
Horizon – Exploiting Timing Information for
Parallel Network Simulation

Georg Kunz, Olaf Landsiedel, Klaus Wehrle
Distributed Systems Group
RWTH Aachen University

{kunz,landsiedel,wehrle}@cs.rwth-aachen.de

I. INTRODUCTION

Network simulation faces an increasing demand for highly
detailed simulation models which in turn require efficient
handling of their inherent computational complexity. This
demand for detailed models includes both accurate estima-
tions of processing time and in-depth modeling of wireless
technologies. For instance, one might want to investigate if a
particular device can incorporate a computationally complex
radio transmission technology while meeting the deadlines of
a multi-media streaming application such as VoIP.

Current network simulators however do not incorporate
the processing time of events, but merely assume that each
event is processed in zero simulation time. This abstraction
makes it particularly difficult to accurately conduct process-
ing time measurements. Moreover, detailed modeling of e.g.
radio technologies increases the computational complexity
of simulations and hence their run-time significantly. Exist-
ing approaches to parallel simulation [1] attempt to reduce
simulation run-times, but perform poorly in the context of
wireless networks due to the limitations and run-time overhead
of their synchronization algorithms. While classic parallel
simulation focuses on computing clusters, we argue that the
proliferation of multi-core computers presents a cheap and
valuable alternative.

This paper presents Horizon – an extension to network
simulation that enables the efficient and detailed simulation of
wireless networks. Our contributions are two-fold as Horizon
provides i) an API for accurately modeling processing time
of discrete event simulation models by augmenting events
with time spans and ii) a lightweight parallelization scheme
that utilizes timing information to guide the parallel execution
of simulations on multi-core computers. In this paper we
primarily focus on the latter.

II. PROBLEMS OF CLASSIC PARALLELIZATION

Classic parallel discrete event simulation [1] relies on two
classes of synchronization algorithms to maintain data consis-
tency across the distributed partitions of a simulation model.
Optimistic algorithms speculatively execute events in parallel
and perform roll-backs once an inconsistent state is detected.
Conservative algorithms in contrast avoid inconsistent states
by exchanging synchronization information among the parti-
tions. Both classes of algorithms suffer from a significant run-
time overhead in particular when applied to wireless networks.

event en

event en+1

event en+2

event en+3

t [sim. time]tstart
trigger processing (en)

tend
fetch results (en)

offloading window of event en:
execute independent events

past of en:
events en depends on

event en+4

future of event en:
events depending on en

event en-1

event en-2

fu
nc

tio
na

l u
ni

ts independent
events

Fig. 1. The interval between tstart and tend of event en opens a window for
parallelization. Independent events that start in this interval can be offloaded
to a different CPU.

Wireless networks, in contrast to their wired counterparts,
cause significantly small lookahead values between partitions
which makes it difficult to correctly predict and schedule future
events. To counteract these effects, Horizon explicitly trades
distributed simulation on computing clusters for efficiency
and focuses on shared memory computers. Hence, Horizon
offers a lightweight parallelization architecture that benefits
from centralized knowledge and avoids the need for complex
synchronization algorithms.

III. HORIZON(TAL) PARALLELIZATION

The goal of Horizon is to enable accurate modeling of pro-
cessing time and achieve high run-time performance through
parallelization. In particular, Horizon utilizes available timing
information to guide parallel processing of independent events.
This section details on Horizon’s approach and its architecture.

Approach: The key idea of Horizon lies in augmenting
events with an explicit duration of simulation time. Instead of
occurring at a discrete point in simulation time, augmented
events last from a distinct starting time (tbegin) to an ending
time (tend). In terms of processing, this approach distinguishes
between the point in simulation time at which the processing
of a given event is initiated and the point in simulation time at
which the resulting data is needed to continue the simulation.
This observation naturally opens a time window (i.e., horizon)
in which the parallel processing of independent events that
start in this window can be performed on different processing
units. Specifically, at tstart the simulation kernel offloads the
processing of an event to a different processor and continues
handling further events until the simulation time reaches tend.
At tend, the simulation kernel waits for the calculation to finish
if needed, fetches the results, and continues (see Figure 1).

This parallelization scheme dynamically processes indepen-
dent events from any layer and any node in the simulation
model. Hence, we denote it horizontal parallelization to
distinguish it from classic parallelization which partitions the
simulation model vertically in terms of clusters of nodes.

Challenges: Two central challenges arise in the context
of Horizon. First, horizontal parallelization must identify in-
dependent events to guarantee correctness. To achieve this,
simulation models in Horizon are composed of functional units
(e.g., transmitter, channel, IP). Similarly to the concept of
logical processes in classic parallelization, each unit maintains
private local state and interacts with neighboring functional
units only via message passing [1]. As a result, events that
exhibit overlapping processing times and occur in different
functional units are independent. The central scheduler then
guarantees two properties: First, only one event per functional
unit is executed at any point in simulation time to avoid
data corruption within a functional unit. Second, the global
ordering of events remains intact due to the central event
queue. Furthermore, to model access to shared media, Horizon
provides an API for specifying that events belonging to certain
functional units may never be offloaded – hereby enabling
implicit synchronization points.

The second challenge regards the processing time of an
event which is in general not known in advance, but may
depend on run-time parameters such as the number of iter-
ations performed during decoding a received packet. Horizon
consequently offers an API for adjusting (i.e., prolonging) the
(minimum) duration of an event at run-time. The scheduler
directly incorporates any time adjustments by dynamically
scheduling further events if possible.

Discussion: Horizon’s lightweight architecture heavily re-
lies on a central scheduler and is hence only applicable to
shared-memory multi-core computers. We believe that the
increasing availability of multi-core computers renders such
systems a cheap and valuable alternative to full-sized comput-
ing clusters for small to medium sized simulations. However,
horizontal parallelization is orthogonal to existing parallel
simulation schemes. By utilizing existing parallel simulation
mechanisms, Horizon transparently integrates with distributed
computing clusters.

IV. PROTOTYPE AND PRELIMINARY EVALUATION

We implemented a prototype based on OMNeT++ 4.0 [5] to
evaluate the viability of Horizon and conduct first performance
measurements. In OMNeT++, simulation models exhibit a
modular structure that allows them to seamlessly integrate
with the concept of functional units. Our key modifications
to OMNeT++ encompass extensions to the event scheduler, a
thread pool for parallel event processing, and corresponding
changes to the native API.

We conducted early performance evaluations of Horizon
by means of a synthetic benchmark on a 16 core (8 hyper-
threaded Intel XEON 2.5GHz) computer. This benchmark
models a wireless network consisting of a grid of 25 nodes
which randomly send and receive packets. Sending and re-

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E
x
e

c
u

ti
o

n
 T

im
e

 [
s
]

Number of CPUs

Event duration 10ms
Event duration 50ms
Event duration 90ms

Optimal

Fig. 2. Long lasting events allow Horizon to schedule more events in
parallel resulting in a decreased simulation time. The graph also shows the
theoretically optimal speedup.

ceiving are CPU intensive operations that are parameterized
in terms of event duration to investigate its influence on
performance. Figure 2 illustrates that Horizon achieves a
significant speedup in comparison to typical single threaded
simulators. The figure furthermore shows that the duration of
an event noticeably affects performance since longer durations
allow Horizon to schedule more events in parallel. Although
basic, we consider these results promising.

V. TIMING CALIBRATION AND FUTURE WORK

In its current incarnation, Horizon requires researchers to
manually annotate events with timing information. Hence,
Horizon depends on credible sources for gathering perfor-
mance measurements to calibrate its own models. Such per-
formance measurements are typically conducted by means of
emulators such as Simics [3] or AVRORA [4]. Based on highly
detailed system models, these tools provide accurate results at
the cost of a comparatively slow run-time performance.

Future work focuses on the automation of the calibration
process. Based on the presented architecture and previous
work [2], our efforts target particularly the automatic deriva-
tion of performance measurements from emulators and real
systems and investigate their integration to existing models.

VI. CONCLUSION

This paper presents Horizon, an extension to discrete event
simulation to accurately and efficiently model timing behavior.
Horizon achieves high run-time performance by utilizing tim-
ing information for horizontal parallelization. We additionally
illustrated the viability of Horizon by means of a prototype
implementation and evaluation.

Acknowledgements: This research was funded in part by the DFG Cluster
of Excellence on Ultra-high Speed Information and Communication (UMIC),
German Research Foundation grant DFG EXC 89.

REFERENCES

[1] R. Fujimoto. Parallel discrete event simulation. In Proceedings of Winter
Simulation Conference, pages 19–28, 1989.

[2] O. Landsiedel, H. Alizai, and K. Wehrle. When Timing Matters: Enabling
Time Accurate and Scalable Simulation of Sensor Network Applications.
In Proc. of the 2008 International Conference on Information Processing
in Sensor Networks (IPSN 2008), 2008.

[3] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hållberg,
J. Högberg, F. Larsson, A. Moestedt, and B. Werner. Simics: A Full
System Simulation Platform. Computer, 35(2):50–58, 2002.

[4] B. Titzer, D. Lee, and J. Palsberg. Avrora: Scalable Sensor Network
Simulation with Precise Timing. In Proc. of the 4th International
Symposium on Information Processing in Sensor Networks, 2005.

[5] A. Varga. The OMNeT++ Discrete Event Simulation System. In Proc. of
the European Simulation Multiconference (ESM), June 2001.

