
Remote Incremental Adaptation of
Sensor Network Applications

Waqaas Munawar, Olaf Landsiedel, Muhammad Hamad Alizai, Klaus Wehrle
Distributed Systems Group

RWTH Aachen
firstname.lastname@rwth-aachen.de

Abstract—Wireless Sensor Networks (WSNs) are deployed
for long periods of time, during which a need often arises to
dynamically reprogram or retask them. An array of solutions has
been proposed to this effect, ranging from full image replacement
to virtual machines. However, the capabilities of TinyOS –
the current state of the art in sensor node operating systems
– are still limited to full image replacement. TinyOS based
applications have a modular architecture but during compilation
this modularity is lost resulting in a statically linked system
image.

In this work we extend TinyOS to allow dynamic exchange of
components in WSN applications by conserving their modularity
during the compilation process. This generates the possibility of
incremental adaptation of sensor nodes’ behavior through partial
code replacement. The designed system does not require any
alterations in the existing user interfaces, remaining transparent
to the user. The evaluation shows that our approach imposes
almost no performance overhead for loaded application while
keeping a smaller memory footprint than other comparable
solutions.

I. INTRODUCTION

Sensor nodes could be located far from the networked
infrastructure and easy human access [1], [2], [3]. Based
on the evolving analysis or the environment the software
application of the sensor network often requires adaptation
through introduction of new code. Manually collecting all the
nodes to apply a software update is dangerous in some of the
situations [2], [3] and tedious in others [1], [4]. Therefore,
remote software reconfiguration – even if a rare activity as
compared to the application operations – becomes a highly
desirable feature.

Remote retasking of sensor nodes is mainly challenged by
three constraints; limited energy, limited processing power
and limited available onboard memory. kilobytes. Moreover,
the major hurdle in the way of mainstream adoption of
WSNs remains the steepness of the associated learning curve.
Considering these constraints, an ideal solution to dynamically
update a nodes functionality would be the one that optimizes
the energy usage, has a reduced memory footprint, and does
not require any alteration in the existing user interfaces.

Our contribution in this work is design and implementation
of a solution for efficient dynamic adaptation of TinyOS
based applications running on sensor nodes. The proposed
system works in two phases; firstly, the existing components
of an application are solitarily compiled into ELF objects.
Solitary generation of the software components ensures that

the component structure of the TinyOS application is preserved
during the compilation process. In the second step, these
components are transferred to the sensor node and integrated
into the running application. To allow this, a thin node runtime
is designed that includes a runtime linker and enables dynamic
exchange of components. Runtime dynamic linking allows
the reduction of energy-toll incurred in communication by
limiting the size of required communique to that of an updated
component only. The presented system is tightly coupled with
TinyOS, reusing its components and interfaces hence easing
the adoption process. Moreover, the designed system does
not necessitate any change in the existing code repository of
TinyOS hence, remaining transparent to the user of the system.

II. RELATED WORK

The existing approaches to tackle the issue of retasking a
sensor network can be classified into three main areas;

Full image replacement e.g. Xnp [5], Deluge [6] and dif-
ferential updates [7], offer very fine grained control on the
possible reconfigurations but are quite wasteful in terms of
energy-cost of communication.

Virtual machine e.g. Maté [8], perform inversely; they opti-
mize the energy-cost of communicating the new functionality
but the control offered on the possible reconfigurations is very
coarse grained, moreover the trade-offs between interpreting
code and executing native binaries suggest the use of the latter
for long-running systems.

Dynamic operating systems e.g. Contiki [9], SOS [10] and
FiGaRo [11], provide benefits of both of the former categories
however, in most cases these solutions have followed a clean
slate approach which has hindered the wide scale adoption.
Two notable exceptions are FlexCup [12] and TOSthreads [13]
that are built on top of seasoned TinyOS repository. FlexCup
offers dynamic adaptation for TinyOS based applications but
lacks the support for new extensions to nesC and employs
nonstandard tools. TOSthreads library and its associated linker
follow a polling based approach for kernel to application
calls instead of nesC’s more suited, event based approach and
introduces a new interface for users, rendering it difficult to
adopt.

III. DESIGN

TinyOS based applications consist of large number of wired
nesC components which communicate with each other via



interfaces. This component based structure results in a very
modular architecture of TinyOS applications. However, once
compiled, this modularity is lost. The NCC compiler when
transforming nesC to C mashes up the component structure
of the input to make the output conform to the semantics
of C. The output is a single monolithic C source file to be
compiled by the respective toolchain. We alter this process
of compilation by isolating subsets of an application’s con-
stituent nesC components and compiling them into ELF files.
The resulting files collectively enclose all of the constituent
components of the application. These files are transferred to
the sensor node which links them together and loads them
in the program memory to form the executable binary image
again.

The solution we present consists of two main components;
Isolater to isolate a single or an integrated group of nesC
components and compile them into an ELF object. Second,
TinyMan, a runtime ELF linker executing at sensor node
and responsible for integrating the ELF objects to form the
executable binary image to be loaded in program memory.
The working of both of these are detailed as follows.

A. Isolater

The Isolater functions by compiling parts of a single
TinyOS based application separately into ELF files. It executes
on PC (host) and utilizes the binary component generation
feature of the NCC compiler. This feature was introduced
primarily to provide better commercialization support as bi-
nary components can be used and distributed without their
corresponding source code. We utilize this feature to isolate
and compile a single or a set of interconnected nesC com-
ponents belonging to a TinyOS application. Compiling parts
of an application solitarily causes loss of code optimization
possibilities as well as introduction of ambiguities which either
lead to an incorrect decision by the compiler or result in a
compile time error.

The main issues faced during isolation of nesC compo-
nent are compile-time operators, default events and generic
components and interfaces. All of these are caused due to
the non-availability of information hidden in those parts of
the application that are not being compiled at the moment.
Isolater provides this missing information using the additional
input in the form of a nesC configuration. This additional
input consists of two main parts for each component to be
isolated; a component-wrapper and an application side place
holder. The component wrapper ensures that the component
being isolated is provided the required knowledge of the rest
of the application for the correct compilation. Likewise, the
application side place-holder ensures that the application gets
the required knowledge about the component which will be
linked in at runtime. During this process, the actual source
code of both the application and its component is not changed.
This allows complete ’recycling’ of existing TinyOS based
applications and seamless integration of the system into the ex-
isting TinyOS skeleton, thereby remaining totally transparent
to the application developer. In the next section we discuss the

Module A

Module C

Module 

B

Mote Hardware

File Sys

Linker

Symbol 

Table

Runtime

Initialization

Int Router

L
o

a
d

e
d

 A
p

p
.

T
in

y
M

a
n

Component Type:

Fig. 1. Architectural elements of TinyMan. Only runtime components are
active during the normal execution of a loaded application. Linker and File
System APIs are provided by the kernel to support the application to kernel
calls.

issues related to dissemination and integration of the generated
components.

B. TinyMan

After the compilation of components, the next step consists
of their dissemination and integration in the sensor applica-
tion executing on the sensor node. The dissemination in the
network takes place through the use of the Deluge data dissem-
ination protocol. Other existing protocols can be employed as
well and these, since treated as part of loaded application, can
also be replaced remotely on runtime. This design approach
makes data dissemination a concurrent process along with the
normal execution of loaded application resulting in reduced
downtime due to an update in progress.

After the required modules and an update command have
been received the data dissemination protocol invokes the
linker to integrate the received modules and place the new
binary image in program memory of the sensor node. To
accomplish this, the node runtime consists of the following
main components:

• File System: provides the storage capability for large data
elements such as received ELF modules.

• Linker: responsible for linking the the new ELF modules
and placing them in code memory.

• Global Symbol Table: As the linking is done among
dependant ELF modules, this component holds the sym-
bols offered by one module that are needed by some other
ELF module.

• Interrupt Router: Unlike the compile-time linker, the
implemented runtime linker does not have the flexibility
in placement of code segments. Therefore an interrupt
router is implemented to route the interrupts to the
inappropriately placed interrupt service routines.

These components in relation to a loaded application are
shown in Figure 1. Apart from the interrupt router, all of the
other components are inactive during the normal execution of
application. This helps in minimizing the runtime performance
impact due to TinyMan. The linker and the file system’s APIs



Code Data Relocs Sym Tab Str Tab Misc.

a. Before Optimizations b. After Optimizations

Fig. 2. Results of optimizations shown as proportionate change in sizes of
different segments of the resulting ELF file.

are available to the loaded application through the global
symbol table, which can be used for storing new or updated
ELF modules and then integrating them into the existing
application.

C. Optimizations

The ELF format, though a widely used standard, is not
optimized for the low power processors. In the ELF libraries,
compiled from the NCC compiler’s generated code, the bulk
of the contribution in size comes from the string table which
holds the names of all the symbols in the ELF file. These
names often tend to be quite long – about 80 characters each.
We decrease the size of the symbol names down to 3 characters
by replacing each symbol name with a unique string based
on an alphanumeric counter. The mapping of the replaced
names is stored in a database which can be used later when
recompiling parts of the application. This procedure results in:
(1) significant reduction in the size of ELF file, (2) reduction in
the size of symbol table and (3) reduction in number of string
comparison operations. The average proportionate reduction in
the size of string tables for ELF files of the Blink application
is shown in Figure 2.

The second set of optimizations that result in significant
resource savings is applied to the symbol table which is used
during the process of linking. We split the symbol table into
two sub-tables; one containing static core symbols and the
other filled dynamically from the symbols included within the
ELF files being loaded. The static part is created at compile
time and placed in ROM in a sorted order allowing binary
search among the symbols. This results in a quicker hence
more energy efficient linking process.

These two sets of optimizations together cause a major
improvement in processing speed, resulting in energy savings
of up to 66% when compared to the original ELF.

IV. EVALUATION

We evaluate the proposed system along the lines of major
constraints faced in WSNs i.e. energy consumption, process-
ing requirements and memory utilization.

A. Energy

To evaluate the per-node energy consumption caused due
to a network wide reconfiguration we devise a simple energy

0 10 20 30 40 50
0

2

4

6

8

10

Time (s)

I in
 (

m
A

)

 

 

0 10 20 30 40 50
0

200

400

E
 (

m
J)

Energy

Current

C

D

A

B

Fig. 3. Current draw and energy utilization during processing and loading
of Blink application at telos platform. The peaks are generated by turning
the onboard LEDs on simultaneously. A to B: saving the modules in external
flash, B to C: linking the modules, C to D loading the modules in program
memory, from D onwards: executing the application.

model and calibrate it using the readings taken empirically.
The final results are compared against Deluge [6] – the widely
used in-field code replacement tool and protocol.

We model the energy cost of reconfiguration as;

E = ETx + ERx + EP

Where,
ETx is the energy consumed in transmitting an update
ERx is the energy cost of reception, and
EP is the energy consumed during related processing.

We assume that each node receives the update, propagates
it and then processes it to reconfigure itself. This might not
be accurate for bordering nodes and those nodes which do
not need to propagate further because of their close vicinity
to the other nodes in the network, in which case we get
an upper bound on the consumption of energy. However,
the assumption adapts to reality more closely in a bigger
network with a lower node density. In such networks, the
transmitters are tuned to transmit at maximum output power
due to larger inter node distance. Under this condition, in telos,
the current consumption during transmission and reception is
almost the same hence, so is the energy consumption. The
transmission and reception costs also depend upon the size
of the component (SC) being communicated and the protocol
used for communicating it. The overhead introduced by the
protocol can be measured as a constant multiplicative factor
(KF ) to the size of original data to be communicated. These
factors multiplied by the transfer cost of a single bit (KBT )
complete the expression for transfer cost of a component.
Since EP involves processing on a single node only, it can be
measured empirically as shown in Figure 3. For the Deluge
protocol the KF is 3.35 [6] and a telos node configured with
TinyOS consumes 0.0105 mJ per byte for transmission.



Component Size (B) Transfer Energy (mJ) Savings Factor
BlinkC 836 58.77 46.6

BlinkAppC 7156 506.92 5.4
LedsC 1600 113.34 24.2

Msp430TimerC 4644 328.97 8.33
Blink w. Deluge 39024 2743.38 –

TABLE I
SAVINGS IN TRANSFER ENERGY DUE TO INCREMENTAL UPDATES

System ROM (B) RAM (B)
SOS Core 20464 1163

TinyOS w. Deluge 21132 597
Bombilla VM 39746 3196

TinyMan 15826 792

TABLE II
MEMORY USAGE COMPARISON FOR TinyMan

So,

E = ETx + ERx + EP

⇒ 2ETx + EP

⇒ 2(KF KBT SC) + EP

⇒ 0.0703SC(mJ) + EP

We use this model along with the Blink application from
the TinyOS repository to estimate the transfer costs of dif-
ferent constituent components of the application. The Blink
application is broken down into four components; LedsC,
Msp430TimerC, BlinkC and BlinkAppC. In the presented
system, any of these components can be individually and
remotely modified whereas in Deluge the whole application
needs to be replaced. The resultant reduction in energy costs
is presented in Table I.

B. Memory Usage

The memory footprint of the presented system is quite
moderate in comparison with the popular existing solutions as
shown in Table II. On telos rev. B it consumes only 7.7% of
RAM and 32% of program memory with rest of the resources
available for the loaded application. The external flash mem-
ory is completely available for the file system and ’Golden
Images’. The optimized memory footprint results from the
design approach of keeping the runtime support layer as thin
as possible. This optimizes the usage of hardware resources
available on the platform, hence leaving more memory space
for the loaded application.

C. Performance Overhead

Keeping the runtime support layer thinner has a positive
effect on the runtime computational requirements as well. Dur-
ing normal application execution – the most frequent activity
for a sensor node – only the interrupt routing component
of TinyMan is active, and introduces a short delay in the
processing of interrupts. On telos platform the worst case
delay is that of 23 instruction cycles – equivalent to processing

required for copying eight bytes in memory. No performance
depreciation is caused by other components and the code
execution remains native.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a fine grained code update
mechanism for sensor networks that offers the functionality
and performance required for remote adaptation of sensor
applications. The presented system is tightly and transparently
integrated with TinyOS, resulting in ease of adoption and full
utilization of the seasoned TinyOS code repository.

The preliminary evaluation, as presented earlier, provided
a proof of concept. In the future we plan a more thorough
evaluation with real life applications. Also, some of the steps
during compilation need to be automated. Finally we would
like to optimize the ELF format further and evaluate the system
using other common hardware platforms as well.

REFERENCES

[1] D. Pompili, T. Melodia, and I. F. Akyildiz, “Deployment analysis
in underwater acoustic wireless sensor networks,” in WUWNet ’06:
Proceedings of the first ACM international workshop on Under Water
Networks. Los Angeles, CA, USA: ACM, 2006, pp. 48–55.

[2] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, and D. Rubenstein,
“Energy-efficient computing for wildlife tracking: design tradeoffs and
early experiences with zebranet,” in ASPLOS-X: In Proceedings of the
2nd ACM international conference on Wireless sensor networks and
applications, ser. 37, no. 10. ACM, October 2002, pp. 96–107.

[3] G. Werner-Allen, K. Lorincz, M. Welsh, O. Marcillo, J. Johnson,
M. Ruiz, and J. Lees, “Deploying a wireless sensor network on an active
volcano,” IEEE Internet Computing, vol. 10, no. 2, pp. 18–25, 2006.

[4] R. Szewczyk, E. Osterweil, J. Polastre, M. Hamilton, A. Mainwaring,
and D. Estrin, “Habitat monitoring with sensor networks,” Commun.
ACM, vol. 47, no. 6, pp. 34–40, 2004.

[5] J. Jeong, S. Kim, and A. Broad, “Network reprogramming,” Aug 12,
2003. [Online]. Available: http://www.tinyos.net/tinyos-1.x/doc/Xnp.pdf

[6] J. W. Hui and D. Culler, “The dynamic behavior of a data dissemination
protocol for network programming at scale,” in SenSys ’04: Proceedings
of the 2nd international conference on Embedded networked sensor
systems. Baltimore, MD, USA: ACM, 2004, pp. 81–94.

[7] N. Reijers and K. Langendoen, “Efficient code distribution in wireless
sensor networks,” in WSNA ’03: Proceedings of the 2nd ACM interna-
tional conference on Wireless sensor networks and applications. San
Diego, CA, USA: ACM, 2003, pp. 60–67.

[8] P. Levis and D. Culler, “Maté: a tiny virtual machine for sensor net-
works,” in ASPLOS-X: Proceedings of the 10th international conference
on Architectural support for programming languages and operating
systems. ACM, 2002, pp. 85–95.

[9] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and
flexible operating system for tiny networked sensors,” in LCN ’04:
Proceedings of the 29th Annual IEEE International Conference on Local
Computer Networks, Washington, DC, USA, 2004, pp. 455–462.

[10] C.-C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava, “A dynamic
operating system for sensor nodes,” in MobiSys ’05: Proceedigs of third
international conference on Mobile Systems, Applications and Services.
Seattle, Washington: ACM, 2005, pp. 163–176.

[11] L. Mottola, G. P. Picco, and A. A. Sheikh, “Figaro: Fine-grained
software reconfiguration for wireless sensor networks,” in EWSN ’08:
Proceedings of the fifth European Workshop on Wireless Sensor Net-
works, Bologna, Italy, 2008, pp. 286–304.

[12] P. J. Marrón, M. Gauger, A. Lachenmann, D. Minder, O. Saukh, and
K. Rothermel, “Flexcup: A flexible and efficient code update mechanism
for sensor networks,” in EWSN ’06: Proceedings of the third European
Workshop on Wireless Sensor Networks, 2006, pp. 212–227.

[13] R. Musaloiu-E., C.-J. M. Liang, and A. Terzis, “A Modular Approach
for WSN Applications,” CS. Dept. Johns Hopkins University, HiNRG,
2008.


