
ADAPT: A Semantics-oriented
Protocol Architecture

Stefan Götz, Christian Beckel, Tobias Heer, Klaus Wehrle

Distributed Systems Group
RWTH Aachen University, Germany

{goetz, heer, wehrle}@cs.rwth-aachen.de
beckel@informatik.uni-tuebingen.de

Abstract. Although modularized protocol frameworks are flexible and
adaptive to the increasing heterogeneity of networking environments,
it remains a challenge to automatically compose communication stacks
from protocol modules. The typical static classification into network lay-
ers or class hierarchies cannot appropriately accommodate cross-cutting
changes such as overlay routing or cross-layer signaling.

In this paper, we discuss how protocol composition can be driven by func-
tionality and demand at runtime based on extensible semantic models
of protocols and their execution environment. Such an approach allows
to reason about the functionality and quality of automatically composed
and adapted protocol compounds and it is open to existing and future
protocols.

1 Introduction

The static nature of the classic TCP/IP protocol stack and its increasing com-
plexity has prompted research in the area of dynamic and modularized com-
munication subsystems from a number of different angles [1,2]. Ideally, a com-
munication subsystem should resemble a configurable, dynamic framework of
individual protocols that, in their entirety, provide a target functionality. To
maximize modularity, protocol implementations should adhere to a uniform in-
terface while information about protocol semantics is represented separately [3].

In addition to protocol functionality, a large number of factors play a role
in composing a protocol stack that best matches its operational environment:
dependencies among components, the network configuration (e.g., requiring au-
thentication or tunneling), capabilities of communication partners (such as their
support for specific protocols), user preferences (privacy, cost, etc.), and clas-
sic Quality-of-Service (QoS) metrics (e.g., application requirements or device
capabilities). The length and incompleteness of this list illustrates the main defi-
ciency of existing approaches: they describe protocols through strict design-time
classifications, such as class hierarchies or languages with a fixed vocabulary,
and are thus only poorly extensible. Consequently, they cannot incorporate new
protocols, functionalities, or requirements.



In this paper, we discuss automated protocol composition in our dynamic
protocol framework Adapt. It leverages a semantic description format based
on ontologies that provides an abstract notion of a protocol’s functionality and
properties to guide protocol composition. Transparently to the user, mobile ap-
plications can use dynamically composed protocol stacks that permanently adapt
to their needs as well as to changes in the execution and network environment,
as caused by, for example, roaming and network hand-offs. Adapt’s generic
protocol model is not bound to established layering conventions and consis-
tently integrates tunneling, encapsulation, and transformation (e.g., for VPNs,
overlays, encryption), and significantly simplifies protocol deployment. Despite
these significant differences from a traditional TCP/IP stack, Adapt strives for
transparency to existing protocols and applications.

2 Related Work

In modularized protocol frameworks, the composition of a protocol stack needs
to satisfy criteria like protocol dependencies or functional requirements (for ex-
ample to include loss handling or to perform compression before encryption).
F-CSS [4] and DaCapo [5] explicitly separate this information from the imple-
mentation and represent it through custom languages. However, these descrip-
tion formats fail to achieve a clean separation since they expose implementation
aspects. Also, they rigidly encode the protocol-related knowledge at design time
and do not lend themselves to later extension.

In knowledge representation, ontologies have received wide-spread attention
in particular around the semantic web and for web service management [6,7],
but also innumerable other fields of information science. Ontologies strike a com-
promise between formalism and expressiveness that allows for being intuitive,
generic, extensible, and powerful for reasoning and querying [8]. Zhou and as-
sociates apply this approach to the protocol domain [9] but their framework
and modeling centers on a classic stack design of monolithic protocols ignoring
decomposition and protocol extensions. Their ontology bases on the Internet
protocol layers to reduce redundancy in the description and to reduce the com-
plexity of the orchestration process. Consequently, this approach cannot support
non-classic protocol arrangements such as overlay routing. Adapt lifts this re-
striction by removing the layer structure from the protocol model. Thus, the
complexity of protocol orchestration increases significantly and forms the chal-
lenge which we address in this paper.

3 Design

The basis of Adapt is an end-system communication framework in which pro-
tocols operate as software components which share uniform interfaces and which
can be instantiated, configured, and replaced at runtime. This framework follows
the basic concepts of other componentized OS and network systems such as the
x-Kernel [2] so that individual protocols can be composed into protoocol chains.



3.1 Semantic Protocol Modeling

The semantic model of protocols and their execution environment formally de-
scribes protocols and the orchestration criteria. Adapt uses OWL DL, a sub-
language of the Web Ontology Language (OWL) [10], for its high expressiveness
and decidability in reasoning. In OWL DL, knowledge is represented by classes
with class properties, individuals belonging to classes, and relations between
them. Our ontology models not only protocols as individual classes but also the
orchestration criteria and the relationships between them. This allows for exten-
sibility with new criteria and forms of relationships as opposed to a model based
on class properties.

To support the orchestration process and its individual stages, we distin-
guish three categories of models: functionalities, dependencies, and qualitative
information. The functionality model derives directly from individual protocol
functionalities, such as session support or loss handling. By sub-classing, it ex-
presses a refinement of a more abstract functionality (e.g., packet retransmission
is a sub-class of the loss handling class). The dependency model establishes as-
sociations between protocols, functionalities, and user-defined criteria. It also
establishes and and or relationships between multiple dependencies (e.g., to en-
force the inclusion of one of two specific encryption protocols). Furthermore,
the ontology provides qualitative information about such aspects as protocol re-
source demands. Here, we distinguish between requirements a protocol imposes
on its protocol chain or the environment (e.g., the existence of a DNS server)
and information that solely affects the ranking of different protocol chains.

Based on the explicitly defined asserted model, the reasoning process derives
an inferred model that represents additional knowledge. Adapt employs the
following reasoning capabilities, primarily as fundamental means to integrate
future protocols, orchestration criteria, and metrics.

Type inheritance: by inference, individuals of class X inherit the types of
X’s super classes. Thus, protocols describe their functionality precisely (e.g.,
RSA encryption) and can later be classified more generically (e.g., as providing
confidentiality) through newly introduced knowledge.

Inverse properties: a symmetric relation between X and Y specified only for
X is inferred to apply to Y . Thus, the inferred knowledge base remains consistent
despite the incorporation of new knowledge.

Instance classification: defined classes classify individuals through a set of
logic expressions. Consequently, the knowledge about the criteria of class mem-
bership receives an explicit representation.

Rule support : user-defined rules allow to assert new facts about individuals.
Protocols can be asserted to support reliability, for example, if they provide
ordered data delivery, retransmission, and a checksum algorithm.

OWL DL represents information in an abstract syntax or RDF/XML format.
It allows to describe protocol semantics as a single unit which can be easily
exchanged among endsystems and merged with other pre-existing ontologies at
runtime.



3.2 Orchestration Criteria

The process of protocol orchestration in Adapt is driven, on the one hand,
by the functionality and inter-dependencies of the protocols and, on the other
hand, by the properties of the execution and network environment. Although
many of these factors relate to typical QoS parameters, our research focus lies
not on a QoS framework but on supporting arbitrary protocols at all layers. We
distinguish four broad categories in the ontology:

Network capabilities primarily influence the orchestration of the network-
related lower-level elements of chains. They range from local properties, such as
a mandatory link protocol, across remote factors (e.g., the necessity of authen-
tication) to QoS aspects, such as link loss rates or latencies.

Device capabilities are of a similar qualitative nature and primarily reflect
information about the available CPU, memory, and energy resources.

Application requirements stem directly from application requests, e.g. to es-
tablish a new connection. They comprise functional requirements, such as session
semantics, and qualitative aspects (a preference for low latency, for example).

The user influences via their user preferences how the above qualitative fac-
tors are traded against each other in the orchestration process. Typical trade-offs
concern security, cost, and performance aspects. User preferences also provide
immediate configuration information, for example fixed IP addresses, authenti-
cation information, and wireless network priorities. Finally, they allow users to
influence the orchestration process such that, e.g., VPN tunneling is enforced for
specific networks.

3.3 Orchestration Process

The fundamental goal of protocol orchestration is to determine the protocol
chain best suited to the given application and environment requirements. Finding
such a chain in the full set of all possible protocol combinations (a selective
approach) suffers from limited scalability with a growing number of protocols.
Adapt thus follows a constructive approach in two phases. First, it composes
only the protocol chains that are functionally viable and fulfill all requirements
imposed by the application request and the current execution environment. In
the second phase, an expert systems ranks each resulting chain to determine the
one which matches the environment best.

Composition The semantic composer consecutively relies on three types of
composition information contained in the semantic protocol descriptions. First,
it evaluates the functional requirements of the application and the execution
environment to obtain all protocols that are necessary to satisfy these demands.
Next, it recursively resolves the dependencies among protocols and constructs
partial protocol chains (stubs) from this information. Finally, it merges the par-
tial chains into complete functional compounds that can later be instantiated
for packet processing.



For the dependency resolution of the second step, the semantic composer
distinguishes direct dependencies, which need to be satisfied by the next protocol
in the chain (e.g., a specific address format), and indirect dependencies, which
can be fulfilled further down the chain (e.g., encryption). For each protocol,
resolving dependencies is a recursive process that creates individual stubs for
each alternative. To avoid a state explosion during stub merging, the composer
obeys the ordering imposed by the dependencies, immediately discarding chains
contradicting that order. Since mechanisms like tunnels or overlays change and
potentially contradict regular ordering constraints, so-called connector modules
allow overriding them. Finally, the composer validates the chains so they satisfy
their internal dependencies and the external requirements and discards non-
matching chains.

Ranking The ranking phase aggregates the quality metrics of individual proto-
cols to determine a single chain to instantiate. While such qualitative information
is available for protocols from their semantic model, the Adapt runtime provides
the equivalent information for the network, the endsystem, and the user prefer-
ences. The latter also specify optional weight factors for each of these properties
to bias their influence on the result. Based on these inputs, the expert system
first matches the corresponding protocol and environment properties to derive
per-protocol metrics. Then, it feeds them to a multi-criterion decision making
system, which aggregates the metrics for each chain to arrive at a ranking order
of all chains. Thus, the highest-ranking protocol chain emerges as the best match
for the current communication requirements.

4 Results

As an initial evaluation, we tested the protocol orchestration with three typical
functionality requests: support for a reliable connection, for multicast, and for
name resolution. The ontological model contained 14 protocols and protocol
extensions (e.g., an extension to TCP which makes it perform better in scenarios
with high bit error rate), tunnels (e.g., in case IP Multicast is not supported by
the network the host resides in), and network requirements (existence of a DNS
server). The matchmaker, the composition engine, and the stub expert system
are implemented in Java based on the Jena semantic web framework which
manages the ontology and provides a reasoner, a query engine, and basic rule
support. The composition engine uses SPARQL [11] to perform queries on the
description repository. All measurements were performed on a Linux system with
a 1.80 GHz Intel Pentium M processor and 1GB RAM, employing Sun’s Java
1.5.0 runtime environment and version 2.5.5 of the Jena library.

Table 1 lists the duration of the matchmaking process, the protocol com-
position process, and the number of resulting protocol chains for queries which
specify the desired functionality concisely. More loosely specified queries are sat-
isfied by more chains but they also increase the composition time significantly,
as Table 2 illustrates. We see considerable room for improvement in our current



Query Matching Compos. Sum # chains

Reliability 43 ms 117 ms 166 ms 6
Name resolution 30 ms 136 ms 166 ms 4
Multicast query 53 ms 62 ms 115 ms 18

Table 1. Protocol composition based on restrictive queries

Query Matching Compos. Sum # chains

Reliability 33 ms 222 ms 255 ms 226
Name resolution 29 ms 375 ms 404 ms 655
Multicast query 54 ms 112 ms 166 ms 88

Table 2. Protocol composition based on non-restrictive queries

implementation, e.g., via additional, though less generic, rules in the composition
process, pre-computation, and caching of chain stubs. Although an evaluation
of the expert system is still outstanding, these initial results strongly suggest
the practical viability of a functional composition of protocol modules based on
ontological models.

References

1. Muhugusa, M., Di Marzo, G., Tschudin, C.F., Harms, J.: ComScript: An Environ-
ment for the Implementation of Protocol Stacks and their Dynamic Reconfigura-
tion. In: International Symposium on Applied Corporate Computing. (1994)

2. Hutchinson, N.C., Peterson, L.L.: The x-Kernel: An Architecture for Implementing
Network Protocols. IEEE Transactions on Software Engineering 17(1) (1991)

3. O’Malley, S.W., Peterson, L.L.: A Dynamic Network Architecture. ACM Trans.
Comput. Syst. 10(2) (May 1992) 110–143

4. Zitterbart, M., Stiller, B., Tantawy, A.N.: A Model for Flexible High-performance
Communication Subsystems. Selected Areas in Communications, IEEE Journal on
11(4) (1993) 507–518

5. Plagemann, T., Vogt, M., Plattner, B., Walter, T.: Modules as Building Blocks for
Protocol Configuration. In: Network Protocols, 1993. Proceedings., 1993 Interna-
tional Conference on. (1993) 106–113

6. Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.P.: Semantic Matching of
Web Services Capabilities. In: ISWC ’02: Proceedings of the First International
Semantic Web Conference on The Semantic Web, London, UK (2002) 333–347

7. Li, L., Horrocks, I.: A Software Framework for Matchmaking Based on Semantic
Web Technology. In: Proceedings of the 12th International Conference on World
Wide Web, New York, NY, USA (2003) 331–339

8. Wang, X.H., Zhang, D.Q., Gu, T., Pung, H.K.: Ontology Based Context Modeling
and Reasoning Using OWL. (2004) 18–22

9. Zhou, L., Pung, H.K., Ngoh, L.H., Gu, T.: Ontology Modeling of a Dynamic Proto-
col Stack. In: 31st IEEE Conference on Local Computer Networks, Los Alamitos,
CA, USA, IEEE Computer Society (November 2006) 353–360

10. McGuinness, D.L., van Harmelen, F.: OWL Web Ontology Language Overview.
W3C Recommendation (February 2004)

11. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. W3C
Recommendation (January 2008)


	ADAPT: A Semantics-orientedProtocol Architecture
	Stefan Götz, Christian Beckel, Tobias Heer, Klaus Wehrle

