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Abstract—The simulation models of wireless networks rapidly
increase in complexity to accurately model wireless channel
characteristics and the properties of advanced transmission
technologies. Such detailed models typically lead to a high compu-
tational load per simulation event that accumulates to extensive
simulation runtimes. Reducing runtimes through parallelization
is challenging since it depends on detecting causally independent
events that can execute concurrently. Most existing approaches
base this detection on lookaheads derived from channel propa-
gation latency or protocol characteristics. In wireless networks,
these lookaheads are typically short, causing the potential for
parallelization and the achievable speedup to remain small.

This paper presents Horizon, which unlocks a substantial
portion of a simulation model’s workload for parallelization by
going beyond the traditional lookahead. We show how to augment
discrete events with durations to identify a much larger horizon
of independent simulation events and efficiently schedule them on
multi-core systems. Our evaluation shows that this approach can
significantly cut down the runtime of simulations, in particular
for complex and accurate models of wireless networks.

I. INTRODUCTION

Discrete event-based wireless network simulation currently
faces at least two significant changes: First, recent advances in
wireless communication technology demand highly accurate
simulation models, resulting in a steep increase in model
complexity and runtime requirements. Second, multi-processor
computers constitute the de-facto default hardware platform
even for desktop systems, thus providing cheap yet powerful
“private computing clusters”. As a result, the parallelization
of discrete event simulations significantly gained importance
and is therefore (again) in the focus of active research.

Model Complexity: Simulation models of wireless net-
works typically require a considerably more detailed modeling
of the lower network layers than models of wired networks. In
particular, the wireless channel and the physical layer demand
precise models to capture the subtle effects and interactions
of advanced wireless communication technologies such as
MIMO transmissions or successive interference cancelation.
Additionally, those systems depend on accurately timed mod-
els that take even short delays such as the processing time of
algorithms and hardware components into account. Moreover,
the computational complexity of simulation models is further
aggravated by the fact that the wireless channel is a broadcast
domain. This causes a much higher number of simulated

1While at the Distributed Systems Group. New affiliation is School of
Electrical Engineering, Royal Institute of Technology (KTH), Sweden

nodes to be involved in the communication process than in
wired networks. Consequently, simulation runtimes increase
drastically which in turn hampers the development process
and in-depth evaluations. Researchers often work around these
issues by trading accuracy for shorter runtimes [1], [2]. Such
trade-offs, however, need to be applied carefully as they may
lead to incorrect simulation results [3]. In addition, researchers
often utilize parallel hardware to execute independent se-
quential simulations in parallel to cover a wide range of
simulation parameters and/or to establish statistical confidence.
However, our experience shows that particularly during early
development phases of new protocols or distributed systems,
it is important to timely obtain approximate results in order
to speed up and guide the development process. Furthermore,
studies of the long-term behavior of complex systems demand
an efficient simulation execution. Consequently, we identify
the need for truely parallelized simulations.

Parallel Discrete Event Simulation: Having been an
active field of research for more than two decades, parallel
discrete event simulation is supported by a wide range of
network simulation frameworks [4], [5], [6], [7], [8]. Despite
this tool support, creating a parallel simulation model is chal-
lenging and running simulations on a distributed simulation
cluster is complex [9]. At the same time, the increasing number
and speed of processing cores in today’s commodity hardware
makes a higher degree of parallelization very attractive and
cost-effective for speeding up network simulation. Neverthe-
less, a key challenge in parallel simulations, in particular of
wireless networks, is that the lookaheads of parallelizable
events are very small due to short propagation delays and the
broadcast nature of the wireless channel.

In this paper we address these challenges by introducing
Horizon, a simple parallelization scheme that enables an
efficient simulation of wireless networks on multi-processor
systems. The key concept of Horizon is to identify independent
simulation events by means of extended timing information
and to execute such events dynamically on different processing
units in parallel. To this end, Horizon extends discrete events
with durations in simulation time in order to naturally model
delays and exploit parallelism in the simulation model. Hori-
zon specifically focuses on multi-processor systems to take
advantage of fast shared-memory synchronization primitives
and global control over the simulation. Summarizing, our
paper makes the following two key contributions:



1) We introduce a methodology for augmenting discrete
events with durations to explicitly and naturally model
delays in discrete event simulation.

2) We present a horizontal parallelization scheme that
exploits the given event durations for efficient parallel
simulation on multi-processor systems.

Our evaluation shows that Horizon achieves up to the
theoretical maximum of a linear speedup with respect to the
number of CPUs. Furthermore, we analyze the performance
characteristics of Horizon on the basis of synthetic benchmarks
and a case study of a complex cellular LTE (Long Term
Evolution) network model. Additionally, we derive approxi-
mate metrics for estimating the applicability of Horizon to
a specific simulation model. The remainder of this paper is
structured as follows: In Section II, we introduce state-of-the-
art approaches to parallel network simulation and put them
in context with our approach. Based on this background, we
present the timing-information based parallelization scheme of
Horizon in Section III and discuss advantages and limitations.
Section IV details on the implementation of Horizon, followed
by an performance evaluation in Section V. Finally, we discuss
related work in Section VI and conclude in Section VII.

II. BACKGROUND

Before introducing the design of Horizon, this section
briefly discusses the relevant basics of discrete event simu-
lation and gives an overview of state-of-the-art approaches to
parallel simulation. A discussion of closely related research
efforts is presented in Section VI.

In a discrete event simulation, each event e is associated
with a specific timestamp te denoting its time of occurrence.
The execution of an event does not consider the delay of the
simulated process, but instead events happen instantaneously
and take zero simulation time. The rationale behind this
paradigm is most notably that i) it simplifies simulation by
allowing a sequential execution of events according to a total
ordering. This prevents causal violations [10], i.e., the execu-
tion of two events in the wrong order. ii) the actual durations
of simulated processes are often not accurately known and
iii) in practice, this paradigm still enables the modeling of
delays by adjusting timestamps accordingly. However, we
argue that the explicit integration of durations in discrete event
simulation fosters a more natural and thus accurate modeling
of timing. Moreover, the additional timing information can
be exploited to efficiently parallelize simulation models with
small lookaheads.

Traditional parallel discrete event simulation relies on two
classes of synchronization algorithms to avoid causal vio-
lations. Conservative synchronization algorithms [11], [12],
[13] strive to strictly avoid causal violations by identifying
independent events which are safe for parallel execution.
To efficiently identify such events, these algorithms heavily
rely on the lookahead which is a lower time bound for the
interaction of entities in a parallel simulation model [14].
In network simulation, the lookahead is typically based on
simulated link delays and/or protocol properties [15], [16],
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Fig. 1. Determining independent events: A simple example showing three
expanded events that each span a certain period of simulation time. The events
e1 and e2 cannot depend on each other due to their temporal overlapping and
can thus be executed in parallel. e3 must follow sequentially.

[17]. In contrast, optimistic algorithms [18] speculatively ex-
ecute events in parallel and perform roll-backs once a causal
violation is detected. These algorithms considerably reduce the
synchronization effort for loosely coupled systems and are less
dependent on the lookahead than conservative algorithms.

For both classes of algorithms, simulation models of wire-
less networks constitute a worst case scenario. Conservative
algorithms suffer from extremely small lookahead values be-
cause of short propagation delays. In addition, the broadcast
nature of the wireless channel results in a tight coupling of the
simulated network nodes, thus causing frequent synchroniza-
tion. In case of optimistic algorithms, synchronization usually
implies roll-backs which drastically impact performance.

III. DESIGN

A. General Idea

As pointed out previously, discrete events occur instanta-
neously at discrete points in simulation time. However, let’s
assume for now that we extend this modeling principle with
the ability to handle events that span a period of simulation
time. Given such functionality, we can now augment events
with durations which naturally model the delay of simulated
processes and algorithms.

Fig. 1 shows a simple example of three augmented events
e1, e2, and e3 representing a “packet encoding”, a “packet
sending, and a “data indexing” process. We observe that in the
particular timing chosen for this example, e1 and e2 overlap
in time while e3 follows after the end of e2. The overlapping
implies that e2 cannot depend on any results generated by e1
because e2 already begins while e1 is still processing, i.e.,
its results are not yet available. Consequently, we conclude
that both events are independent and can thus be processed in
parallel. However, we cannot conclude whether or not e3 is
independent of the other two events since it begins after the
earlier events finished. In this example, it is indeed dependent
on e2 which calculates the encoded packet that is sent by e3.

Horizon bases its parallelization scheme on the observation
of overlapping events. This parallelization scheme dynamically
processes independent events from any layer and any node in
the simulation model. Hence, we denote it horizontal paral-
lelization to distinguish it from classic parallelization which
partitions the simulation model vertically in terms of clusters
of nodes. In the following we introduce the core concept in a
formalized context, analyze its validity, and discuss limitations.
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Fig. 2. Execution scheme of an expanded event e: The results of a simulated
continuous task are not needed in the simulation before tce. Hence, the
simulation scheduler offloads e to a worker CPU at tse and fetches the results
at tce allowing other events to be processed in-between.

B. Integrating Event Durations

Horizon allows events to span a specific period of time.
We denote this period the event duration tde of an expanded
event e. Consequently, an expanded event e is defined by a
distinct starting time tse and a distinct completion time tce
(see Fig. 2). We explicitly allow tse = tce in order to handle
traditional discrete events. On the one hand, this provides
backwards compatibility to existing simulation models and
enables their seamless transition to duration based modeling.
On the other hand, discrete events may be used to perform
maintenance tasks in a simulation such as propagating data
via side channels. Such tasks can neither be mapped to a
continuous process, nor do we want them to influence the
simulation timing.

An expanded event begins when the simulation time reaches
tse, but any results generated by this event are not needed
within the simulation until the completion time tce. This
follows directly from a correctly time-annotated simulation
model: Consider the events e2 and e3 from the simple example
given in Fig. 1. Obviously, e3 depends on the output of e2 since
it can only send a packet after it was completely encoded.
As a result, any overlapping timing in this case is incorrect
and contradicts a valid simulation model. Conversely, we can
conclude that an events e′ that begins between tse and tce is
independent to e. Thus, the time span between tse and tce
naturally opens a time window (i.e., horizon) in which the
parallel execution of independent events can be performed on
different processing units. Specifically, at tse the simulation
kernel offloads the execution of an event to an available
processor and continues handling further independent events
until the simulation time reaches tce. At tce, the simulation
kernel waits for the calculation to finish if needed, fetches the
results, and continues (see Fig. 3).

From a modeling perspective, the simulation time does not
advance within an expanded event. Instead, each expanded
event is executed in its own “time context” that always
corresponds to its specific tse. The rationale behind this
is two-fold: First, there is no general way of relating the
actually executed operations within some expanded event to
a continuously increasing time. After all, Horizon allows
to model a long running continuous process by associating
a comparatively long event duration to an expanded event,
independent of the amount of code executed in this event.
Second, the advancement of the simulation time should not
be coupled to the global simulation time because this creates
unwanted dependencies on the timing of other events: The
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Fig. 3. Parallel event scheduling: The central scheduler advances the global
simulation time by iteratively determining independent events, offloading them
to worker CPUs and fetching the results of completed calculations.

global simulation time advances in discrete steps according to
the ts and tc values of the scheduled events. Hence, depending
on how many other events occur in parallel to an expanded
event, the simulation time advances either in small time steps
or in large chunks of time.

Typically, it is sufficiently accurate to predefine the actual
length of an event duration at the time of modeling (e.g., for
events of static runtime) or calculate it at runtime (e.g., the
length of a received packet implies the time for decoding
it). However, Horizon provides model developers with the
means for explicitly controlling the length of an event duration
at runtime if an extra level of accuracy is required. For
instance, the execution time of an algorithm employed in a
simulation event may depend on the number of loop iterations
or conditional branches executed which need to be taken into
account at runtime of the simulation. To handle such cases,
Horizon allows to predefine a minimum event duration and to
later adjust (i.e., extend) it at runtime. The event scheduler then
directly incorporates any time adjustments by dynamically
scheduling further events if the longer event duration results
in new overlappings.

C. Correctness of the Parallel Scheduling

To guarantee the correctness of a parallel execution, Horizon
needs to fulfill two requirements: i) the ordering of events must
be deterministic and prevent causal violations and ii) the par-
allel execution of events must not cause data inconsistencies in
the simulation model. In this section, we discuss how Horizon
achieves these properties.

Event ordering: Horizon builds upon a centralized archi-
tecture consisting of a central scheduler and a single future
event list (FEL) containing pending events. Within the FEL,
events are ordered according to a total order “<” over their ts
timestamps. Thus e1 < e2 holds iff tse1 < tse2 . The scheduler
then drives the simulation by iteratively executing the first
event from the FEL and/or fetching results from completed
computations of previously offloaded events. Consequently,
the global simulation time advances discretely between the
corresponding ts and tc values of all scheduled events. Fur-
thermore, an expanded event e represents an atomic operation
whose effects become visible to other parts of the simulation



only after its tce. Hence, the starting time tse′ of any new event
e′ created by the processing of e may only be equal or larger to
tce. This guarantees that newly created events do not interfere
with already offloaded events. As a result, Horizon preserves
the correct ordering of events in increasing timestamp order
(see Fig. 3).

Data consistency: State-of-the-art simulation models
typically exhibit a component-based design (e.g., transmit-
ters, physical channel, network protocols) according to best-
practices in software engineering. Horizon exploits this fact
by composing simulation models of extended components,
called functional units. Similarly to the concept of logical
processes in traditional parallelization, each functional unit
maintains a private local state and interacts with neighboring
functional units only via message passing [10]. To avoid
data inconsistencies within the simulation model, the central
scheduler of Horizon guarantees that only one event per
functional unit is executed at any point in simulation time.

D. Discussion and Limitations

Horizon’s architecture relies on a central scheduler and
hence targets specifically shared-memory multi-processor sys-
tems. We believe that the increasing availability of multi-core
computers renders such systems a cheap and valuable alter-
native to full-sized computing clusters for small to medium
sized simulations. However, horizontal parallelization is or-
thogonal to existing distributed simulation schemes and can
presumably be combined: In a hybrid approach, each partition
of the distributed simulation model runs Horizon locally on
a multi-processor cluster node, while the distributed simula-
tion framework handles synchronization and communication
across nodes. Thus, by utilizing existing parallel simulation
mechanisms, Horizon transparently integrates with distributed
computing clusters.

Moreover, an advantage of the centralized simulation ar-
chitecture lies in its simple yet effective load balancing ca-
pabilities. In particular in wireless networks, node mobility
can cause severe shifts in workload within the model when
nodes move through the network or between different cells.
By handling events from a central FEL and offloading them
to a worker infrastructure, Horizon is not affected by these
workload shifts and thus does not have to apply dedicated
load balancing mechanisms.

The centralized event handling approach strongly benefits
from events that exhibit a non-trivial processing complexity.
By spending a considerable amount of runtime on their respec-
tive worker CPUs, such events easily amortize the overhead
inflicted by the central event scheduling. As we will show in
Section V-D, complex simulation models of wireless networks
clearly exhibit this characteristic.

Extending discrete events with durations inevitably raises
the question of how to obtain detailed timing information. We
propose using existing and well understood techniques to cal-
ibrate simulation models with respect to timing. For instance,
full system emulation [19], [20], [21], [22] employs detailed
hardware models to exactly mimic the behavior of specific

hardware platforms. It provides a highly accurate profiling tool
for obtaining timing information that can be used to calibrate
simulation models at the cost of increased development and
implementation efforts. Additionally, recent research efforts
[23], [24], [25] propose automatic calibration techniques for
simulation models as a lightweight alternative to emulation.
Such techniques automatically instrument simulation models
with specific functionality to represent the (timing) behavior
of a given hardware platform. Furthermore, communication
protocols generally specify a number of timing constraints
such as minimum and maximum timeout boundaries, waiting
periods, or back-off durations. These properties provide a
simple means for obtaining general timing information when
no specific hardware platform is of interest. They also form the
basis of well known approaches for maximizing the lookahead
in distributed simulation [15], [16], [17]. Finally, domain
experts may manually calibrate simulation models on the
basis of their knowledge. This approach obviously demands
a great amount of experience and careful judgment, but it also
provides significant flexibility.

IV. IMPLEMENTATION

As an extension to the discrete event simulation paradigm,
Horizon is generally applicable to any discrete event simu-
lation framework. Our implementation of Horizon is based
on OMNeT++ [6] – a simulation framework widely used in
networking research. The highly modular design of simulation
models in OMNeT++ closely ties into the concept of func-
tional units and hence facilitates the adoption of Horizon.

Horizon implements the parallel execution of events by
means of worker threads organized in a thread pool. Since
OMNeT++ was not designed for multi-threaded execution,
the primary implementation challenge is to ensure thread
safety with minimum overhead. Fig. 4 presents an overview
of the simulation architecture and illustrates the parallel event
handling within Horizon. Among the typical core components
of a simulation architecture is the central event scheduler along
with a future event list (FEL). Horizon carefully extends this
architecture by a thread pool, a work queue (WQ), and a so
called offloaded event list (OEL).

To maintain a correct event execution order and avoid
extensive locking, the central scheduler is the sole entity
accessing the FEL. Once the scheduler determines that an
event is safe for parallel execution, it removes the event from
the FEL and enqueues it in the WQ. The WQ is shared among
the scheduler and the worker threads which consume incoming
events as soon as they become available. As a result, this work
queue mechanism enables a simple yet effective load balancing
because pending workload is equally distributed across CPUs.
Additionally, by separating FEL and WQ, the scheduling
policy of the WQ is not bound to that of the scheduler, but
may be chosen flexibly (e.g., FIFO, EDF) to accommodate
different workload characteristics. The OEL contains a set of
meta-data for each offloaded event. Among this data is tce and
a notification mechanism that indicates to the scheduler that
the event was processed by a worker thread.
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Fig. 4. Event data-flow in the simulation architecture: ¬ get next event, ­
store information about offloaded event, ® offload event to worker system,
¯ execute events in parallel, ° store results and new events, ± update FEL
with new events

Executing an event generally generates new events which
need to be stored in the FEL accordingly. In Horizon however,
events being generated during a threaded execution are not
inserted in the FEL by the worker thread to avoid locking the
FEL. Instead, newly generated events are temporarily stored in
the meta-data of the corresponding offloaded event in the OEL.
Once the scheduler gets notified about the completion of e at
tce, it removes the new events from the entry in the OEL and
inserts them in the FEL. Hence, the notification mechanism
implicitly synchronizes the scheduler and the worker threads,
thus eliminating the need for additional locking of the OEL.

The integration of Horizon in OMNeT++ is mostly trans-
parent to existing models under the premise that functional
units interact only via message passing, which is the default
modeling paradigm in OMNeT++. For each functional unit,
developers only need to provide the functionality for deter-
mining the duration of a given event when executed in the
context of this particular unit. This allows for an effortless
porting of existing models to Horizon.

V. EVALUATION

As with every other parallelization scheme, the performance
of Horizon heavily depends on the simulation model under
investigation. Hence, the evaluation of Horizon follows three
steps: We first derive a set of metrics that allow model devel-
opers to estimate the potential performance gain of Horizon for
a given simulation model in order to decide whether or not
the model is suited for horizontal parallelization. Then, we
conduct synthetic benchmarks to investigate the performance
of Horizon with regard to the number of CPUs, the workload,
and the lookahead. Finally, we show that Horizon achieves
significant speedup in realistic simulation models by means
of a detailed simulation model of a cellular LTE network.

A. Performance Estimation

Horizon achieves parallelism by exploiting the overlapping
of concurrent events in simulation time. Since the amount
of overlapping events is a property of the simulation model,
not every model is equally well suited for horizontal par-
allelization. Hence, it is important for model developers to
estimate the applicability of Horizon to a specific model

already before or early during development. In this section,
we derive approximative metrics for doing so.

Let E be the set of all events that occur in a simulation
model. Then, I(e) denotes the set of independent expanded
events e′ whose starting times tse′ overlap with a particular
event e in simulation time

I(e) = {e′|tse ≤ tse′ ∧ tse′ ≤ tce} e, e′ ∈ E. (1)

Further, the number of concurrently to e offloadable events is

C(e) = |I(e)| e ∈ E, (2)

and denotes that a maximum of C(e) events can be executed
in parallel (including e itself). Considering all events in a
simulation model S, the average number of concurrent events
is defined as

C(E) =

∑
e∈E |C(e)|
|E|

. (3)

C(E) is a loose upper bound since the actual achievable
parallelism of S is subject to the distribution of overlapping
events throughout the simulation run and limited by the
number of available CPUs and, as discussed in the next
section, influenced by the processing complexity of the events.
Nonetheless, Equation (3) allows for a rough estimation of
how well a given simulation is suited for parallelization with
Horizon. Additionally, Cmax = max{C(e)|e ∈ E} is an
upper bound for the number of CPUs that can be used to
achieve a speedup. Having more than Cmax CPUs does not
further increase runtime performance as there are never enough
concurrent events available to utilize all CPUs even during
phases of maximum parallelism.

Obtaining exact values for C(e) can be difficult because
it requires tracing of the complete simulation run and de-
termining C(e) for each event in the simulation. Complex
models and/or long simulation runtimes however generate
large amounts of events which need to be recorded and
analyzed. A faster online approach for finding an estimate of
C(E) is based on the notion of the event density [26]. The
event density D denotes the number of events that occur in
one simulated second during a simulation run. In combination
with the average event duration td, which can be determined
by the model developer based on the calibrated model, it is
possible to deduce the average number of overlapping events
of a simulation model

I(E) = D · td, (4)

with D denoting the average event density. Obviously, high
values of I(E) indicate a good chance for achieving a speedup
with Horizon. Concluding, despite being approximate, the
presented metrics support model developers in assessing the
applicability of Horizon to a given simulation model.

B. Benchmarking Methodology

Our practical evaluation of Horizon comprises two different
classes of benchmarks, each targeting a unique evaluation
goal. The first set of benchmarks (see Section V-C) aims at



identifying the general performance characteristics and limi-
tations of Horizon in terms of scheduling overhead, workload
distribution capabilities, and lookahead size. The underlying
benchmark model bases on a purely synthetic scenario de-
signed for generating specific workload patterns. In contrast,
the second set of benchmarks (see Section V-D) utilizes a
concrete model of a cellular LTE network and acts as a case
study to confirm the synthetic performance results.

Throughout this evaluation, we use two metrics to character-
ize the performance of Horizon: i) the speedup, which denotes
the performance increase of a parallel simulation run over a
sequential one, and ii) the relative speedup, which is a measure
for the relative gain in performance when increasing the
workload across parallel executions. While the speedup shows
how a parallel architecture scales with a growing number of
processing units, the relative speedup illustrates how well a
parallel execution scheme can utilize a given workload. Given
the runtimes for a sequential execution tseq(S) and a parallel
execution tpar(S) of a simulation model S, the speedup is
defined as

Speedup =
tseq(S)

tpar(S)
. (5)

Accordingly, given the runtimes of two parallel executions of
the models S and S′ (of different workloads), the relative
speedup is given by

Relative Speedup =
tpar(S)

tpar(S′)
. (6)

Our evaluation bases on a prototype implementation of
Horizon which builds upon OMNeT++ 3.3. All performance
results show average values collected over ten independent
runs and the corresponding 95% confidence intervals. We
utilized an AMD Opteron compute server providing 32GB of
RAM and a total of 12 processing cores, organized in two
six-core CPUs running a 64-bit Ubuntu 9.10 server OS.

C. Synthetic Benchmarks

The synthetic benchmarks aim at characterizing the scalabil-
ity of Horizon and identifying its limitations. Specifically, the
benchmarks focus on the scalability in terms of the number
of CPUs, the workload, and the size of the lookahead. By
investigating a wide range of values for those parameters, the
synthetic benchmarks span a parameter space that represents a
large number of simulation models. Mapping concrete models
into this space allows for deducing their potential for efficient
parallelization with Horizon. The synthetic simulation model
consists of a configurable number of workload-generating
functional units. Each unit continuously creates events of a
specific computational complexity and schedules them for
execution. Furthermore, the synthetic model allows to define
different workload patterns in terms of the number of events
and their degree of parallelism C(e). As a result, the event
durations are chosen accordingly by the synthetic benchmark
to yield the desired C(e). Finally, all functional units are
connected to each other via links with specific propagation
delays, i.e., lookahead, thus forming a fully meshed network.

A full mesh constitutes the worst case scenario in terms
of synchronization, but represents real wireless networks in
which every node is able to hear every other node.

Scalability w.r.t. CPUs: To assess the scalability of Horizon
with respect to the number of CPUs, the synthetic benchmark
model generates a static workload with C(e) = 144 and
utilizes a varying number of CPUs. Choosing a large value
for C(e) guarantees that a sufficient amount of independent
events exist in the model at any time to keep all CPUs
busy. Moreover, the benchmark considers events of selected
processing complexities, i.e., execution time on the worker
CPU. The selected range of execution times reflects the result
of profiling a wide range of publicly available simulation
model frameworks [27], [28] and of our own models. All
in all, the synthetic benchmark is designed to determine the
runtime overhead imposed by the Horizon architecture and its
impact on simulation performance under different levels of
model complexity.

Fig. 5(a) shows the resulting performance gain for 1 to 12
CPUs and event processing times p(e) from 1 microsecond to
1 second. The graph clearly illustrates a strong dependency of
the speedup on the processing complexities of the events. For
processing times of 100µs to 1s, Horizon achieves a linearly
increasing speedup with the number of CPUs. Furthermore,
Horizon obtains a maximum speedup of 7 for events with
p(e) = 100µs, and up to a speedup of 11 for events with
p(e) = 1s. For events with p(e) = 10µs, peak performance is
reached at three CPUs, while further increasing the number of
CPUs causes a declining simulation performance. We accredit
this to the overhead of the worker threads which increases
with a growing number of CPUs due to contention of shared
data structures. Finally, in case of events with p(e) = 1µs,
the results indicate that the scheduling overhead outweighs the
performance gain of parallelization, resulting in a performance
degradation.

Scalability w.r.t. Workload: The complementary benchmark
uses a fixed number of 12 CPUs while varying the workload
between C(e) = 1 and 12. The purpose of this benchmark
is to show how well Horizon scales with increasing model
complexity and how well it realizes an even load distribu-
tion across CPUs given a static scheduling and contention
overhead, i.e., a constant number of CPUs. Similarly to the
previous benchmark, the event processing times range between
1µs and 1s. The results presented in Fig. 5(b) are analogous
to those previously discussed showing that Horizon obtains a
significant speedup for events of longer processing duration
(100µs to 1s). Furthermore, due to the static overhead, this
benchmark still achieves a noticeable speedup of approx. 3
for events with p(e) = 10µs and a speedup of 1.8 for events
with p(e) = 1µs.

Scalability w.r.t. Lookahead Size: The last of the synthetic
benchmarks aims at evaluating the impact of small lookaheads
on parallel simulation performance. To this end, we compare
Horizon with the traditional Null-Message Algorithm (NMA)
[11] under different lookahead conditions. The benchmark
generates events with uniformly distributed interarrival times
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Fig. 5. The results of the synthetic benchmarks show that Horizon scales well in terms of the number of CPUs (left) and the workload (right) for events of
non-trivial complexity, i.e. p(e) ≥ 100µs.
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Fig. 6. Comparison of Horizon with the Null-Message Algorithm: Horizon
delivers considerable speedups even for very small lookaheads while the
performance of NMA rapidly declines with short lookaheads.

in the range of 0 to 1 seconds. In case of Horizon, this
corresponds to uniformly distributed event durations and a
back-to-back scheduling of events. Furthermore, we investi-
gate lookaheads of 1s to 1µs in a fully meshed network of 100
benchmarking units. A full mesh typically constitutes a worst
case scenario for parallel simulation schemes. Additionally, the
benchmark considers static event complexities of p(e) = 0.1s
and employs 12 threads/NMA-partitions. Lastly, the bench-
mark runs the NMA implementation of OMNeT++ over MPI
(mpich2 v1.2.1).

Fig. 6 shows that for a lookahead of 1s, Horizon and the
NMA deliver roughly similar speedups of approx. 10. This is
due to the fact that this lookahead is larger than the maximum
event interarrival time, thus providing good knowledge about
future events for both parallelization schemes. However, for
smaller lookaheads of 100ms to 1ms, the NMA needs to per-
form increasingly more synchronization operations and is less
able to identify independent events for parallel execution. Con-
sequently, its performance degrades rapidly and at a lookahead
of 1ms – which is still large for wireless networks – almost no
performance gain is obtained. Finally, for lookaheads ranging
from 100µs down to 1µs, the NMA effectively requires longer
runtimes than the sequential execution. In contrast, Horizon
still achieves a significant speedup even for small lookaheads.

We conclude from the synthetic benchmarks that Horizon

i) benefits from non-trivial processing complexities, ii) is able
to equally distribute workload across worker CPUs, and iii)
achieves considerably better performance than the NMA in
networks with small lookaheads.

D. LTE Network Model Benchmarks

In order to underline Horizon’s applicability to real simula-
tion models, this section discusses a case study of a complex
simulation model of an LTE network.

Model Description: The simulation used for this evaluation
models a system compliant to 3GPP-LTE [29]. The system
features c cells, each containing a base station (BS) serving
m mobile stations (MS). The simulation time is slotted into
downlink and uplink frames called transmission time intervals
(TTI) with a duration of 1ms each. In each cell, arriving data
packets destined for different terminals are queued separately
at the base station. Then, prior to each downlink TTI, the base
station schedules the available packets to be transmitted during
the next downlink TTI with respect to a specific optimization
goal, e.g., to minimize delay. Subsequently, a resource allo-
cation unit tries to fulfill the scheduled transmission requests
by assigning system resources to terminals accordingly. To
achieve an optimal assignment in each downlink TTI, the
allocation unit needs to solve an optimization problem which
is known to have a considerable computational complexity.
The formulation of this optimization problem along with more
detailed descriptions can be found in [30].

On the physical layer, the system uses OFDMA as its
transmission scheme with n resource blocks. Each resource
block consists of 12 subcarriers, equivalent to a frequency
width of 180 kHz. For each terminal/resource block pair, the
channel gain varies randomly over time and frequency, i.e.,
it depends on a deterministic component (path loss) and a
random, time- and frequency-variant fading component. We
assume this gain to be exponentially distributed based on a
multi-path propagation environment with no dominant path.
A summary of the key system parameters is shown in Table I.

The model uses an inter-site distance of 500m, resulting in
a maximum propagation delay between the mobile stations



TABLE I
CONFIGURATION PARAMETERS OF THE LTE SIMULATION MODEL.

Parameters Value

Carrier frequency 2 GHz
Channel bandwidth 10 MHz
Mode TDD
Number of resource blocks 55
Subcarriers per resource block 12
Subcarrier spacing 15 kHz

Scenario SISO
Inter Site Distance 500 m
Fading model Rayleigh

and the base station of merely 0.8µs. Thus, deriving the
lookahead from the propagation delay yields a significantly
small value and hence a tight coupling among the simulated
nodes within the model. Instead, for use with Horizon, the
model is time calibrated according to the protocol specification
based technique discussed in Section III-D and pioneered by
Liu and Nicol [15]. Specifically, building on the knowledge
of the length of a TTI, this technique assigns durations to
simulation events such that the durations of all events within
a TTI add up to 1ms.

Results: We first analyze the workload characteristics of
the LTE model to establish a foundation for understanding
the performance results and to put them into perspective with
respect to the findings of the previous section. Fig. 7 shows
a histogram illustrating the distribution of events exhibiting a
certain event processing complexity in the model. The majority
of events comprise a processing complexity of 1µs to 100µs
seconds (note the double logarithmic scale). These events
account for simple functionality such as traffic generation,
queue management, etc. Moreover, the figure shows that a
large number of events are of considerable complexity, ranging
from approx. 400µs to 4s (as indicated by the labeled peaks).
The second graph in the figure, a CDF over the total runtime,
illustrates that the events with processing complexities larger
than 400µs contribute almost exclusively to the total runtime
of the simulation model, hence making them a primary target
for Horizon’s offloading scheme (again, note the logarithmic
scale). Summarizing, the LTE model exhibits the two key
properties of modern wireless simulation models: i) a small
propagation delay (i.e., lookahead) and ii) computationally
complex modeling of physical layer effects, making it a well-
suited use-case scenario for Horizon.

Fig. 8(a) shows the speedup for one to twelve CPUs given
LTE networks of 12 and 30 cells, each serving 30, 50, or
70 mobile stations per cell respectively. In these scenarios,
Horizon achieves a maximum speedup of 4.2 (12 cells, 30
MS/cell) up to 5.6 (12 cells, 70 MS/cell). Hence, despite
the fact that the majority of events is of relatively small
complexity, Horizon is able to exploit the computationally
complex events to arrive at a noticeable speedup. Furthermore,
we accredit the convergence of all scenarios at a speedup
of approx. 5 to the overwhelming number of small events.
Nevertheless, a close examination of the results shows that for
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Fig. 7. Distribution of event processing complexities in the LTE model (12
cells, 50 MS/cell) and the fraction of the total simulation runtime according
to those complexities (black CDF). The figure also indicates the four most
complex types of events in the model. Note the logarithmic scales on all axes.

both basic network topologies (12 and 30 cells), the scenarios
considering more mobile stations per cell still generate a
higher speedup.

In Fig. 8(b), the relative speedup for networks of one to
twelve cells and 30, 50, and 70 MS/cell is shown. Similarly
to the previous results, the relative speedup ranges between
4.6 (30 MS/cell) and 6.5 (70 MS/cell). Additionally, the
graphs show a steady performance increase, as the number of
simulated cells grows. Both observations indicate that Horizon
indeed scales with increasing workload and is able to distribute
the additional load across the available processing units.

In conclusion, this case study shows the viability of horizon-
tal parallelization and the successful application of Horizon to
complex wireless network simulation models.

VI. RELATED WORK

This section discusses closely related approaches to parallel
network simulation that are not covered by the general intro-
duction in Section II.

A. Enhanced Time Information

Previous efforts in network simulation research extend clas-
sic discrete event simulation with additional timing informa-
tion to enhance simulation performance and scalability.

Lubachevsky [31] pioneered techniques for increasing the
lookahead by introducing so called opaque periods and min-
imum propagation delays. During an opaque period, a sim-
ulated entity does not interact with its neighboring entities,
hence allowing those to process further events. In [32], Fu-
jimoto replaces the accurate timestamps of discrete events
with time intervals representing a period of simulation time
in which an event can occur. This approach is based on the
observation that events do not necessarily occur at a fixed point
in simulation time resulting in a certain event ordering, but
the actual time of occurrence and hence the event ordering is
subject to uncertainty. In terms of performance enhancements,
these time intervals allow to increase the lookahead within
distributed simulation models. Loper [33], [34] extends this
concept by choosing discrete timestamps from these time
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Fig. 8. Horizon achieves speedups of up to 6 for the LTE network model and thus underlines its applicability to complex real-world simulation models.

intervals according to a random distribution and reports a
considerable speedup for the PHOLD benchmark [35] and
queueing network simulations. However, utilizing time in-
tervals introduces inaccuracies in the simulation results and
influences the determinism and repeatability of simulations.
In contrast, Horizon uses time intervals to actually model
the simulated duration of an event at deterministic points in
simulation time and deduces independent events from this.

Peschlow picks up the idea of uncertainty intervals [36] and
investigates the influence of different event orderings resulting
from overlapping intervals on simulation results. To avoid
repeated simulation runs for each ordering, a single simulation
run is branched for each different event ordering. For a simple
airline simulation, the authors report a speedup of up to 10
on a four-processor computer for the branching approach in
comparison to the time needed to conduct the corresponding
number of single simulation runs. However, the branching
approach suffers from a state explosion problem and is hence
not well applicable to complex wireless network models.
Previous work in this area [37] follows a similar branching
approach, yet considers discrete events with concrete times-
tamps instead of uncertainty intervals. Even in this simpler
scenario, branching delivers considerable speedup compared
to repeated simulation runs, but the approach suffers from the
same state explosion problems, making it less applicable to
larger network simulations.

B. Multi-Threaded Architecture

The recent proliferation of multiprocessor systems sparked
research efforts that explicitly trade the scalability of com-
puting clusters for shared memory simulation architectures.
In the context of the ns-3 network simulator project [38], a
multi-threading extension of the core simulator architecture
was developed [39]. It utilizes a conservative barrier based
synchronization algorithm which relies on link delays across
nodes for calculating barrier points in simulation time. How-
ever, in contrast to Horizon, this extension does not yet support
wireless networks.

A similar approach [40] specifically focuses on wireless
IEEE 802.11 networks. It also utilizes a barrier-based syn-

chronization mechanism where each barrier in simulation time
is calculated based on protocol and event lookahead. Both
techniques intent to extract lookahead information from either
the protocol specification or certain hardware characteristics
such as the RxTxTurnaround time specified in IEEE 802.11.
In conjunction with an additional event bundling mechanism,
the authors report a linear speedup and for large network sizes
of up to 2000 node even super-linear speedup.

Finally, Lynch [41] proposes a dedicated hardware unit
that maps the global state information of conservative syn-
chronization algorithms to specialized hardware registers on
multi-processor platforms to provide fast concurrent access. In
comparison to software/Horizon, hardware based approaches
provide unchallenged speed, but often lack flexibility as the
hardware is specifically designed for a particular combination
of processors and synchronization algorithm.

VII. CONCLUSION AND FUTURE WORK

In this paper, we present Horizon, a lightweight horizon-
tal parallelization scheme for multi-processor hardware. By
explicitly modeling the delay of simulated processes through
event durations, Horizon is able to derive extended lookahead
information from simulation models to identify independent
events for parallel execution. Horizon particularly targets wire-
less simulation models that exhibit extremely small lookaheads
and thus perform poorly with existing parallelization schemes.
Our evaluation analyzes the performance characteristics of
Horizon by means of synthetic benchmarks and shows that
Horizon achieves a significant speedup over sequential execu-
tions. Moreover, a case study involving a complex simulation
model of an LTE network illustrates Horizon’s applicability to
real-world scenarios.

Future research efforts focus primarily on the event sched-
uler. Being a centralized component results in an interesting
trade-off between a limited scalability and the availability of
global knowledge of the simulation model. We intent to inves-
tigate online and offline optimizations that exploit this global
knowledge in order to fine-tune offloading decisions. Addition-
ally, further research addresses the question of how to carefully
combine Horizon with classic distributed simulation. In such



hybrid simulation architecture, each logical process internally
handles events according to event durations while utilizing
classic synchronization algorithms across logical processes
and partitions for enhanced scalability. Hence, by coupling the
advantages of both worlds, this approach seems particularly
promising for computing clusters with multi-processor nodes.
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