Protocol Factory: Reuse for Network Experimentation

Georg Kunz, Olaf Landsiedel, Stefan Gétz, Klaus Wehrle
Distributed Systems Group
RWTH Aachen University, Germany
firstname .lasmame@CS.rwth-aachen.de

1. INTRODUCTION AND OVERVIEW

Today’s protocol research and development process is of-
ten enough extremely labor-intensive: First, existing proto-
col implementations do not allow to flexibly modify and ex-
tend their functionality. This forces researchers to reimple-
ment common protocol functionality for each new protocol.
Second, protocol implementations are highly platform de-
pend. Again, reimplementions become necessary when mi-
grating implementations between different evaluation plat-
forms for analysis.

This poster proposal introduces Protocol Factory (ProFab),
a protocol composition framework for rapid prototyping and
network experimentation. ProFab relies on two contribu-
tions: First, a library of generic functional building blocks
for composing full-fledged protocol stacks. Second, a virtual
platform that embeds protocols on a wide range of evaluation
platforms such as simulators, testbeds and OS kernels. The
remainder of this poster proposal illustrates these two key
design aspects of ProFab in more detail.

2. GENERIC PROTOCOL LIBRARY

Within and across layer boundaries, protocols provide sim-
ilar services. Our analysis indicates that a specific protocol is
largely determined by the composition of those services and
their configuration. Thus, by decomposing protocols into
configurable building blocks and enabling their composition
and re-use, ProFab effectively reduces the protocol develop-
ment effort.

ProFab allows composing functional building blocks dy-
namically at run-time and statically at compile-time. The
first mechanism enables elegant handling of flows and ses-
sions by instantiating services. In contrast, static composi-
tion aims for performance as it eliminates the run-time over-
head of modularization and instantiation by means of a pre-
compiler. In both cases, the pre-compiler customizes the
functional building blocks according to a given configura-
tion. This configuration process adapts the generic building
blocks to efficiently incorporate the semantics of a particular
protocol.

We implemented an entire protocol stack including ARP,
IPv4/6, and IPX as well as TCP, DCCP, and SCTP. We found
that both network layer and transport layer protocols indeed
share approximately 70% of their modules. Moreover, we
believe that similar sharing ratios are achievable among ap-
plication layer protocols — in particular those that exhibit
transport layer functionality such as streaming protocols.

[Application]

g : :

% I i %

£ k) i =

RIES el JlCRiSesslonkt WlndowMang. Flow Feedback

£ 2 : Y T

e [Gons: Gonrl

% S Cong. Control [Sequencer H Ack Handler

z||g

g ||

|4 £

@ é Timestamp _

2|2)

3 o H

Q

Q H

°)
[Network Interface / Device Driver]

Figure 1: The virtual platform encapsulates modular
protocol stack compositions

3. VIRTUAL PLATFORM

Protocols require access to system specific resources such
as memory, timer and network data. Our virtual platform
bases on the observation that system design has evolved best
practices among execution models and system APIs. Hence,
these similarities provide a narrow waist for platform ab-
straction, allowing the virtual platform to remain lightweight,
yet complete (see Figure 1).

A key enabler for a lightweight virtual platform is a uni-
fied execution model that is natively supported on all plat-
forms. ProFab employs asynchronous event-based execu-
tion, which directly maps to interrupt handling in operating
systems and testbeds as well as event scheduling in simula-
tion frameworks. Similarly, C constitutes the joint program-
ming language. It is available on nearly all platforms includ-
ing OS kernels and embedded systems and allows efficient
access to system resources.

The virtual platform covers a wide range of systems (Linux
& Windows XP/CE user- and kernel-space, TinyOS, ns-2/3,
OMNeT++) with just approximately 1000 lines of code each.
Moreover, performance evaluations comparing ProFab’s mod-
ular architecture to native Linux and Windows systems indi-
cate a minor impact on performance.

4. CONCLUSION

Already during its development, ProFab’s two-fold ap-
proach and its carefully design architecture proofed to be an
valuable addition to the protocol development process. The
proposed poster puts a special focus on the key design chal-
lenges, the resulting architecture of ProFab, and our evalua-
tion results.

