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ABSTRACT 

Constrained energy and computational resources of sensor 
nodes are the two most critical limitations of sensor 
networks. Moreover, sensor nodes are envisioned to be 
deployed at inaccessible, remote and harsh physical 
environments where exchanging node’s power supply is not 
feasible. Therefore, it is essential for sensor network 
developers to thoroughly evaluate and fine-tune their 
applications from energy and timing perspectives. As 
incorrect energy estimates could result in underperformance 
or possible breakdown of real sensor deployments before 
fulfilling the desired operation.  

Modeling energy-states of each hardware device and the 
time duration it spends in each state is the basic requirement 

for accurate energy1 prediction in discrete event based 
simulations. In this article we present the architecture of our 
power related extensions to TimeTOSSIM – a TinyOS 
based simulation environment for sensor network 
evaluation. It employs fine grained, automated 
instrumentation of simulation models with cycle counts 
derived from application binaries to enable time accurate 
simulations. By instrumenting the simulation models with 
timing information we can capture the duty-cycle and 
energy-state of each hardware component. As a result, the 
energy consumption of each component of a sensor node 
can be computed. The presented approach achieves highly 
precise time accuracy when compared to emulation. 

I. INTRODUCTION 
The desired small physical size of a sensor node and the 
absence of permanent network infrastructure results in lack 
of constant supply of power for sensor nodes. Therefore, the 
operation of sensor nodes rely on limited energy reserves, 
typically in the form of batteries and solar cells. As a result, 
energy still dominates as a primary concern both in soft- and 
hardware development for sensor networks. On the 
hardware side, it results in using low-power technologies for 
communication, processing and sensing hardware. As a 
consequence, it strictly limits the capabilities of sensor 
nodes from these perspectives.  Recognizing severe resource 
restrictions at the software side, consuming minimal energy 
and computational resources is the key design objective for 
algorithms. From physical up to the application layer, 
research focuses on developing energy aware encoding, 
medium access, and routing schemes [2][3].  

Thorough evaluation of such energy aware applications 
before deployment is essential as real deployments are 
costly. Hence, developing energy aware applications and 
protocols requires a new set of evaluation tools to assist 
developers. Accurate prediction of energy consumption and 
execution time of algorithms are among the key 
characteristics of such tools. 

We identify three main requirements in discrete event based 
simulation of sensor nodes to accurately predict the power 
consumption of applications. First, it shall model the 
energy-state(s) of each hardware device. For example, in the 
case of radio chip, it includes transmitting, receiving, 
power-down, and idle as energy-states. Second, it shall 
determine the time a device spends in each of its energy-
states during simulation. Higher time resolutions would 
definitely result in more accurate energy predictions. Third, 
 

1 We use the term power and energy interchangeably throughout this 
article. 
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it shall provide accurate models of energy consumed per 
time by a device in each of its states. 

In this article we introduce TimeTOSSIM [10] and our 
architecture for its energy related extensions. TimeTOSSIM 
enables time accurate simulations of sensor network 
applications. It is an extension of TOSSIM [6], a discrete 
event based simulation tool for sensor networks. The 
principle technique to achieve time accuracy in 
TimeTOSSIM is to map the platform dependent binary with 
simulation source-code. Such a mapping determines the 
number of clock-cycles consumed by each source-code line. 
As a result, we can instrument the simulation sources to 
increment the simulation clock accordingly. TimeTOSSIM 
achieves a granularity of source-code line level. This high 
level of timing detail attained by TimeTOSSIM simulation 
enables us to capture the energy-states and transitions of 
each hardware device. Similarly, the time, i.e. the number of 
clock cycles, consumed by a device in each of its energy-
states is determined by tracking the simulation-clock. By 
combining accurate energy models with the detailed timing 
and state information revealed by TimeTOSSIM, we can 
accurately predict the power consumption of sensor nodes.  

The rest of this article is organized as follows. Section II 
presents related work and background. In section III we 
discuss TOSSIM and its energy related extensions. Sections 
IV and V present our approach for modeling execution time 
and energy consumption respectively. Section VI presents 
detailed evaluation of accuracy and performance of 
TimeTOSSIM. Section VII concludes the article and 
presents future work directions. 

II. RELATED WORK 
In recent years, the complexity of deployed sensor network 
applications has heavily increased [11][12].  Therefore, high 
degree of realism is desired to thoroughly evaluate 
applications before deployment. Similarly, it is also of 
strong interest that the evaluation tool be fast and scalable to 
a very large number of sensor nodes. Complying with the 
demands of sensor network evaluation, many discrete event 
simulation [7][8] and cycle accurate emulation [1][9] based 
tools have been developed. However, we believe that none 
of these tools has been able to fully integrate the 
aforementioned evaluation requirements of sensor networks.  

Discrete event based simulation, due to its high performance 
and scalability, is used to evaluate algorithmic functionality 
of sensor network applications. However, its high level of 
abstraction and therefore lack of detailed timing prohibits 
the use of simulation2 for in-depth analysis of applications.  
SensorSim [7] and SENS [8] are examples of discrete event 
based simulators for sensor networks which compromise 
accuracy over scalability by using abstract simulation 
models of sensor nodes.  

Emulation, as it is accurate down to the clock-cycle 
granularity, offers detailed evaluation of applications and 

 
2 Throughout this article the term “simulation” is used to represent 

discrete event based simulation and the term “emulation” is used to 
represent cycle accurate instruction set simulation.  

operating systems. AEON [5] is an emulation based energy 
estimation tool for sensor networks. As it is an extension of 
Avrora emulator [9][10], therefore it is inherently cycle 
accurate and models the energy consumption at clock-cycle 
granularity. Emulation based evaluation tools also provide 
deep insight into the much important timing and interrupt 
properties of applications. However, emulation typically 
suffers from low speed, limited scalability and platform 
dependence. Furthermore, emulation environments have 
reached a complexity which is an order of magnitude higher 
than the system to evaluate, i.e. the sensor node. As a result, 
cycle accurate emulators are hard to maintain, extend and 
debug. Concluding, emulation is not a recommend choice 
for a system like a sensor network, which offers variety of 
sensor platforms and can scale to thousands of sensor nodes.  

Our main contribution in this article is that we bridge the 
gap between scalable but abstract simulation and cycle 
accurate emulation. We provide near cycle accurate timing 
combined with the scalability, flexibility and portability of 
simulation. Hence, TimeTOSSIM is capable of combining 
all the essential evaluation properties like time accuracy, 
energy prediction, speed and scalability on a single 
evaluation platform.  

III. TOSSIM 
TOSSIM [6] is a TinyOS based simulator for sensor 
networks scalable to thousands of network nodes. Although 
its simulation core is discrete event based, it significantly 
differs from the traditional simulators in two respects. First, 
it compiles directly from the platform dependent source 
code into the simulation infrastructure by adding an 
alternative compilation target. Hence, TOSSIM does not 
require the algorithms to be implemented separately for 
simulation and hardware platform. Second, unlike 
traditional simulation, TOSSIM only replaces low level 
device drivers with simulation wrappers while rest of the 
code including the operating system (OS) is executed in 
simulation. Traditional simulation abstracts from OS level 
details by providing abstract simulation models usually 
implemented in high level languages like Java or C++.   

The fact that TOSSIM compiles directly from the platform 
dependent source-code makes it more expressive and 
realistic than SensorSim and SENS. TOSSIM only needs to 
model the low level components responsible for hardware 
interaction such as low level access to timers, 
communication channels, sensors, and the radio. These low 
level components expose the real hardware and are placed at 
the Hardware Presentation Layer (HPL) of the TinyOS-2.0’s 
platform abstraction model [13]. TOSSIM also benefits 
from the event-based, component oriented programming 
model of TinyOS by translating the hardware interrupts into 
discrete simulator events which drive the simulation. 

One of the extensions of TOSSIM is PowerTOSSIM [4], 
which evaluates the energy consumption to predict the life 
time of a sensor node. It extends TOSSIM by adding a new 
PowerState module that records energy-state transitions of 
each hardware component. For the CPU, a mapping 
technique is used at basic-block granularity to determine the 
number of clock-cycles for which the CPU remained active. 



 
 

PowerTOSSIM relies on an abstract simulation clock which 
is adjusted at the start of every new simulator-event to 
determine the time for which a hardware device remained in 
each of its power-states. Therefore, the simulation results 
show deviations of up to 13% from real power 
measurements. Moreover, rigorous testing of the CPU 
profiling technique has revealed an error of 5700% in 
calculating CPU active time [5]. PowerTOSSIM uses 
Postmortem analysis (i.e. offline analysis after simulation) 
to calculate the energy consumed by sensor network during 
simulation. Such offline analysis can only contribute to 
determine the power consumption. It is unable to assist the 
developers in observing the behavior of applications in 
response to the unreliability caused by decaying and 
expiring nodes during the simulation.  

The approach presented in this article is partly similar to 
PowerTOSSIM’s CPU profiling technique. However, we 
generalize it to perform online clock advancement and 
dynamic event queue adaptation compared to offline 
modeling in PowerTOSSIM. By doing so, we also provide a 
deep insight into the much important timing and interrupt 
properties of applications, operating systems and hardware 
components. Furthermore, we provide a more fine grained 
instrumentation level than PowerTOSSIM and features - 
such as energy models - can be easily derived from the 
detailed timing model presented in this article. Similarly, 
TimeTOSSIM outperforms Avrora in terms of speed and 
scalability while maintaining highly precise time accuracy. 

IV. MODELING EXECUTION TIME 
Classic simulation models the behavior of a system at event 
granularity. It translates all events, e.g. interrupts and tasks 
in TinyOS into discrete simulator events. Events are 
executed one after another. Thus, time in simulation is 
handled discretely; at the beginning of an event the 
simulation time is set to the execution time of the event and 
remains unadjusted throughout the event execution. 
Therefore, events in simulation take zero simulation time. 
However, in real life events have an execution time and may 
interrupt, interfere or delay each other, resulting in different 
execution and completion order compared to simulation. 
Under peak loads, this may even load to event misses on 
interrupts and tasks. Summarizing, simulation only 
contributes to testify the algorithmic functionality of an 
application. However, due to the lack of time accuracy in 
modeling a system, false-positives about the performance of 
applications are inevitable in simulation. 

A. Simulation Clock Incrementation  
We resolve timing discrepancy of sensor network 
simulation by enabling TOSSIM’s simulation to track the 
system time during event execution. Our proposed solution 
determines the execution time (clock-cycles) of each source-
code line being executed inside a simulator-event and then 
increments the simulation time accordingly. The underlying 
technique is to automate the mapping between simulation 
source-code and the platform specific executable. This is 
only possible when nearly identical application and 
operating system code is executed in simulation and on the 
hardware platform, which is typically the case in sensor 
network operating systems. Such a mapping enables us to 

identify the processor instructions corresponding to a 
source-code line. From the respective processor data-sheet 
we next retrieve the number of cycles consumed by each 
instruction and therefore can compute the time to execute 
each source-code line on the sensor node platform. Figure 1 
illustrates this process. 

The code mapping technique is particularly suited for 
embedded CPUs (such as in sensor nodes) employing 
sequential instruction execution without any pipelining and 
caching strategies. For such platforms, the execution time of 
a binary instruction is static and can be modeled without 
interpreting each individual instruction. 

B. Event Queue Adaptation  
Tracking system time during event execution may result in 
overlapping events and only helps in determining the 
execution time of each event separately. However, the 
overall timing and interrupt behavior of an application still 
remains undetermined. For example, in TinyOS tasks are 
executed sequentially and therefore can delay each other's 
execution. However, interrupts are executed immediately 
and delay the execution of any currently active task. Under 
peak loads, interrupts and tasks are even dropped when their 
corresponding queues overflow. By extending the 
simulation queue with priorities representing tasks and the 
various interrupt levels, we can easily model such a 
behavior.  

We assign execution priorities to different events. As events 
in the TOSSIM event-queue represent hardware interrupts 
or TinyOS tasks, it is possible to determine the type of an 
event and its execution priority from the processor data-
sheets. Correct ordering of events can be achieved by 
visiting the event queue at the start of every source line after 
incrementing the simulation clock. The idea is to reschedule 
events with lower priority, execute events with higher 
priority immediately, and thereby delay or interrupt the 
execution of currently active events. Overall, these timing 
and rescheduling extensions to simulation models give a 
detailed insight into the performance of a system without the 
need for complex emulators or test-beds.  

Figure 1: Source-code mapping and instrumentation



 
 

C. Static and Manual Code Mapping 
For simulation, TOSSIM replaces low-level device drivers 
on the hardware presentation layer3 (HPL) of TinyOS with 
simulation wrappers. Therefore, simulation and platform 
specific code differ on the hardware presentation layer and 
the presented code automated instrumentation techniques 
does not apply for low-level device drivers. However, these 
layers are commonly quite slim. In this sub-section we 
present the implementation of two techniques to enable 
accurate timing even in these code sections: (1) static code 
mapping and (2) manual code mapping.  

We apply static code mapping in simple device drivers that 
do not contain any conditional statements and therefore 
execute in a constant number of cycles. For example, we 
applied this approach to model the time required to enable 
or disable pins of the microcontroller, timers and radio into 
TimeTOSSIM. Although this process does not introduce 
inaccuracies in terms of cycles, it is not as fine granular as 
the commonly used source line granularity. Thus, interrupts 
may get delayed by a number of cycles. However, HPL 
code sections are usually 10 to 100 cycles and therefore 
executed in a couple of micro seconds. 

Likewise, to model code sections that were extended for 
simulation in TOSSIM and to address that some code in the 
HPL layer may have a higher complexity, we use manual 
mapping. Based on the fact that the simulation model needs 
to reassemble the functionality of the device specific code, 
we manually map sections with equal functionality and 
instrument the simulation code with the corresponding 
number of cycles. We applied this approach to the TOSSIM 
scheduler. Its implementation strongly differs from the 
device specific one, but it reassembles the same 
functionality and therefore can be easily instrumented 
manually. 

It is important to highlight that this automated mapping and 
simulation instrumentation process is performed offline i.e. 
during compilation of the simulation-code to enable time 
accurate simulation execution. Please note that this process 
is neither bound to a certain hardware platform nor to 
TinyOS. Therefore, it can easily be applied to any other 
sensor node architecture and operating system. We use 
TOSSIM for our prototype implementation because it 
compiles directly from the platform dependent source-code 
into the simulation infrastructure. Moreover, our choice is 
influenced by the fact that TOSSIM simulates TinyOS, 
which is the de-facto standard operating system for sensor 
networks. 

V. FROM TIMING TO ENERGY 
Timing is the preliminary requirement for modeling energy 
consumption of a device. Once we have the knowledge 
about different states and the duration a device has been in 
each state, we can easily determine the energy drainage of 

 
3 TinyOS has a platform abstraction architecture consisting three layers; 

Hardware Independent Layer (HIL), Hardware Abstraction Layer (HAL), 
and Hardware Presentation Layer (HPL). The code at HIL and HAL level is 
platform independent while only a small portion of code lies at HPL level 
that provides access to the original hardware and is platform dependent. 

that device using accurate energy models. In this section we 
discuss the key requirements for predicting energy 
consumption of sensor networks. We also show that 
TimeTOSSIM is an ideal platform that fulfills all these 
requirements and can easily be extended to provide fine-
grained energy estimates.  

A. Modeling Energy-states 
To model the energy-states of hardware we benefit from the 
TOSSIM’s simulation infrastructure. It only replaces low      
level device drivers at the HPL layer with simulation 
wrappers to enable simulation. Rest of the code remains 
same for simulation and real hardware. These simulation 
wrappers capture all the events triggered by higher level 
code to change device’s energy-state. For example, when 
sensors are activated to read data and deactivated to save 
energy or LEDs are turned on and off. The only exception 
where we are unable to capture the energy-states and 
transitions is the radio chip. The reason is that in the case of 
radio TOSSIM abstracts from the original platform 
dependant code and provides a complete simulation 
implementation for modeling radio propagation.  

To overcome this limitation we extended TimeTOSSIM to 
provide support for the simulation of CC1000 radio chip4. 
Our implementation is based on the original TOSSIM 
approach i.e. to utilize maximum platform dependant code 
and abstract from the original implementation at the lowest 
possible level (i.e. HPL layer). We use the original TinyOS 
code for CC1000 radio chip and provide our own simulation 
wrappers at the HPL layer, as shown in Figure 2. In doing 
so, we regain our granularity by enabling automated 
mapping and instrumentation of communication related 
source-code and capture each and every state transition of 
the radio chip. Hence, it enables us to accurately predict the 
energy consumption of the radio chip. Our prototype 
implementation of radio chip also facilitates us in evaluating 
TimeTOSSIM, as CC1000 is supported by publically 
available emulation platforms such as Avrora. 

 
4 Currently, TOSSIM provides an abstract implementation of packet 

level CC2420 radio chip present in MicaZ and TelosB sensor node 
platforms. 

Figure 2: Implementation of CC1000 radio chip for 
TimeTOSSIM 



 
 

B. Determining Time per Energy-state 
Our instrumentation approach increments the 
simulation clock before the execution of each 
source-code line. Therefore, it allows us to 
determine the duration a device spends each of 
its energy-states at source-code line granularity. 
Hence, TimeTOSSIM is capable of predicting 
the energy consumption at much higher 
granularity than PowerTOSSIM, which relies 
on the abstract simulation clock of TOSSIM. 
On the other hand, TimeTOSSIM it is 
inherently much more sclable and faster than AEON as 
shown by our evaluaiton results in section 5.  

C.  Energy models 
 Energy models can be created for each hardware 
component by consulting respective data-sheets, which 
provide current estimates at clock-cycle granularity. A 
simple application level benchmarking can be used to 
validate energy models derived from the data-sheets. In 
short, this process does not require any complex low level 
benchmarking. Due to our previous work on AEON’s [5] 
energy models, we benefit from the availability of accurate 
energy models for Mica2 sensor node. 

VI. EVALUATION AND PERFORMANCE COMPARISON 
In this section we thoroughly evaluate TimeTOSSIM both 
from performance and accuracy perspectives. We compare 
the accuracy of TimeTOSSIM with the cycle accurate 
emulator, Avrora, and the speed of TimeTOSSIM with the 
original TOSSIM implementation. The evaluation is based 
on three types of benchmarks: (1) micro benchmarks, (2) 
evaluation of static and manual instrumentation, and (3) 
macro benchmarks. 

 
In our micro-benchmarks 
we evaluated the time 
accuracy of different types 
of mapped code-blocks 
(loops, control-structures 
etc.) independently from 
each other to give a deep 
insight into the timing 
properties of source-code. 
Table 2 shows that we 
achieve 100% accuracy in 

the case of simple statements (variable initialization, 
assignment etc.), do and while loops, and if-else clauses. 
However, in case of for loops, switch clauses and nested-
while loops, the simulation clock drifts by few clock cycles. 
The reason is that our mapping technique calculates the 
execution time of a source line by counting the number of 
cycles required by the corresponding assembly instructions 
without interpreting them. Thus, in the case of switch clause 
and for loop, the total number of assembly instructions 

being executed depends on the current value of the decision 
variable and the current iteration of the loop, respectively. 
For example, the initialization of loop variable happens only 
before the first iteration but our mapping technique, as its 
abstracts from instruction interpretation, counts the 
corresponding number of cycles for each iteration of the 
loop. Patching the corresponding compiler to add further 
code annotations can  remove this inaccuracy, but here we 
deliberately compromise the inaccuracy over the complexity 
of our approach: Firstly, because the simulation clock gets 
re-synchronized at the start of every new simulator event (a 
timer fire or hardware interrupt). Secondly, as our macro-
benchmarks later in this section show, the overall accuracy 
of TimeTOSSIM is only slightly influenced by these 
inaccuracies and we still achieve beyond 99% time accuracy 
for most applications. 

After evaluating the accuracy of TimeTOSSIM regarding 
programming structures, we testify our static and manual 
mapping technique. We evaluate the time accuracy of 
different operations performed on the most frequently used 
on-chip hardware components: LEDs and timers. Currently, 
apart from instruction execution, Avrora only emulates 
these two on-chip hardware components correctly for 
TinyOS-2 based applications. LEDs are the simplest 
example of a hardware component attached to a micro-
controller pin. Evaluating LED operations fully tests the 
functionality of our approach because any operation on 
LEDs involves automatic, static and manual code mapping 
and instrumentation, as all hardware components are 
accessed via HPL layer of TinyOS. Profiling of the low 
level LED component of TinyOS shows that the minimum 
granularity (maximum clock advancement) in LED 
operations is 47 clock cycles (6 microseconds). Similar to 
the access to microcontroller pins, we evaluated the 
accuracy of Timer components in TimeTOSSIM. Our 
results show that we achieve the same accuracy and 
granularity as emulation (see Table 1). 

In our macro-benchmarks, we test the time accuracy and 
scalability of TimeTOSSIM at application level. Table 3 
shows the accuracy level we achieve with different off-the-
shelf applications. We compare the simulation traces of 
TimeTOSSIM with Avrora. Our measured results show 
beyond 99% time accuracy for most of the applications. 
Additionally, we use the TestScheduler application to stress-
test the accuracy of TimeTOSSIM from the worst-case point 
of view. The TestScheduler application is a sanity check for 
TinyOS scheduler and has no hardware events that could re-
synchronize the simulation-clock. Nonetheless, we still 
achieve 88% accuracy. This level of accuracy is 
independent from the compiler optimizations of the sensor 

Application Instrumentation level and accuracy in % 
 Source-line (No 

optimizations) 
Source-line (Space 
related 
optimizations) 

Basic 
block 

Function 

Blink 99.69 99.63 99.79 98.93 
BlinkTask 99.73 99.55 99.73 98.84 
CntToLeds 99.69 99.64 99.69 98.97 
TestScheduler 87.7 81.44 87.7 NA 

Table 3: Time accuracy of different standard TinyOS applications 
achieved in TimeTOSSIM (compared to Avrora) for different 
instrumentation granularities and compiler optimizations. 

Component Accuracy Minimum Granularity 
Leds 100% 47 clock-cycles 
Timers 100% Same as emulation 

Table 1: Accuracy of different hardware components 

Table 2: Simulation clock 
drifts for different code 
blocks  

Code-block Clock drift in 
cycles 

Statements 0 
While loops 0 
Do loops 0 
For loops +4 
Nested while -1 
If-else clause 0 
Switch clause 15 



 
 

node application. Basic-block level instrumentation 
achieves similar timing results as source line 
instrumentation. However, it has a lower granularity and 
therefore may delay interrupts under high load. Function 
level instrumentation results in even less accurate modeling 
compared to basic-block and source line granularity. 
However, basic block and    function level granularity result 
in less code instrumentation and therefore increase the 
simulation speed of TimeTOSSIM. 
 
After evaluating the accuracy achieved with TimeTOSSIM, 
we evaluate the performance of TimeTOSSIM when 
compared to TOSSIM and Avrora. All experimental results 
discussed in this section were executed on a customary end-
user machine, a Pentium IV with 3 GHz clock frequency 
and 1GB of RAM. Our evaluations show that TimeTOSSIM 
when using instrumentation on source line granularity is up 
to 10 times slower than TOSSIM while being more than 100 
times faster than Avrora, especially when using large 
numbers of nodes (see Figure 3). For single node 
simulations the overhead of TimeTOSSIM is reduced to a 
factor of 1 to 6, as the number of adaptations of the event 
queue gets reduced drastically. 
  
In comparison to PowerTOSSIM, TimeTOSSIM shows a 
similar performance overhead. Thus, PowerTOSSIM and 
TimeTOSSIM need about the same time for simulation. 
However, TimeTOSSIM provides much more functionality 
and features like fine gained energy modeling can be easily 
added to TimeTOSSIM based on the derived cycle counts. 

Concluding the performance and accuracy evaluation, it can 
be said that TimeTOSSIM, though slower than TOSSIM, 
provides a very accurate simulation of sensor nodes. 
Although code instrumentation on source code line 
granularity introduces some inaccuracies, their overall 
impact seems to be small. Furthermore, the fact that 
instrumentation of source lines does not require any special 
compiler extensions ensures that TimeTOSSIM can easily 
be ported to various sensor node platforms and operating 
systems. 

VII. CONCLUSION AND FUTURE WORK 
Energy estimation is a crucial characteristic of evaluating 
sensor networks and their applications. In this article we 
presented automated instrumentation of simulation models 
to enable time accurate simulation – a prerequisite for 
accurate energy estimation. Our evaluation results have 
shown that automated instrumentation on source-code line 
granularity provides beyond 99% accuracy for typical 
sensor network applications while offering much higher 
performance, scalability and easy portability compared to 
today's emulators. Finally, we illustrated that our approach 
leads to determine the energy-states and duty cycle of each 
hardware component of a sensor node. As a result, we can 
determine the energy consumption of each hardware 
component, and in due course, of the whole sensor network. 

Although our approach promises highly accurate energy 
estimates, a true evaluation can only be performed after the 
integration of energy models to TimeTOSSIM. Currently, 
we are adding energy models of different sensor platoforms 
(e.g. Mica2 and MicaZ) and features like shutting down 
expired nodes in TimeTOSSIM simulation.  
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