reboot, and (3) unexpected packet in-
put. We present the appropriate assertions to catch these fail-
ures using KleeNet. Then, we replay the execution paths
hitting those bugs for detailed analysis in COOJA.

Figure 3. An execution path tree graph generated at runtime by
COOJA/KleeNet. Depending on the number of symbolic variables, the
number of execution paths grows exponentially.

Visualizing execution paths.Our framework visualizes1

execution paths explored by KleeNet at runtime (see the ex-
ample tree graph in Figure 3). We visually show how the
number of symbolic variables and KleeNet’s search policy
affects the resulting tree graph, and discuss its potentialim-
plications on bug finding efficacy.

5 Conclusions
Currently, the COOJA simulation is exported in its initial

state, i.e. it is not possible to migrate an arbitrary simulation
state to symbolic execution. As a result, potential corner-
case states which only emerge after a long period of time
including intensive mote interactions might not be explored
due to state explosion or testing time constraints. Therefore,
our future work includes selective symbolic execution—a
seamless state transition from simulation to symbolic exe-
cution at any moment of simulation time.

6 References
[1] Peng Li and John Regehr. T-Check: Bug Finding for Sensor Networks.

In IPSN ’10: Proceedings of the 9th ACM/IEEE International Confer-
ence on Information Processing in Sensor Networks, 2010.

[2] F. Österlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt. Cross-
level sensor network simulation with cooja. InProceedings of the First
IEEE International Workshop on Practical Issues in Building Sensor
Network Applications (SenseApp 2006), Tampa, Florida, USA, Novem-
ber 2006.

[3] R. Sasnauskas, O. Landsiedel, M. H. Alizai, C. Weise, S. Kowalewski,
and K. Wehrle. KleeNet: Discovering Insidious InteractionBugs in
Wireless Sensor Networks Before Deployment. InACM IPSN ’10,
Stockholm, Sweden, 2010.

1We use the execution path tree generation script from KLEE
software repository athttp://klee.llvm.org.


