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Abstract—For a long time, life sciences were restricted to
look at animal habitats only post-factum. Pervasive computing
puts us in the novel position to gain live views. In this paper we
present BurrowView, an application that tracks the movement
of rats in their natural habitat and reconstructs the under-
ground tunnel system. To make reliable statements, special
consideration has been taken with regard to the information
quality. Our system is able to reconstruct paths up to a
resolution of 20 cm, the length of a rat without its tail.
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I. INTRODUCTION

The common Norway rat has long been used as a model
organism in the field of life sciences. However, even after
hundreds of years of laboratory experiments, very little is
known about rats in their natural environment. Research is
limited to techniques comparable to archeology: Researchers
dig out rat burrows [1] and interpret the remnants of then
deserted rat habitats. However, to accurately comprehend the
behavior of these animals, it is essential to have a detailed
representation of their natural habitat and to locate them
in it over time. By doing so, we can learn more about their
social habits, action radius and behavioral details that usually
cannot be observed from the outside of the rat burrows.

For example, by having an accurate representation of
burrows, we can map specific events - such as eating,
sleeping, meeting with other rats - with their corresponding
locations inside burrows. Such a mapping would allow the
scientists to identify interesting locations like food stashes,
sleeping places and meeting points. Moreover, such a de-
tailed knowledge about their behavior and living habits
would also enable to extricate between general and animal-
specific behavior. As a result, deviations from the expected
behavior are recognized and can be investigated furtherly.

With the recent rise of pervasive computing, scientists
can now observe these formerly inaccessible environments
in a greater depth of details. The use of wireless technol-
ogy allows for sensors to be attached to mobile animals,
roaming freely in their natural habitats. Similarly, modern
communication paradigms like delay-tolerant networking
(DTN) allows to incrementally deliver data from mobile
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nodes that never pass by a base station using a ”store
and forward” approach. Nonetheless, extreme terrestrial
environments, such as the natural habitat of rats, present
specific challenges: (1) The node size is greatly limited
due to increasingly narrow pathways in burrows and to
allow for natural movement of small animal species, and
(2) standard localization techniques like GPS cannot be used
underground.

In this paper, we present an approach to reconstruct
the underground tunnel system of rats. Using a special
backpack for rats consisting of a microcontroller, radio, a
3D-accelerometer, a 2D-gyrometer and a 3D-compass, we
are able to detect the number and direction of steps taken
by rats. Using this information, we accurately reconstruct
rat burrows and hence enable better understanding of the
behavior of a rat inside its natural habitat. However, the
presented approach is not limited to the reconstruction of rat
burrows and applies to a wide range of deployments from
robotics to underwater animal tracking and has a general
relevance to the mapping problems humans are faced with
when GPS navigation is not available.

The remainder of this paper is structured as follows:
After discussing related work in Section II, we present
more details regarding the sensory input and preprocessing
steps on the sensor nodes in Section III. Data forwarding
is discussed in Section IV. Section V elaborates on the
employed path reconstruction techniques. Finally, we discuss
the techniques to improve the quality of reconstruction in
Section VI before concluding the paper in Section VII.

II. RELATED WORK

The related work of this paper can be classified into two
main categories: deployments of sensor networks for ani-
mal observation and simultaneous localization and mapping
(SLAM).

A. Sensor networks for animal observation

The interest of pervasive computing for animal obser-
vation has steadily risen over the past years. The most
well-known examples are the Great Duck Island [2] and
the ZebraNet [3] projects. The former explored the nesting
behavior of sea birds using a static network of sensor nodes
deployed into the nests of the birds. Since the nodes were



Figure 1. A Norway rat is wearing a sensor jacket. While this attachment
is sufficient for lab environments, outside deployments will require more
robust attachment.

not attached to the animals under research, neither tracking,
nor dealing with mobility were of any importance.

The ZebraNet project equipped zebras with customized
sensor nodes. The main focus of this project was indeed the
tracking of wild zebras to evaluate their movement patterns
and social interactions. With the animals living in the open
plains, this deployment used GPS receivers, avoiding much
of the challenges of observing underground habitats.

In terms of path reconstruction, the DTAG project [4]
comes closest to our application. It aims at investigating the
behavior of whales, which spend most of their time under
water. A recording tag is used to store the current depth and
magnetic orientation. Once the tag’s memory is exhausted,
it detaches from the whale and floats to the surface for
collection. Researchers then evaluate the data on their work
stations. While this approach is very elegant for underwater
animals, it is not feasible for research on burrowing animals.

B. Simultaneous Localization and Mapping

Localization and mapping are two very related problems.
A location only makes sense in a reference system of a map,
while a map represents the locations of certain well known
points. Simultaneous localization and mapping (SLAM) is
an active research in robotic research.

Durrant-Whyte and Bailey [5], [6] recently presented a
detailed description of the problem and gave an overview
of approaches and recent developments in this field. The
main approach is to find positions that are easy to recognize,
so called landmarks. Other locations are then described in
relation to these landmarks. Examples of these can be optical
features, e.g. a special marking, or topological features, e.g.
a sharp left turn followed by a right turn.

To cope with noise and distortions during measurement
and landmark recognition, extended Kalman filters(EKF) are
applied, leading to a class of algorithms called EKF-SLAM.
Another method is to apply the Rao-Blackwellized particle
filter, resulting in the algorithm class of FastSLAM.

In contrast to the existing work, we propose a system
based on sensor nodes, which traces the movement in the
absence of GPS and combines these traces into a consistent
map.
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Figure 2. The sensor jacket consists of several sensors. Due to their nature,
they need to be in specific positions with respect to their carrier. The jacket
is therefore designed to hold the sensors at well-specified locations.

III. SENSORY INPUT AND PREPROCESSING

Tracking the six degrees of freedom of an animal (i.e. po-
sitions and rotations) is often achieved using a combination
of inertial measurements, satellite navigation systems and
magnetic sensors. Satellite based localization however, is not
available to us due to the underground nature of the habitat.
The radio signals from the satellite simply do not reach the
antennas of our nodes under several centimeters of earth.
Special radio equipment on the other hand would require
more computing and battery power and result in a heavier
and bulkier equipment attached to the rats, impeding their
natural movement.

We therefore developed a sensor backpack based on
inertial sensors, a magnetometer, and a gyroscope, which
can be seen in Fig. 1 and Fig. 2. These are attached to the
rats’ torso via a small jacket worn by the rats on which
the backpack is fixed using Velcro. Although implantation
of these sensor into the body of animal would be preferred,
this is not yet feasible due to the size of the sensors when
compared to the size of the rats.

Our approach draws on from the ideas of pedestrian
navigation [7], which measures human stepping for distance
measurement and combines it with azimuth measurements
from a fusion of compass and gyrometer readings. The speed
or step length can therefore be estimated from the step
duration, frequency and timing.

Thus we distinguish two main issues in estimating the
position of a rat: Estimating the velocity at which it moves
and its orientation over time. Knowledge of these two
quantities allows us to calculate the position of the rat in
time, which in turn yields important behavioral information
such as activity profiles or the layout of the burrow system.

A. Pseudo steps

Although there are similarities between our system and
the existing pedestrian navigation systems, both are opti-
mized for different scenarios. In the following we identify
the main differences between our approach and step counting
with human subjects.
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Figure 3. This graphs represents exemplary raw data collected in a linear
tube. The movement is clearly subdivided into parts of different activity:
faster movement, a stopping phase and a slower movement phase.

• Accelerometers cannot be attached to the rats feet as
they are in some pedestrian navigation systems. Thus,
the use of the term step is not accurate. The periodicity
of the signal does not correlate with individual steps
of one paw, but with a cycle of four steps. In fact,
the number of actual steps in a cycle is neither relevant
nor can it be inferred from the signals. Hence, we often
refer to one cycle as a pseudo-step.

• Our setup has a lower ratio of step time to available
sample period, making period detection more difficult.
In human step counting, it is possible to detect the
phases of a step with a signal that offers strong features
and thus reliable time measurements and even context
information. In comparison, our signal offers fewer
features for time-domain measurements.

Bearing these constraints, we developed a method that
estimates the velocity of rats by measuring the time between
peaks in the signal of the accelerometer in the transverse
plane of the rat. Laboratory experiments have shown that the
time between two peaks correlates with the velocity, under
the knowledge that the rat is actually walking .

B. Implementation

The pseudo-step detection is performed by the hardware,
using one channel of an ADXL330 accelerometer, the signal
is fed to an analog low-pass filter and is passed to a
comparator, sampled at 10 Hz. The rats were free to move
around in an artificial burrow constructed from drain pipes
and fitted with light barriers, allowing to reconstruct the
velocity at which the rats move. Example data is presented
in Fig. 3.

Measuring the time between pseudo-steps and calculating
the estimated speed is achieved in software. When no step-
ping is measured, the system is able to record the estimated
elevation (or pitch) angle relative to gravity, a feature that
is useful in characterizing rats exploratory habits.
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Figure 4. Over the course of several test runs in an artificial rat burrow
in the laboratory, the path reconstruction algorithms can be tested. The left
side shows bigger errors due to local disturbances in the magnetic field due
to near-by laboratory equipment.

C. Integration with Heading Estimation

It is a common practice to combine gyrometer and
compass readings to yield improved heading estimation
[7]. In our case, the processing was simplified in order to
save computational power without compromising the desired
accuracy, i.e., by replacing the commonly used Kalman-
filter based integration with a simpler approach (e.g. spring
relaxation).

In order to prove the viability of our approach, the previ-
ously described test setup with drain pipes was expanded to
include turns. Again, the pipes were fitted with light barriers
to verify the rats actual position at key points.

All the experiments described until now had been carried
out indoors, i.e., inside a concrete building. As a result, the
earths magnetic field is disturbed at the experimental site:
In some places the disturbance is up to 55 ◦. Since our final
deployment scenario is outdoors, we introduced a correction
for the local (indoor) disturbances of the magnetic field. The
field was characterized for the whole of the experimental site
and for each compass reading, i.e., the sample was corrected
according to the current location. This correction would not
be required in an eventual outdoor deployment.

Fig. 4 shows the average over more than 60 runs of two
rats over 20 days in the setup. It clearly shows that, while
there is room for improvement, the system could be used to
study the layout of rat burrows, if enough data is gathered.
The striking differences in accuracy on the left of the setup,
as compared to the right side, can be attributed to intricacies
in the magnetic field disturbances that could not be corrected
by our approach.

Right now, we focus our work on context recognition. The
animals display a wide range of behavior aside from running
which affect the accelerometer readings, e.g. rats may stand
on their hind legs in an effort to explore the environment.
Differentiating between these different states is the main rea-
son for using 3-D acceleration measurements, even though
lateral measurements are sufficient to characterize stepping.



IV. DATA FORWARDING

The common Norway rat, similar to humans, is a social
animal. To deal with the challenges faced by the under-
ground scenario, we have to make use of these social
properties, employing a routing scheme called SimBetAge,
which we recently proposed in [8]. Analyzing the temporal
change in the social network, we do not only gain valuable
behavioral information, but also improve routing perfor-
mance by a factor of two compared to previous approaches.

The project is still in an early stage, so we were not
yet able to complete experiments in an outdoors setting.
The results from the previous section are from laboratory
experiments. However, to be able to develop and evaluate
path reconstruction algorithms properly, we built a simulator
based on our laboratory experience. This provides us with
a number of test cases, while at the same time allowing us
to accurately judge the reconstruction quality, as the input
burrow systems are known.

V. RECONSTRUCTION

With the gathered data it is possible to reconstruct trails
of the rats with an estimate of a step’s length, and using
the proximity information we can determine meeting points
between them. These trails are tied together at the meeting
points and error compensation is performed using a flexible
spring-like model. By applying several algorithms to opti-
mize the data, one can get an approximate reconstruction of
the burrow parts that are currently used by rats and therefore
covered by the data.

A. Problem Area

The task of creating a map of the burrow is similar to the
field of simultaneous localization and mapping (SLAM) [5]
in robotic science: At the beginning of the mapping process,
neither the location of the mapping agent, the sensor mote in
our case, nor a map of the environment where it is located in,
the burrow, is known. To solve this problem, each agent tries
to determine the change of its location while moving and
tracking this movement within its own coordinate system. If
there are several agents that map the same environment, the
trails of all agents are merged together.

B. Algorithmic Basis

We render each data set that has been recorded by a sensor
mote and transmitted to the base station into a geometric
representation called pathlet. This pathlet represents a part
of the trail that has been traversed by the rat. Pathlets
are subject to certain distortion and inaccuracies because
the data is gathered by sensors which are not guaranteed
to output completely accurate data. Moreover, we use an
estimate of a rat step’s length to render the sensor data to a
pathlet which itself introduces uncertainty.

(a) Before filtering (b) After filtering

Figure 5. Sensor noise and redunt paths can be filtered out using sphere
filtering. Vertices within an ε-sphere of each other are combined.

1) Converting Data into Pathlets: Every time the rat takes
a step, the mote’s step detector records the current time and
heading using the 3D compass. If there are other motes
in radio range, their ID is recorded, too. Therefore, such
a sensor reading (SR) represents one step with the corre-
sponding direction. A consecutive set of sensor readings is
called sensor reading set (SRS).

A pathlet is the geometric representation of a walked
path based on the processed data of a sensor reading set.
It is a simple, undirected graph, that is initially created by
concatenating the recorded steps according to an estimated
step length in the direction of the corresponding heading.

For each SR of the SRS, a vertex in the graph is created
at the position ~p where heading ~h and estimated step
length s from the position of the previous vertex points
to: ~pi+1 = ~pi + ~h · s, where i denotes the number of
vertices. The position of the first vertex is initialized with
~0. Between consecutive vertices, we create edges so that the
graph becomes a representation of the walked path.

As a property of each vertex v, the proximity information
of the SRS is stored, denoted by Proximity(v) ⊂ N, as
well as the timestamp, denoted by Timestamp(v). Note
that the recording agent never appears in its proximity. Every
edge e stores the heading h(e) and the estimated step length
s(e) that resulted in its creation as a property. The pathlet
itself is created from an SRS that originated from a mote.
The ID of the mote that recorded a particular pathlet P is
denoted by ID(P ). This information is needed later in order
to connect pathlets from different motes.

2) Postprocessing Pathlets: Due to the sensory origin
of the pathlets, their reconstruction is error-prone. There
are two major sources of these errors: (1) Inaccurate data
produced by the sensors, and (2) multiple paths traversed by
rats during a sensor recording. As a result, it may introduce
redundant paths. To handle these errors or to distribute them
over the whole graph, we postprocess the pathlets using a
filter pipeline. The sensor noise can be tackled by applying
angle weighted smoothing. Similarly, to filter out redundant
paths, we used a graph processing method called sphere
filtering. The effects of this filtering are shown in Fig. 5.

The easiest way to remove noise from a data set is to
smooth it. Smoothing a path means to move every vertex



v towards the midpoint ~m(v) = (~u + ~w)/2 of its two
adjacent vertices u and w. This movement is expressed
as a translation ~vk+1 = ~vk + ~t(v) (where k denotes the
iteration step) along the translation vector ~t(v). By applying
~t(v) completely, one would achieve an intense smoothing
(i.e. more than it is desired in this case). Therefore, ~t(v) is
weighted to reduce the smoothing impact on the graph’s
structure. To preserve the coarse graph structure and to
remove spikes in the path, we weigh ~t(v) by only taking
a fraction of it:

~tfinal(v) =
~t(v)√

1 + ||~t(v)||

A rat may walk through the same tunnel more than once,
either because it is walking back or because it is walking
along the same way again. As a result, the reconstructed path
may contain multiple parts that represent the same tunnel.
Assuming exact sensor data, these paths would lie exactly
on top of each other, but this is not the case. To achieve
a single representation for a tunnel, we use the following
sphere filtering method.

In this contraction based method, sphere with radius ε
is put around a vertex v. All vertices within this sphere
Sε(v) except one representative vertex will be removed,
while preserving the connectivity to the vertices outside the
sphere. The representative vertex r is the vertex nearest to
the center of gravity 1

|Sε(v)|
∑

u∈Sε(v)
~u of all vertices within

the sphere. All vertices outside the sphere that have an edge
with a vertex inside the sphere are linked by an edge r to
keep the connectivity intact. The contraction begins with a
central sphere and is iterated until there is no sphere with
more than one vertex is left.

Using a combination of these two methods for filtering,
we get two parameters for the filter pipeline: The count
of smoothing iterations and the radius ε of the spheres.
Variations of these parameters impact the results of the
filtering, and therefore, they have to be chosen carefully.
At this stage of the project we chose them manually,
however, the possibilities of choosing them automatically
are discussed in section VI.

C. Merging Pathlets Together

Every pathlet represents the reconstructed path of a data
set that has been collected at the base station. Using
the properties for vertices described in section V-B1, we
can connect the pathlets at meeting points between rats.
The points occur if the motes are within vicinity of each
other and can be determined by using the Proximity(v)
and Timestamp(v) information. We call possible meeting
points as anchors. An anchor is a vertex of a pathlet with
nonempty proximity. Two anchors a1 ∈ P1, a1 ∈ P1 of
two different pathlets P1 and P2 are compatible, iff their
timestamps match, i.e. their difference is below a certain
threshold, and ID(a1) ∈ Proximity(a2) ∧ ID(a2) ∈

Figure 6. An example of a burrow reconstruction based on a map from
[1]. The reconstruction fits the original burrow structure accurately.

Proximity(a1). The set of compatible pathlets of two
anchors is denoted as AC(P1, P2) and two pathlets are
compatible iff AC(P1, P2) 6= ∅.

The compatibility of all pathlets is described as a simple
undirected graph, where the vertices denote pathlets and
compatibility between them is denoted by edges. This graph
is not necessarily connected, therefore, we take the biggest
connected subgraph to start burrow reconstruction.

If two pathlets have compatible anchors, they can be
merged to become a new pathlet that is a combination of
both. To achieve this, we initially transform P1 to be in
alignment with P2. Because we use compass data as a source
of pathlet creation, we can ignore the rotation and focus on
the translation vector ~t, which is calculated by the mean
distance vector of all compatible anchors:

~t =
1

|AC(P1, P2)|
∑

(a1,a2)∈AC(P1,P2)

~a2 − ~a1

Due to the noisy nature of the pathlets we can not assume
that this initial alignment is perfect. To accurately combine
the pathlets, we use a relaxation algorithm, like the one
mentioned in [9], where we treat edges as springs with an
intended length and achieve a global minimum tension in the
system by applying the relaxation iteratively. Therefore, we
span edges with an intended length of 0 between compatible
anchors and tie the pathlets together as accurate as possible
during the relaxation process.

After merging all pathlets together and performing the
relaxation afterwards, we get a representation of the burrow
based on the sensor data and the connectivity information.
The quality of this reconstruction is dependant on the quality
of the original data and the improvement offered by filtering
pipeline based on the chosen parameters. An example of a
reconstruction in comparison to the original burrow from [1]
is shown in Fig. 6.



VI. QUALITY OF RECONSTRUCTION

To measure the quality of the reconstruction, we use a
combination of alignment and comparison techniques that
are applied to the graph representation of the original and the
reconstructed burrow. As described in section IV, the second
part of this paper is based on simulation, so we actually have
the original burrow available.

The idea is to first align both graphs - the original
and the reconstructed one - to overlap identical parts and
measure the remaining differences. As a first step, both
graphs are converted into point clouds, i.e. PO and PR. We
minimize the inaccuracy introduced during this conversion
by representing long edges in the graph by a chain of points.
Hence, the basic structure of the graph is preserved.

For alignment, we use the Trimmed Iterative Closest Point
algorithm (TrICP)[10], which, despite only finding a local
optimum of the alignment, performs adequately in our case.
The distance of point sets in space can be measured by
using the Hausdorff Distance dH , which is not symmetric,
i.e. dH(A,B) 6= dH(B,A). We exploit this asymmetry to
gain two different kinds of measurements: (1) dH(PO, PR)
implies the reconstruction amount, i.e. how much of the
original burrow is covered by the reconstruction. This value
is highly dependent on the original data which is not under
our control, and (2) dH(PR, PO) is a measurement for the re-
construction error, i.e. the parts of the reconstruction falsely
introduced in the reconstruction, and therefore, important for
our evaluation.

In our basic filter pipeline, the smoothing amount and
the radius of the epsilon spheres are the two main param-
eters that affect the information quality. By varying these
parameters on the same set of data, we observed that the
smoothing amount does not have significant impact on the
results. However, the radius of the sphere is essential for
improving the quality and impairment of the data.

Fig. 7 shows that when a stronger filtering is applied to
undistorted data, the reconstruction error increases. Simi-
larly, if the same filtering is applied to the distorted data,
the reconstruction error decreases to a certain level, unless
the error that is introduced by the filtering outweighs the im-
provement. Finding this optimum setting of filter parameters
automatically, is a future work.

We used maps of rat burrows taken by Calhoun [1] as a
habitat for a simulated rat population to produce artificial
sensor data. Depending on the amount of distortion of the
data, we achieved a reconstruction error between 0.2 to 0.5
meters. This is well in par to make reliable statements about
the biological relevance of different locations.

VII. CONCLUSION

In this paper, we demonstrated that the reconstruction
of 3D paths using restricted devices like sensor nodes is
possible at an acceptable quality of reconstruction using
carefully designed filtering and postprocessing. Our future

(a) Low distorted data (b) Heavily distorted data

Figure 7. Smoothing iterations s and sphere radius ε impact on reconstruc-
tion quality. There is a valley at ε = 0.2 which results in best reconstruction
performance, even with heavily distorted data.

work will focus on the automatic determination of recon-
struction parameters and a better step length estimate. Also,
to reduce the number of bytes to be transmitted, we will
move more parts of the processing pipeline to the nodes. Our
approach therefore proves very useful, enabling a new class
of applications on the interface between pervasive computing
and biology.
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