Synchronized Network Emulation

Elias Weingartner
Distributed Systems Group
RWTH Aachen University
elias.weingaertner@cs.rwth-aachen.de

1. INTRODUCTION

In the area of computer networks and distributed systems,
people nowadays often face the challenge of investigating
protocols and communication systems of high complexity.
In order to evaluate new protocols, many researchers rely
on network simulation to investigate all kinds of perfor-
mance metrics, such as throughput or end-to-end delays.
The main reason for the widespread use of network simu-
lation is its flexibility: Network simulators, such as ns-2 [6]
or OMNet++ [7] facilitate the simulation of large networks
with thousands of virtual nodes. All parameters of the sim-
ulated network can be changed in a quick and convenient
way, and the provided abstractions enable the rapid devel-
opment of simulation models. In addition, many simulation
frameworks already provide a comprehensive collection of
simulation models for all kinds of protocols and networked
systems. However, a major drawback of network simulation
remains to be the negligence or even the complete disre-
gard of the execution context: The real world performance
of a network protocol particularly hinges on the underlying
implementation. System interrupts, caching and of course
the system design itself influence the overall performance,
and the network simulators’ pure functional models natu-
rally cannot take such effects into account.

In order to investigate the resource requirements and the
performance impact of a particular protocol, it is usually
implemented as a prototype and evaluated in a testbed that
consists of real physical machines. However, the set-up and
maintenance of larger testbeds is usually complex and often
very costly. Although public testbeds such as PlanetLab [2]
enable the evaluation of protocol in a larger setting, their
flexibility is limited due to the inability of changing the net-
work’s topology or its nodes’ underlying configuration in a
fundamental way.

A hybrid approach which combines the flexibility of net-
work simulations with the benefits of real-world prototypes
is network emulation: A prototype is connected to a net-

¥. Network Simulator
A

Synchronization
Communication
Figure 1: Synchronized Network Emulation

work simulator, which models the network the prototype
interacts with. This concept has surfaced almost ten years
ago [3]. However, network emulation up to now suffers from
the constraint that the network simulation is expected to
be real-time capable. This means that the virtual nodes
which reside inside a simulation are expected to respond as
timely as real systems would. On the contrary, one can easily
think of a simulation which can not cope with this real-time
requirement: If a simulated network consists of thousands
of nodes or if very complex channel models, e.g. for wire-
less links, are in place, such simulations may in fact exe-
cute much slower than the time in the real world progresses.
When a prototype is connected to such a “slow” simulation,
the time drift between the simulation and the prototype fi-
nally may lead to connection time-outs or retransmissions
as the simulated hosts are not able respond in time. Thus,
corrupted results would be the straight consequence. Obvi-
ously, this restrains the applicability of network emulation
to cases where the complexity of the simulated network is
limited.

2. SYNCHRONIZED NETWORK
EMULATION

With the goal of facilitating the combination of simulations
with an arbitrary degree of complexity and real-world pro-
totypes, we're currently investigating a concept we refer to
as synchronized network emulation. The idea is sketched
in Figure 1: A central synchronization component controls
the run-time behavior of both the simulation and the real
systems attached. In the following, we shortly outline the
requirements regarding the three building blocks which con-
stitute a synchronized network emulation set-up:

2.1 Synchronization Component

The synchronization component is in charge of controlling
the progress in time, both at the real system and the sim-
ulations side. Hence, it needs to implement a suitable syn-
chronization algorithm. Currently, we rely on conservative



5
45 L I I I paravirtualizled Linux --m- |
. N hardware virtualized Linux ----e---
o 4 hardware virtualized Windows XP ---&--- -
¢35 |
®
g3 1
5 25 i
5 2 i
15 e I |
1 =
0.06 0.1 10 100

accuracy [ms]

Figure 2: Synchronization overhead vs. accuracy

algorithms borrowed from the domain of parallel discrete
event-based simulations [4] for this purpose.

2.2 Real System Integration

In order to synchronize the real systems’ execution with the
simulation, we need to stall their execution regularly in or-
der to prevent them from drifting away in time. Hence, the
real systems must be placed in an execution environment
which provides full control both over their run-time execu-
tion as well as over internal state variables such as clocks:
As the synchronization introduces artificial gaps during their
execution, we must provide the real systems with a virtual,
continuous flow of time that is in fact aligned to the network
simulations’ progress. Currently, we investigate the usability
of virtualization techniques, such as hypervisors like Xen [1]
and full-system simulators as Simics [5] for this purpose.

2.3 Network Simulation

As illustrated in Fig. 1, the network simulator provides a vir-
tual network consisting of virtual hosts and virtual channels.
We rely on common discrete-event based simulators such as
ns-2 or OMNet++ for this task. In order to achieve a syn-
chronization with the real systems or rather their virtualized
counterparts, a modified simulation core executes the sim-
ulation events following the used synchronization scheme.
Another issue is that network simulations typically use sim-
plified protocol models, which need to be extended for real-
world compatibility. Moreover, the message formats in both
worlds differ as well. Therefore, an adequate message trans-
lation has to be carried out as soon as a packet trespasses
from the simulation to a real system or vice versa.

3. RESEARCH STATUS

So far, we have implemented a working research prototype
with the goal of investigating the applicability of synchro-
nized network emulation. The research prototype comprises
an extensively modified Xen hypervisor, add-ons for the
OMNet++ network simulator and a custom implementation
of the synchronization component. It allows one to build
up synchronized network emulation scenarios which contain
virtualized hosts running an arbitrary x86 operating system
and OMNet++ network simulations of any complexity. We
have evaluated among other aspects the possible degree of
synchronization accuracy as well as the overhead which is
introduced by the synchronization itself: Our system facil-
itates synchronous execution of our Xen-based virtualized
systems and the network simulation with an accuracy up

to 60us. The synchronization overhead, depicted in Fig. 2,
reaches a value between 4.4 and 4.8 at this accuracy level,
which means that a synchronized host runs between 4.4 and
4.8 slower than an unsynchronized one. However, our evalu-
ation also shows that the synchronization overhead decreases
quickly if the accuracy is diminished. For example, if the
synchronization accuracy is set to 0.3ms, the synchroniza-
tion overhead remains below 2.5. Considering the fact that
we are interested in combining highly complex network sim-
ulations with our virtualized systems, these results suggest
that the integration of real systems will not be the perfor-
mance bottleneck in synchronized network emulation sce-
narios. In addition, the achieved level of possible accuracy
is sufficient in many cases, e.g. if one aims at the investi-
gation of application-level protocols used in wide-area net-
works. Further experiences with this implementation and
more details regarding the concept of synchronized network
emulation are elaborated in [8].

4. FUTURE DIRECTIONS

We consider the extension of the framework to other appli-
cation domains such as wireless sensor networks and embed-
ded systems in general. Another issue we look into is the
development of frameworks, based on synchronized network
emulation, for automated performance evaluation and the
calibration of models within the network simulation.

5. REFERENCES

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen
and the art of virtualization. In Proceedings of the 19th
ACM Symposium on Operating Systems Principles
(SOSP’03), pages 164-177, Bolton Landing, NY, USA,
Oct. 2003. ACM.

[2] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,

M. Wawrzoniak, and M. Bowman. PlanetLab: An

Overlay Testbed for Broad-Coverage Services. ACM

SIGCOMM Computer Communication Review,

33(3):3-12, 2003.

K. R. Fall. Network emulation in the Vint/NS

simulator. In Proceedings of the jth IEEE Symposium

on Computers and Communication, pages 244-250.

IEEE Computer Society, 1999.

[4] R. M. Fujimoto. Parallel discrete event simulation.
Communcations of the ACM, 33(10):30-53, 1990.

[5] P. S. Magnusson, M. Christensson, J. Eskilson,

D. Forsgren, G. Hallberg, J. Hogberg, F. Larsson,
A. Moestedt, and B. Werner. Simics: A full system
simulation platform. IEEE Computer, 35(2):50-58,
2002.

[6] The network simulator ns-2.
http://www.isi.edu/nsnam/ns/.

[7] A. Varga. The OMNeT++ discrete event simulation
system. In Proceedings of the European Simulation
Multiconference (ESM’2001), Prague, Czech Republic,
June 2001.

[8] E. Weingiirtner, F. Schmidt, T. Heer, and K. Wehrle.
Synchronized network emulation: Matching prototypes
with complex simulations. In Proceedings of the First
Workshop on Hot Topics in Measurement and Modeling
of Computer Systems (HotMetrics 2008) (to appear),
June 2008.

3



