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Abstract—In wireless and mobile networking, volatile environ-
mental conditions are a permanent challenge, resulting in a de-
mand for cross-layer optimizations. To further increase flexibility,
we believe cross-layer architectures should adapt themselves to
these changing conditions, just as they adapt the network stack,
devices, and applications.

In this paper, we propose CRAWLER, a novel cross-layer archi-
tecture that combines three core properties: signaling between all
layers and system components; extensibility and adaptability at
runtime; and high usability for cross-layer developers. CRAWLER
increases flexibility, as well as expediting and simplifying cross-
layer development.

I. INTRODUCTION

Traditional network protocol stacks are logically organized
in layers. These layers are strictly separated and the cooper-
ation between them is restricted by concise interfaces, which
in effect only allow passing packets up and down the stack.
In principle, all these layers have been designed to fulfill their
functionality without interaction across the layers. History
shows that this works well in wired and static environments.

However, today’s and upcoming networks consist of wire-
less links and highly mobile nodes. In order to adapt to the
rapidly and frequently changing network conditions under
those circumstances, a more sophisticated interaction between
protocols than in a traditional layered architecture is desirable.
For example, a VoIP application could adapt the codec rate
according to the signal quality. The exchange of information
across layers, i.e., the cross-layer design paradigm ([4], [9],
[10]) is a promising concept to deal with these challenges.

Unfortunately, present architectures have limitations in their
flexibility. For example, if we reconsider the VoIP application
example above, the codec rate adaptation could not only be
based on the signal strength but also on user feedback or fur-
ther protocol information. Current solutions are not able to dy-
namically change which of these to use and how to use them,
i.e., the adaptation, re-parametrization and addition of cross-
layer optimizations during runtime. Moreover, customization
of optimizations in existing frameworks is often cumbersome
and complicated, if it can be done at all. We envision a system
that allows a wider user base, e.g., application developers
acting as cross-layer designers (termed in short “designers”
from here on), to use a framework to easily develop cross-layer
optimizations tailored to their applications’ specific needs.
Applications can be bundled with an optimization setup that is
dynamically added to the framework for as long as they run.

We therefore propose a cross-layer architecture for wireless
networks (CRAWLER) with the following properties:

o Signaling between an arbitrary amount of layers and
system components;

« Extensibility of the architecture and adaptability of opti-
mizations at runtime; and

o High usability for cross-layer developers via an abstract
description language for optimization rules.

The remainder of this paper is organized as follows. In
Section II we shortly discuss related architectures. Section
IIT presents CRAWLER, our proposed cross-layer architecture.
Implementation details are given in Section IV. In Section
V we present results for a real cross-layer use case utilizing
CRAWLER. Finally, we conclude with an outlook in Section
VL

II. RELATED WORK

A plethora of specific cross-layer solutions exists for par-
ticular problems, which can mostly be characterized as quick
hacks, as compared to full-fledged architectures. Several sur-
veys have been conducted on such solutions [1], [6]. A good
overview about design principles and concepts for cross-layer
architectures is given in Srivastava et. al. [10]. However, most
suggested implementations are only able to signal between two
specific layers or are only able to signal in one direction, e.g.,
from lower layers to upper layers but not vice versa.

In Physical Media Independence (PMI) [3] only device
information is propagated layer-by-layer to the upper layers.
The opposite direction is not possible. Furthermore, each layer
requires a specific adaptation to process signaling information.
In [11] ICMP messages are utilized to provide higher layers
feedback from lower layers. Nevertheless, higher layers are not
able to provide information to lower layers. Again, any-to-any
layer signaling is not possible. In [14] an inter-layer signaling
pipe (ISP) is suggested. It utilizes packet headers to provide
cross-layer feedback from upper layers to lower layers.

There also exist several cross-layer architectures facilitating
signaling across all layers, i.e., any-to-any layer signaling.
For example, Cross-Layer Signaling Shortcuts (CLASS) [13]
enables direct signaling between all layers by message passing.
However, any-to-many signaling, i.e., addressing several layers
at once, is not possible.

The shared database approach CATS [8] provides a man-
agement plane which contains a so-called cross-layer platform.



Protocol information from all layers are available in the
platform and are accessible from any layer. However, due to
the monolithic architecture, extensibility to new protocols or
additional optimizations is difficult, and impossible at runtime.

Mobile Metropolitan Ad-hoc Network (MobileMAN) [2]
is also a shared database approach but compared to CATS
it introduces an interface to create, read, write and monitor
protocol information available in the database. Each layer
can store protocol information and make it accessible to
other layers. MobileMAN requires to exchange a layer with
its redesigned extension to enable the cooperation with the
database. In our viewpoint, this is too much intrusion into the
network stack resulting in too much dependency and limiting
maintainability.

In contrast, ECLAIR [7] solves this issue by introducing so-
called Tuning-Layers (TLs). A TL’s main task is to provide a
platform specific interface from the TL to the protocol stack
in order to enable read and write requests to protocol informa-
tion. Due to the introduction of a generic interface between
the architecture and the TL, platform independence is also
considered. However, ECLAIR does not support adaptability
or extensibility of cross-layer optimizations during runtime.

In comparison, CRAWLER offers any-to-(m)any layer or
system component optimizations while allowing extensibility
and adaptability during runtime. For this purpose, CRAWLER
provides the feature to easily add, remove, reparametrize or
adapt cross-layer signaling optimizations. Moreover, by pro-
viding an easily usable but powerful configuration language,
CRAWLER enables a designer to program and handle cross-
layer signaling optimization very flexibly. For example, if a
cross-layer designer observes a performance degradation with
the already established cross-layer signaling, the designer can
reconfigure a new cross-layer signaling or can disable the
current one.

III. CRAWLER DESIGN

On an abstract level CRAWLER consists of three components
as shown in Figure 1: (1) the logical component (LC) allows
designers to express their cross-layer signaling optimizations
in a very abstract and intuitive way. For this purpose, we have
created a rule-based language customized to cross-layer design
purposes. As a result, a designer is able to program cross-
layer signaling at a high level by specifying rules (even at
runtime). (2) The proper realization of the cross-layer signaling
optimizations (given by the LC) is realized by the cross-layer
processing component (CPC). Here, the rules are mapped to
compositions of small functional units. These compositions
can be flexibly changed. (3) Finally, stubs provide (read or
write) access to protocol information or sub-system states. In
the following, the three components will be discussed.

A. Logical Component

The LC interacts as an abstraction interface between design-
ers and the CPC. Its major goal is to increase the usability of
the architecture for designers, allowing them to easily express
their desired optimizations without paying too much attention

CRAWLER

Readable / Writable (protocol or system) information N
J sub (1) Logical
(3) Component
A g C—X__] "Application.priority.voip"-Stub (LC)
Application — ==

\ J
“TCP.CWND"-Stub ( \

(RO X 7]

1Paddr X~ ]

“TCP.RTO™-Stub

=

@ V

Cross-Layer

(_BER } “DLL.BER’-Stub
Component
"PHY.WLANO.RSSI™-Stub (CPC)
“Battery”-Stub
[Motion Sensor CX__] “Motion"-Stub —

Fig. 1. Conceptual view of CRAWLER’s components: (1) the logical
component manages cross-layer optimizations via rule-based configuration,
(2) the processing component realizes the optimization given by the logical
component and (3) stubs provide the access to protocol or system variables.

to implementation details. For that purpose, the LC is divided
into four subcomponents. The configuration subcomponent
enables a designer to express cross-layer optimizations on
an abstract level. The repository handles configuration setups.
The idea of the application support subcomponent is to allow
applications to share their variables for cross-layer optimiza-
tions. Finally, the interpreter translates a configuration into a
composition of functions which the CPC provides. The four
subcomponents will be explained in the following.

1) Configuration: The configuration subcomponent of
CRAWLER offers an easily usable but powerful configuration
language. The internal realization of the cross-layer signaling
is abstracted to a simple declarative configuration. In order to
provide such an abstract configuration description, we have
created a language based on so-called rules. Simply put,
rules can be considered as a behavioral description of cross-
layer interactions. In Listing 1 we show an example config-
uration utilizing rules to describe how to access a protocol
information, process it and notify an application. Each line
of the configuration is a rule. Figure 2 shows a graphical
representation of this configuration. The figure is marked with
numbers which correspond to the line numbers, i.e., rules,
in the configuration. The first rule simply specifies which
parameter, determined by a unique fully qualified name, should
be accessed (how the access itself works will be explained in
Section III-C). The second rule, History (which saves a
certain number, here 4, of collected values), is performed on
the evaluation of the first rule. Similarly, rule three evaluates
if the average of the evaluation of rule two is below a certain
threshold (here 55). In our syntax, rules can be nested within
other rules to form rule chains.

So far, we have seen how computations and conditions
can be specified using the configuration language. However,
sometimes it is desirable to react to events, such as a sudden
drop in signal strength. This triggering is denoted by an arrow
like in rules 4 and 5. The link quality condition of rule 3 is used
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Fig. 2. A simple cross-layer signaling configuration in CRAWLER. We change
behavior of the TCP layer and an application based on wireless signal strength.

to inform an application about bad link quality, and to reduce
the congestion window of TCP connections to 0, to avoid
triggering its congestion avoidance due to data corruption.

The configuration subcomponent provides a flexible adap-
tation of parameters or whole rules, e.g., a rule can be added
to the configuration during runtime. CRAWLER recognizes the
change in the configuration and adapts the internal realization
of cross-layer optimizations. For example, if we want to
change the signal strength threshold at which to react, we only
change rule 3, and the framework adapts the rule chain accord-
ingly. This intuitive approach, combined with the abstraction
provided by the configuration language, fulfills our design goal
of accessibility for designers who are not cross-layer experts.
However, as already mentioned, the configuration is only an
abstract description of cross-layer interactions that need to be
realized. For a better management of the configuration, we
have designed the repository subcomponent.

2) Repository: The repository keeps track of all changes
that are made to the configuration. It saves configuration setups
and therefore facilitates changing between several profiles, or
rollback to an earlier setup in case of misconfiguration by the
designer. As the name suggests, it behaves similar to a revision
control system.

3) Application support: Applications can also utilize cross-
layer information for optimizations as described in the VoIP
example above. Therefore, the application support subcom-
ponent enables applications to share and retrieve cross-layer
information via a shared library. Thus, applications can simply
register their variables, e.g., “app.voip.maxdelay”. The library
takes care of how to access these variables from within
CRAWLER. Furthermore, in a later state of the architecture
we want to allow applications to bring their own rules (con-
figuration). Thus, each application should be allowed to bring
their own optimizations.

4) Interpreter: The LC needs to provide the configuration
to the CPC. For this purpose, the configuration is parsed and
rules are mapped to specific fine granular instructions termed
commands which are passed to the CPC. Commands include
the references to functions that need to be called by the CPC.
The handling of commands and the proper realization of cross-
layer interactions will be explained in the next section.
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my_rssi:get ("phy.wlanO.rssi")
my_history_of_rssi:History (my_rssi, 4)
my_rssi_is_Bad:IfLess (Avg (my_history_of_rssi),55)
my_rssi_is_Bad-->my_application_varl
my_rssi_is_Bad-->my_TCP_Freezer

my_appl_varl:set ("appl_voipl_varl", "bad")
my_TCP_Freezer:set ("tcp.cwnd","0")

Listing 1. A simple cross-layer signaling configuration in CRAWLER. This
configuration file defines the setup illustrated in Figure 2.

B. Cross-Layer Processing Component

The cross-layer processing component (CPC) executes the
commands received from the LC. In the configuration above,
we have seen that rules contain calls to and compositions of
functional units (FUs) such as History or Avg (average). As
opposed to typical functions, FUs are stateful. For example,
every instance of History keeps its collected values between
calls. Furthermore, if a configuration changes the composition
of FUs, but does not create or delete FUs themselves, they will
keep their current state and collected information. This serves
as one important property towards dynamic reconfigurability
and adaptability of cross-layer optimizations at runtime. This
is further supported by FUs sharing a uniform interface so
that they can be flexibly interconnected with each other. For
example, by changing rule 3 in Listing 1, we can exchange the
Avg FU in Figure 4 with Min at runtime due to the uniform
interface, and still use the collected data from History,
because a change in the composition does not reinstantiate all
FUs. Finally, the uniform interface facilitates easy extension of
the set of available FUs, because at least syntactically, newly
designed FUs will be able to interconnect with every other FU
previously created.

As previously hinted at, we provide two ways to compose
FUs, via queries and via events. The two ways and their
applications will be explained below.

1) Query-based Signaling: The query interface allows to
explicitly request information. If the query interface of a FU
is called, the FU executes and returns the result to the inquiring
FU. The result of a FU may depend on the result of further
FUs, leading to cascading queries. In case of providing the
most up-to-date values, this is the intended behavior. However,
to reduce the computational overhead, each FU can cache its
already calculated return value and maintain a validity time for
it. In case of a new incoming query, the FU can then decide
to return the cached value immediately if it still considers it
valid.

Figure 3 describes the concept of query-based signaling. (1)
A FU Pre queries the FU Func. Func checks the validity
for its return value (2). Since the validity time for its return
value has expired, (3) Func queries Succ. Based on the return
value of Succ, Func computes its own new return value and
updates its validity time correspondingly. Finally, (4) Func
sends the result to the predecessor FU Pre.

An example composition of FUs utilizing the query inter-
face is shown in Figure 4. I fLess queries Avg for an average
of RSSI values, provided by History.



(2)

(1) (3)
Pre _Func Succ
Ve -1 -validity time [ We.. ...
(4)
(1) query from predecessor FU
(2) check current state
(3) query (multiple) Succ FU QUETY e

(4) answer result to predecessor FU information flow <@+ «----

Fig. 3. Query-based signaling

<«—— query
rcoceezmoen notification
- - - - alternative query

-] Stubs

Application e

Protocol Stack

Fig. 4. A slightly extended version of our first simple example.

2) Event-based Signaling: The query-based interface for
compositions between FUs results in a polling architecture. To
avoid unnecessary polling, we introduce event-based signaling.
It is used to notify a FU about value changes measured by
another FU. The notified FU can then act based on that
triggering. Triggers are defined in the configuration, as in rules
4 and 5 in Listing 1.

Figure 5 describes the concept of event-based signaling.
In (1), Notifier triggers Func. This can be due to an
elapsed timer or a measured change in a monitored value.
(2) Func can now decide to act on that notification, e.g., do
a calculation, (3) query its successor FU, or (4) trigger other
FUs.

As an example, in Figure 4, the Timer FU acts as a trigger
to periodically notify the History FU, which then takes
RSSI samples to save in its log and provide to querying FUs.
Furthermore, I fLess triggers two stubs (more on stubs in the
next section) to set values in the TCP layer and the application.

C. Stubs - Accessing Signaling Information

To access, i.e., read and write, protocol or system informa-
tion, CRAWLER provides stubs. They act as a glue element
between the cross-layer optimizations and the data that is
accessed. Each piece of data is associated with a stub, so that
we again, as in the case of FUs, have opted for a fine granular
solution that is easily extensible because stub implementations
do not affect each other.

There are several examples of stubs in Figure 4. The CPC
encapsulates the data gathered from stubs within a special set
of two FUs, set and get. (In cases where writing values
does not make sense, e.g., sensors only providing readable
values, stubs with only get functionality can be used.) The
protocol information or system information is then available
within the CPC and all FUs can call get or set like any other
FU. In rule 7 of Listing 1, the set FU manipulates protocol
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information. Hence, for every protocol information or system
information that we want to access, the desired information
needs to be identified clearly (compare rule 1 in Listing 1).
Thus, to access the desired protocol or system variable, stubs
have fully qualified names, i.e., unique and hierarchical names.
Protocol information often changes non-periodically. Be-
cause a stub is a FU, it can use the notification interface
to notify other FUs about changed protocol information.
Not only does this reduce the overhead because polling of
protocol information is not necessary, it also increases the
responsiveness of rules to changing conditions.

IV. IMPLEMENTATION

We are in the process of implementing CRAWLER on a
Linux system. At this point in time, most implementation work
on the framework is done, to the point where we can create
sets of rules that create simple cross-layer optimizations.

The LC and all its subcomponents are implemented in C++.
The LC is running as a daemon in user space and provides
a shared library for applications to read and share variables
for cross-layer optimizations. For inter-process communication
we use Unix Domain Sockets. The CPC is resides in kernel
space and is therefore implemented in C. For communication
between LC and CPC we use netlink sockets.

The uniform interface between FUs is implemented via a
special data type that can contain characters, integers, arrays
of any type and struct-like compounds of those types. This
facilitates syntactical composability of all FUs. Each FU can
then act accordingly to the received type, i.e., slightly different
behavior depending on whether it receives a single value or
an array of values. For our first evaluation steps, we have so
far implemented about 10 FUs and 50 stubs, with the numbers
growing with every new testing setup.

V. EVALUATION

To give a demonstration of the implementation of our
architecture, we created the example that was used in earlier
Sections (cf. Figure 2) of this paper in CRAWLER. Our test
setup consisted of two PCs. One was running our CRAWLER
implementation, and equipped with a WLAN network card.
Throughout our test, we ran iperf [12] to constantly create TCP
traffic. Furthermore, we used the application Skype, which
provides a scriptable API [5], and created a shell script to start
and stop a UDP voice stream during the test, which acted as
the application endpoint of our cross-layer setup. The other
PC was connected to a WLAN access point via Ethernet and
served as the other endpoint of our iperf setup.
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Fig. 6. Results from our testing setup. From bottom up: (1) The measured

RSSI and the threshold value of 55. (2) The congestion window, which (on
three occasions) is set to 0 when the recent RSSI average is less than the
threshold, and re-released when the average rises again. (3) On top, Skype
chat is always available, VoIP is deactivated at low RSSI.

We used a stub to read the RSSI value. The History
FU that read the value was triggered every 100ms by a
Timer, and kept the last 4 values. IfLess monitored the
values, and if the average of these dropped below a certain
threshold (in our case 55), it triggered two notifications. The
congestion window of ongoing TCP connections was set to
0 (by setting the variable snd_cwnd in tcp_sock in the
Linux kernel), and Skype was notified to stop its VoIP stream,
leaving only text chat. If the average rose above 55 again, the
congestion window was reset to the previous value, and Skype
was allowed to use VoIP again.

In Figure 6 three marked areas indicate the times that the
notifications took place, roughly between 3 and 4 seconds,
12 and 13 seconds, and 17 and 18 seconds. The drop of the
congestion windows to 0, and its re-release are clearly visible.
Furthermore, the uppermost part of the figure visualizes how
our signaling stopped and reactivated voice communication at
the same time.

VI. CONCLUSION AND OUTLOOK

In this paper, we have presented CRAWLER, a cross-layer
architecture for wireless networks that enables flexible and
versatile adaptation of protocols, communication sub-systems,
respective system components and the coordination of these
components during runtime. This has been achieved by the
following three components: (1) The logical component pro-
vides high usability for cross-layer designers. In particular,
we have designed a rule-based configuration language which
facilitates an abstract declarative programming of cross-layer
optimizations. (2) The cross-layer processing component en-
ables the coordination between an arbitrary amount of layers
and system components. It creates an extensible and adaptable
framework through reusable and freely composable functional
units. (3) stubs allow access to protocol or system information
with little infiltration into the protocol stack, which increases

the flexibility of the framework to changes in the underlying
network stack.

Our Linux implementation of CRAWLER is at a point where
simple signaling setups are possible. Most functionality is
available. However, several dynamic features are still being
developed, such as loading additional FU types during run-
time, and recomposition of FUs. These missing features are
currently under development.

As a next step, to further simplify the use of our framework
for application developers, we plan to design an assistant
system that will check rules themselves, and their interaction
between each other. This way, we could find dependencies,
optimize rules, and prevent variable oscillation, where rules
constantly change values and trigger each other. This will be
even more important once application can bring their own FUs
with them and insert them into CRAWLER during runtime.

We also want to further increase the usability of CRAWLER
by providing a visual configuration and monitoring com-
ponent. The visualization support for monitoring of cross-
layer interactions will provide several advantages such as
observation of cross-layer interactions over several rules and
the ensuing effects.

In conclusion, we intend to provide a tool that will be
able to unify most existing isolated cross-layer optimization in
one single tool, and expedite the development of novel cross-
layer optimizations. We anticipate CRAWLER to be utilizable
in diverse research fields such as energy consumption, QoS
and routing.
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