
Protocol Orchestration:
A Semantic Approach to Communication Stacks∗

Stefan Götz, Tobias Heer, Klaus Wehrle
Distributed Systems Group

RWTH Aachen University, Germany
firstname.lastname@cs.rwth-aachen.de

ABSTRACT
The diversity of today’s networking environments, such as
wired, wireless, cell-based, or multi-hop, is matched by an
equally large amount and heterogeneity of specialized pro-
tocols, e.g., overlays, Wi-Fi positioning, MANET routing,
cross-layer signaling. However, communication is typically
performed with a static set of protocols selected at design
time based on simplified assumptions ignoring the environ-
ment’s heterogeneity.

In this paper, we argue that protocols can be orchestrated
as software components at run time driven purely by their
functionality and the demands of the execution environment.
Our end-system protocol framework Adapt bases on exten-
sible ontological models that semantically describe proto-
col and environment properties. Each connection receives
a custom-tailored protocol stack that Adapt orchestrates
from the requirements derived from the application, user,
and environment. With this approach, end-systems can
reason about the functionality and quality of automatically
composed and adapted protocol compounds while remaining
open to existing and future protocols.

Categories and Subject Descriptors
C.2.1 [Computer Systems Organization]: Computer-
Communication Networks—Network Architecture and De-
sign

1. INTRODUCTION
The classic TCP/IP protocol stack is static which has

raised a large number of practical and scientific challenges
over recent years. In particular, the difficulties in deploying
new protocols and flexibly integrating them with each other
on end systems hinders their proliferation. Protocols like
IPv6, HIP [5], or SCTP [12] crucially depend on standard-

∗This work is funded by the German Research Foundation
DFG under the project Adapt (WE 2935/4-1)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiArch’09, June 22, 2009, Kraków, Poland.
Copyright 2009 ACM 978-1-60558-688-5/09/06 ...$10.00.

ization and inclusion in major operating systems instead of
being readily available to users when in demand. Similarly,
new or custom protocols like MANET protocols, wireless
TCP extensions, or VPNs do not integrate naturally with
the TCP/IP stack, depend on non-standard OS features,
and are cumbersome for users to install and configure.

The ossification of TCP/IP in particular affects users of
mobile communication and entertainment devices. Typi-
cally, network hand-overs interrupt existing connections and
frequently require the user’s attention. Users need to man-
ually pick the appropriate network attachment (e.g., wired
vs. wireless vs. cellular), configure it (e.g., activate a VPN),
authenticate, and be constantly aware of factors like costs,
privacy, and security. Thus, the user experience is far from
the vision of permanent and adaptive connectivity.

Ideally, a communication subsystem should rather resem-
ble a configurable, dynamic framework of individual proto-
cols that, in their entirety, provide a desired functionality
with the most ”suitable” characteristics. The ”suitability” of
a communication subsystem depends on a wide variety of
dynamic factors, including those well-known from Quality-
of-Service (QoS) literature: application requirements (e.g.,
reliability, latency, security), device capabilities (e.g., CPU,
memory, and energy constraints), and network character-
istics (e.g., loss rate and throughput). Additional impor-
tant factors arise from user preferences (security, cost, etc.),
the network configuration (e.g., requiring authentication or
tunneling), and the capabilities of the communication part-
ners (such as their support for specific protocols). All of
these criteria can influence how individual protocols need to
be orchestrated into a functionally sound and well adapted
compound. The length and incompleteness of this list obvi-
ates the main deficiency of existing approaches to structur-
ing protocol frameworks. They describe protocols through
strict design-time classifications, such as class hierarchies or
languages with a fixed vocabulary, and are thus only poorly
extensible. Thus, they cannot incorporate new protocols,
functionalities, or requirements. However, this extensibility
is crucial for escaping the ossification trap and supporting,
for example, layer violations and extensions as in HIP and
new cross-cutting aspects like WiFi positioning.

In this paper, we discuss our dynamic protocol framework
Adapt. It leverages a semantic description format based
on ontologies that provides an abstract notion of a proto-
col’s functionality and properties. This format is the corner
stone for Adapt to be extensible with new protocols and re-
quirements, including novel, e.g., non-layer, network archi-
tectures. It also makes it possible to drive the orchestration

of protocols into protocol stacks by application and environ-
ment requirements. Adapt offers a generic protocol model
that is not bound to established layering conventions and
consistently integrates tunneling, encapsulation, and trans-
formation (e.g., for VPNs, overlays, encryption).

2. RELATED WORK
Existing research addresses the area of dynamic commu-

nication stacks from a number of different angles. As many
early papers reflect, flexibility is classically achieved through
componentization, typically motivated by re-use, reduction
of complexity, customization, and performance. Language-
based approaches such as COMSCRIPT [13, 6] introduce
language constructs to enforce uniform component interfaces
and to achieve component instantiation at compile time and
run time. To avoid the intrusive dependency on a particu-
lar programming language, the x-Kernel [9, 2] settles on a
small common component interface by convention and in-
troduces fundamental abstractions for functional building
blocks (i.e., protocols), messages, and sessions (i.e., proto-
col and connection-specific data). In [7], O’Malley and Pe-
terson argue in particular for strictly confining knowledge
about protocol functionality in the orchestration of compo-
nents rather than in their implementations to increase mod-
ularity. Adapt builds on these foundations for genericness,
flexibility, and customizability without necessarily promot-
ing protocol decomposition, novel user/kernel interfaces, etc.

Observing how protocol layering is violated in existing sys-
tems (e.g., with tunneling and overlay networks) and how it
limits protocol flexibility, Braden and colleagues take proto-
col decomposition one step further. Their Role Based Archi-
tecture [1] abandons layering and resorts to packet process-
ing in loose ordering based purely on functional necessities
at a granularity of functional components smaller than full
protocols like TCP. In Adapt, we follow the idea of commu-
nication systems being driven by functionality rather than
coarse-grained conventions such as layers.

The composition of a protocol stack needs to follow guide-
lines like protocol dependencies or functional requirements
(for example to perform compression before encryption).
Custom languages help to explicitly separate this informa-
tion from the implementation, as shown by F-CSS [16] and
DaCapo [10]. However, the separation remains incomplete
with such description formats since they expose implementa-
tion aspects. Also, they rigidly encode the protocol-related
knowledge at design time and do not lend themselves to later
extension.

In knowledge representation, ontologies have received wide-
spread attention in particular around the semantic web and
for web service management [8, 3], but also innumerable
other fields of information science. Ontologies strike a com-
promise between formalism and expressiveness that allows
for being intuitive, generic, extensible, and powerful for rea-
soning and querying [14]. Zhou and associates apply this
approach to the protocol domain [15] for a dynamic protocol
framework in which protocols are combined based on their
corresponding semantic information. However, this frame-
work centers on a classic stack design of monolithic protocols
ignoring decomposition and protocol extensions. Their pro-
tocol ontology is based on the Internet protocol layers to
reduce redundancy in the description and to limit the com-
plexity of the orchestration process. Consequently, this ap-
proach is not fully extensible and cannot support non-classic

Application
Requirements

S
y
st

e
m

R
e
q

u
ir

e
m

e
n

ts
U
se
r

R
e
q
u
ir
e
m
e
n
ts

Application Manager

P
ro
fi
le
 M
a
n
a
g
e
r

Protocol Engine

Prot. B

Prot. C

Prot. A

Packet Engine

Chain 1 Chain 2 Chain 3

Network
Capabilities

Network Interface
Manager

S
y
st
e
m

C
a
p
a
b
ili
ti
e
s

S
ys

te
m

 M
a

n
a

g
e

r

Figure 1: In accordance with external and inter-
nal requirements and capabilities, Adapt dynam-
ically orchestrates individual protocol components
into protocol chains based on semantic descriptions.

protocol arrangements such as overlay routing, tunneling,
layer-crossing routing protocols (common in MANETs), and
cross-layer signaling, many of which are particularly desir-
able for mobile communication. Adapt lifts this restriction
by removing the layer structure from the protocol model.
Thus, the complexity of protocol orchestration increases sig-
nificantly and forms the challenge that we address in this
paper.

3. DESIGN
This section briefly covers an overview of Adapt before

detailing the semantic protocol management. It then ad-
dresses the criteria influencing protocol orchestration, the
semantic protocol model, and the mechanisms of the orches-
tration process.

As illustrated in Figure 1, the Adapt end-system archi-
tecture is a dynamic protocol framework in the spirit of the
x-Kernel or F-CSS. All protocols share a common interface
and can - at the software component level - form arbitrary
combinations that we call protocol chains. The architecture
instantiates and configures them dynamically at run time
for each communication relationship.

The factors that influence protocol composition are the
demands of the application, the user, the capabilities of the
network and the capabilities of the whole system. A dedi-
cated manager component monitors each of them and pro-
vides a semantic representation for them.

Although such a modularized design of Adapt encour-
ages protocol decomposition into finer-grained components,
we deliberately target complete protocols so as to be able to
re-use legacy implementations. Nevertheless, keeping dis-
tinct functionality in individual components is essential for
combining protocols freely, e.g., to use UDP on top of over-
lay routing instead of plain IP.

For users to benefit from new or specialized protocols, they
need to become available at run time similar to browser plug-
ins rather than through a long-term cycle of standardization
and operating system releases. Furthermore, such an ap-
proach enables other stakeholders like network administra-
tors or ISPs to promote protocols to their users, for example
a multicast protocol that reduces an ISP’s peering costs by
reducing in- or outbound traffic. The distribution of a pro-

tocol as a software component, including digital signatures,
and its integration into the protocol manager as a dynami-
cally loadable object can be considered straightforward. To
enable the orchestration of arbitrary protocols, each of them
is always accompanied by a corresponding document which
semantically specifies the functionalities, dependencies, and
requirements. Based on this information, Adapt constructs
functionally sound protocol chains from existing and pre-
viously unknown protocol components as discussed in the
following sections.

3.1 Orchestration Criteria
Two factors drive the process of protocol orchestration

in Adapt: on the one hand, the functionality and inter-
dependencies of the protocols and, on the other hand, the
properties of the execution and network environment. These
requirements and capabilities fall into the four broad cate-
gories outlined in Figure 1. Although many of them relate
to typical QoS parameters, our research focus lies on sup-
porting arbitrary protocols at all layers, not on QoS per se.

1. Network capabilities primarily influence the orchestra-
tion of the network-related lower-level elements of chains.
The most immediate influence is exercised by the local
network access, such as the available hardware inter-
faces and their MAC protocols. Remote factors cover
aspects such as the routing protocol used in a network
or the necessity of authentication or tunneling (e.g., via
a VPN) to access the local network or the Internet. To
cover QoS aspects during protocol orchestration, Ad-
apt can gather qualitative information about network
characteristics, such as maximum throughput, link loss
rates, and latencies.

2. Device capabilities are of a similar qualitative nature
and primarily reflect information about the available
CPU, memory, and energy resources.

3. Application requirements are explicitly specified by ap-
plications when they request a new session to be es-
tablished. Typically, they are made up of functional
requirements on the new protocol chain, e.g., that it
needs to counter packet loss and re-ordering in which
case a variant of TCP might eventually become part
of this chain. Applications may also include qualita-
tive aspects such as a preference for low latency or
more abstract requirements such as privacy. This flex-
ibility stems from the fact that such semantic aspects
are fully encoded in the protocol descriptions and do
not depend on pre-defined functionality in the Adapt
architecture.

Traditionally, legacy applications distinguish only be-
tween UDP’s unreliable datagram transport service
and TCP’s reliable stream transport service. However,
we plan to introduce two interfaces for customized
applications: The query interface allows to concisely
specify the most common requirements like a trans-
port service type and security and QoS parameters.
Through the orchestration interface, applications di-
rectly specify protocol orchestration queries with the
protocol manager to control any aspect of the orches-
tration process. Implicit application requirements are
inferred by the application manager about applications
based on pre-configured knowledge. On mobile devices

for example, streaming or terminal applications with
long-standing sessions would benefit from instantiat-
ing a mobility management protocol such as HIP in
their protocol chains.

4. User preferences influence how the above qualitative
factors are traded against each other in the orchestra-
tion process to give users control over Adapt’s orches-
tration decisions. Typical trade-offs concern security,
cost, and performance aspects. User preferences also
provide immediate configuration information, for ex-
ample fixed IP addresses, authentication information,
and wireless network priorities. Finally, they allow
users to influence the orchestration process such that,
e.g., VPN tunneling is enforced for specific networks.

3.2 Orchestration Process
The process of protocol orchestration aims to determine

the protocol chain best suited to the given application and
environment requirements. Finding such a chain in the full
set of possible protocol combinations (a selective approach)
suffers from limited scalability with a growing number of
protocols. Adapt thus follows a constructive approach in
two stages. It first composes only the protocol chains that
are functionally viable and fulfill all requirements imposed
by the application request and the current execution envi-
ronment. In the second stage, an expert systems ranks each
resulting chain to determine the one that matches the envi-
ronment best.

3.2.1 Composition
In a three-step process, the semantic composer relies on

different types of information from the protocol ontology
to compose valid protocol chains. First, it evaluates the
functional requirements of the application and the execu-
tion environment to obtain all protocols that are necessary
to satisfy these demands. Next, it recursively resolves the
dependencies among protocols and constructs partial proto-
col chains (stubs) from this information. Finally, it merges
the partial chains into complete functional compounds that
can later be instantiated for packet processing.

In the first step, the application sets up a connection (or
creates a socket, in legacy terms) and can, in a very simple
example, indicate congestion control, datagram delivery, and
IPv4 addressing as its requirements to the semantic com-
poser. To bootstrap the composition process, Adapt treats
the application like any other protocol module with its re-
quirements. It distinguishes two classes of requirements: di-
rect and indirect ones. Direct requirements of a protocol
P need to be satisfied by the next element Q in a proto-
col chain and typically relate to interface properties (as for
datagram delivery and IPv4 addressing in this example). In-
direct requirements of P impose a looser restriction on the
construction process since they need to be honored by an
arbitrary element following P in the protocol chain. They
usually express more abstract, functional dependencies, such
as on congestion control in the above example.

The second step is for the semantic composer to create
chain stubs by resolving direct requirements. Assume that
the protocol modules UDP, DCCP, and Friendly P2P (an
application-level congestion control protocol) satisfy the ap-
plication requirements. In that case, three stubs would be
created: App – UDP, App – DCCP, and App – Friendly P2P.
The composition process proceeds recursively on the direct

requirements, forking stubs where different alternatives are
available to resolve requirements. For each stub, it also ac-
cumulates the indirect dependencies of each stub element.
The recursion continues on each stub until a link-layer pro-
tocol module is added which completes the chain because it
effectively connects the chain to a network interface. If a
stub cannot be completed in this manner because no avail-
able protocol satisfies the given direct dependencies, the stub
is discarded immediately. Additionally, the semantic com-
poser performs loop detection to eliminate degenerate stubs
consisting, e.g., of recursively nested IP GRE tunnels1.

The third step in the composition process is to evaluate
the indirect requirements. If the (lower-layer) protocols in
a completed chain satisfy the accumulated indirect require-
ments of the other (higher-layer) protocols, the chain is valid
and is passed on to the ranking phase in the orchestra-
tion process. This applies, for example, to the chain App
– DCCP – IPv4 – Eth, but not to App – UDP – IPv4 – Eth
since it does not meet the congestion control requirement.
The latter chain is thus discarded.

Changes in the execution or network environment of a de-
vice can cause existing protocols chains to be re-evaluated
and re-composed if necessary. In such a case, the protocol
manager first derives from the protocol descriptions, which
chain modifications are valid at run time. For example, a
standard established TCP / IP / Ethernet connection can-
not both maintain its TCP state and switch to a different IP
instance with a different IP address. However, a switch of
the existing TCP / IP instances to a new Ethernet instance,
e.g., on a wireless device, is feasible. This information about
re-configurability is represented as additional protocol de-
pendencies and fed as such to the semantic composer.

Exchanging protocol instances during run time leads to
the problem of whether and how to convert and transfer
state information between these instances. In this paper,
we do not address this issue but focus on how to select ap-
propriate protocol combinations that do not depend on such
state transitions.

3.2.2 Ranking
In the second stage of protocol orchestration, an expert

system ranks the constructed chains according to quality
metrics and user preferences to determine a single chain to
instantiate. The network interface and device managers pro-
vide the base information about the current execution and
network environment. The equivalent information about
protocols is derived from their individual descriptions (e.g.,
the loss rate range acceptable to or the computational over-
head imposed by a protocol). Additionally, the application
and profile managers may provide weight factors for each of
these properties to bias their influence on the result. Based
on these inputs, the expert system matches the correspond-
ing protocol and environment properties to derive specific
metrics. Then, it feeds them to a multi-criterion decision
system that calculates a ranking order from the metrics and
their weight factors. Thus, the highest-ranking protocol
chain emerges as the best match for the current commu-
nication requirements.

3.2.3 Instantiation

1If necessary, such constructs can however explicitly re-
quested before stub creation.

The overall orchestration process is triggered when an
application requests a new connection to be created. The
protocol manager first checks whether the application re-
quest or the profile manager demand a specific chain layout.
If so, it instantiates this preset, otherwise the semantically
driven composition continues as described above. The pro-
tocol manager passes the resulting chain in a simple descrip-
tive format to the packet manager which creates a session
instance of each protocol. The packet manager links the in-
stances to each other and associates the resulting chain with
the application that triggered the connection setup. At this
point, the protocol chain is fully established and available
to its application. An instantiated chain is the equivalent
of a socket instance in traditional network stacks. In con-
trast to those, chains contain only session information and
activation hooks for their associated protocols and they al-
low to exchange individual protocol sessions at run time to
support dynamic reconfiguration. If the protocol manager
is not able to compose any valid protocol chain for the given
requirements, this fact is signalled to the application and
the user so they can relax their original requirements.

Incoming network packets carry identifiers that determine
which protocols need to process the packets. This applies
both to today’s layered protocols and to approaches in the
spirit of the Role-Based Architecture. To map a packet to
its associated session, Adapt first derives for each proto-
col identifier in the packet a protocol-specific de-multiplexer
(e.g., that of TCP), which in turn provides the matching
session instance (e.g., a TCP session as derived from the
port number). Similarly, session initiating packets trigger
the protocol-specific de-multiplexer to create a new session
instance on the fly.

3.3 Semantic Protocol Modeling
Adapt models protocols and the execution environment

in a class-oriented ontology. The ontology allows to repre-
sent, share, and extend knowledge about the domain of com-
munication protocols. It contains the formal descriptions of
each protocol model and provides the basis for automated
reasoning.

Similar to object-oriented software design, ontologies typ-
ically structure knowledge into hierarchies of classes with
each class having distinct properties. As depicted in Fig-
ure 2, the protocol ontology models all elements as classes in-
cluding the relationships between protocols. Although such
information can be represented by class properties, the in-
troduction of additional knowledge might then require mod-
ifying existing classes. Since that would hamper the exten-
sibility of the models, we aim to model all information as
classes. Figure 2 illustrates this, for example, for TCP’s in-
direct dependency on eventual medium access and its direct
dependency on an IPv4-style routing-level address. The in-
direction through the tcpDep1 class allows to add a second
set of dependencies on medium access and an IPv6-style ad-
dress (not depicted) to the ontology without modifying the
TCP class itself.

To support the orchestration process and its individual
stages, the ontology distinguishes between three distinct cat-
egories: functionalities, dependencies, and qualitative infor-
mation. The functionality model derives directly from in-
dividual protocol functionalities, such as session support,
packet loss handling, or local or global routing. By sub-
classing, it expresses a refinement of a more abstract func-

Functionality

retransmission
checksum

applicationLvlAddr.

dupAck.
orderedData

flowContr.
cong.Contr.

connectionBased

provides

mediumAccess
providesIPv4PsHdr

mediumAcc. [indirect]
IPv4PsHdr [direct]

Dependency Entity

consistsOf

dependsOn

depends-
OnFunc.

NetworkContext

bitErrorRate
nodeMobility

Context

optimizedFor

context-
Property

tcpDep1

Depend. Assignment

bitErrorRate [low]
nodeMobility [low]

QualitativeProperty

ContextAssignment

Protocol

tcp

atcp

Protocol Extension

Traffic Control

Error Control

Figure 2: Adapt’s semantic model of TCP (excerpt).
Each item in a box represents a class and arrows
represent relationships between classes.

tionality (e.g., packet retransmission could be a sub-class
of the loss handling class). The dependency model estab-
lishes associations between protocols, functionalities, and
user-defined criteria It can also establish and and or re-
lationships between multiple dependencies (e.g., to enforce
the inclusion of one of two specific encryption protocols).
Furthermore, the ontology provides qualitative information
about such aspects as protocol resource demands. Here, we
distinguish between requirements a protocol imposes on its
protocol chain or the environment (e.g., the existence of a
DNS server) and information that solely affects the ranking
of different protocol chains.

Adapt uses OWL DL, a sublanguage of the OWL Web
Ontology Language [4], that is based on description logic
and thus provides high expressiveness while still maintain-
ing completeness and decidability for reasoning systems. In
OWL DL, knowledge is represented by classes, individuals
belonging to classes, and relations between them. Classes in
an ontology form a hierarchy, which is either asserted man-
ually or can be automatically inferred for classes subsuming
others. Similarly, individuals form instances of classes either
explicitly through manual assertion or implicitly through in-
ference based on restrictions imposed by logic expressions.

Based on the explicitly defined asserted model, the rea-
soning process derives an inferred model that represents ad-
ditional knowledge. Adapt employs the following reasoning
capabilities, primarily as fundamental means to integrate
future protocols, orchestration criteria, and metrics:

Type inheritance: by inference, individuals of class X in-
herit the types of X’s super classes. Thus, protocols describe
their functionality precisely (e.g., RSA encryption) and can
later be classified more generically (e.g., as providing confi-
dentiality) through newly introduced knowledge.

Inverse properties: a symmetric relation between X and
Y specified only for X is inferred to apply to Y . Thus,

Query Matching Compos. Sum # chains
Reliability 43 ms 117 ms 166 ms 6
Name res. 30 ms 136 ms 166 ms 4
Multicast 53 ms 62 ms 115 ms 18

Table 1: Protocol composition based on restrictive
queries for reliability support, name resolution sup-
port, and multicast support

Query Matching Compos. Sum # chains
Reliability 33 ms 222 ms 255 ms 226
Name res. 29 ms 375 ms 404 ms 655
Multicast 54 ms 112 ms 166 ms 88

Table 2: Protocol composition based on non-
restrictive queries

the inferred knowledge base remains consistent despite the
incorporation of new knowledge.

Instance classification: defined classes classify individu-
als through a set of logic expressions. Consequently, the
knowledge about the criteria of class membership receives
an explicit representation.

Rule support : user-defined rules allow to assert new facts
about individuals. Protocols can be asserted to support re-
liability, for example, if they provide ordered data delivery,
retransmission, and a checksum algorithm.

OWL DL represents information either in an abstract syn-
tax or RDF/XML format. It allows to describe protocol se-
mantics as a single unit which can be easily merged with
a pre-existing ontology. Adapt relies on this feature to
integrate both the functionality and the semantics of new
protocols on end systems at run time.

4. IMPLEMENTATION
The implementation of Adapt aims at a system that can

be used with standard applications in realistic mobile com-
munication scenarios. Due to the popularity of Windows-
based mobile devices, the main target platform of Adapt
are the desktop and mobile version of Windows. The pro-
tocol framework is realized as a user-level application that
transparently intercepts network packets and socket opera-
tions of legacy applications via small driver components in
the operating system. Furthermore, we supplant the operat-
ing system’s TCP/IP stack with protocol modules for TCP,
UDP, and IP based on existing user-level implementations
with further protocols like SCTP, IPSec, overlay and VPN
protocols to follow.

The protocol manager contains a matchmaker, a compo-
sition engine, and a stub expert system. It is implemented
in Java to access the description repository with the Jena
semantic web framework which manages the ontology and
provides a reasoner, a query engine, and basic rule support.
We use SPARQL [11] to perform queries on the description
repository. SPARQL is an SQL-like query language based
on graph patterns which efficiently operates on RDF triplets
without being aware of OWL semantics. Hence, we designed
the ontology for a two-stage execution model: At first, a DL
reasoner infers knowledge based on the full OWL DL se-
mantics. This is a complex operation but is only necessary
when initializing or extending the ontology, e.g., with a new
protocol. Subsequently, the semantic composer uses efficient
SPARQL queries on the inferred model during the orches-

tration process. Performance can be further improved by
caching the stub chains from previously resolved dependen-
cies as this reduces the number of necessary queries during
protocol composition.

As an initial evaluation, we tested the semantic composer
with three typical functionality requests: Support for a reli-
able connection, for multicast, and for name resolution. The
ontological model contained 14 protocols as well as protocol
extensions (e.g., an extension to TCP that makes it perform
better in scenarios with high bit error rate), tunnels (e.g., in
case IP Multicast is not supported by the network the host
resides in), and network requirements (existence of a DNS
server). All measurements were performed on a Linux sys-
tem with a 1.80 GHz Intel Pentium M processor and 1GB
RAM, employing Sun’s Java 1.5.0 run-time environment and
version 2.5.5 of the Jena library.

Table 1 lists the duration of the matchmaking process,
the protocol composition process, and the number of re-
sulting protocol chains for queries that specify the desired
functionality concisely. More loosely specified queries are
satisfied by more chains but they also increase the com-
position time significantly, as Table 2 illustrates. We see
considerable room for improvement in our current imple-
mentation, e.g., via additional, though less generic, rules in
the composition process, pre-computation, and caching of
chain stubs. Although an evaluation of the expert system is
still outstanding, these initial results show the practical via-
bility of a functional composition of protocol modules based
on ontological models.

5. CONCLUSION
The benefits of dynamic protocol frameworks are well-

known and particularly attractive in mobile communication
scenarios. Given such a framework, the orchestration of in-
dividual protocols into a compound that is functionally and
qualitatively sound becomes a non-trivial task because it
depends on the semantics of the components and their envi-
ronment. In this paper, we make a case for modeling these
semantics through ontologies and show how the composition
process can leverage such an ontology. Our results suggest
that this approach can form a viable basis for automatically
orchestrating communication stacks based on the functional-
ity provided by individual components instead of rigid design
criteria like network layers.

6. REFERENCES
[1] R. Braden, T. Faber, and M. Handley. From Protocol

Stack to Protocol Heap: Role-based Architecture.
SIGCOMM Comput. Commun. Rev., 33(1), 2003.

[2] N. C. Hutchinson and L. L. Peterson. The x-Kernel:
An Architecture for Implementing Network Protocols.
IEEE Transactions on Software Engineering, 17(1),
1991.

[3] L. Li and I. Horrocks. A Software Framework for
Matchmaking Based on Semantic Web Technology. In
Proceedings of the 12th International Conference on
World Wide Web, 2003.

[4] D. L. McGuinness and F. van Harmelen. OWL Web
Ontology Language Overview. W3C Recommendation,
2004.

[5] R. Moskowitz, P. Nikander, P. Jokela, and
T. Henderson. Host Identity Protocol. RFC 5201

(Experimental), 2008.

[6] M. Muhugusa, G. Di Marzo, C. F. Tschudin, and
J. Harms. ComScript: An Environment for the
Implementation of Protocol Stacks and their Dynamic
Reconfiguration. In International Symposium on
Applied Corporate Computing ISACC 94, 1994.

[7] S. W. O’Malley and L. L. Peterson. A Dynamic
Network Architecture. ACM Transactions on
Computer Systems, 10(2), 1992.

[8] M. Paolucci, T. Kawamura, T. R. Payne, and K. P.
Sycara. Semantic Matching of Web Services
Capabilities. In ISWC ’02: Proceedings of the First
International Semantic Web Conference on The
Semantic Web, 2002.

[9] L. Peterson, N. Hutchinson, S. O’Malley, and
M. Abbott. RPC in the x-Kernel: Evaluating New
Design Techniques. In Proceedings of the Twelfth ACM
Symposium on Operating Systems Principles, 1989.

[10] T. Plagemann, M. Vogt, B. Plattner, and T. Walter.
Modules as Building Blocks for Protocol
Configuration. In Proceedings of the International
Conference on Network Protocols, 1993.

[11] E. Prud’hommeaux and A. Seaborne. SPARQL Query
Language for RDF. W3C Recommendation, 2008.

[12] R. Stewart. Stream Control Transmission Protocol.
RFC 4960 (Proposed Standard), 2007.

[13] C. Tschudin. Flexible Protocol Stacks. In SIGCOMM
’91: Proceedings of the conference on Communications
architecture & protocols, 1991.

[14] X. H. Wang, D. Q. Zhang, T. Gu, and H. K. Pung.
Ontology Based Context Modeling and Reasoning
Using OWL. In Proceedings of the Second IEEE
Annual Conference on Pervasive Computing and
Communications Workshops, 2004.

[15] L. Zhou, H. K. Pung, L. H. Ngoh, and T. Gu.
Ontology Modeling of a Dynamic Protocol Stack. In
31st IEEE Conference on Local Computer Networks,
2006.

[16] M. Zitterbart, B. Stiller, and A. N. Tantawy. A Model
for Flexible High-performance Communication
Subsystems. Selected Areas in Communications, IEEE
Journal on, 11(4), 1993.

	Introduction
	Related Work
	Design
	Orchestration Criteria
	Orchestration Process
	Composition
	Ranking
	Instantiation

	Semantic Protocol Modeling

	Implementation
	Conclusion
	References

