
Bug Hunting in Sensor Network Applications

Raimondas Sasnauskas, Jó Ágila Bitsch Link,
Muhammad Hamad Alizai, and Klaus Wehrle

Distributed Systems Group
RWTH Aachen University, Germany

{lastname}@cs.rwth-aachen.de

ABSTRACT
Testing sensor network applications is an essential and a dif-
ficult task. Due to their distributed and faulty nature, severe
resource constraints, unobservable interactions, and limited
human interaction, sensor networks, make monitoring and
debugging of applications strenuous and more challenging.

In this paper we present KleeNet — a Klee based platform
independent bug hunting tool for sensor network applica-
tions before deployment — which can automatically test ap-
plications for all possible inputs, and hence, ensures memory
safety for TinyOS based applications. Upon finding a bug,
KleeNet generates a concrete test case with real input values
identifying a specific error path in a program. Additionally,
we show that KleeNet integrates well into TinyOS appli-
cation development life cycle with minimum manual effort,
making it easy for developers to test their applications.

1. INTRODUCTION
As with any software, testing of wireless sensor network ap-
plications is an essential part of development life cycle. The
main goal of this engineering task remains the same: finding
and fixing program bugs as early as possible.

Currently, sensor network application developers are con-
fronted with a number of domain specific complications. The
constrained memory and CPU resources on sensor nodes re-
sult in using low-level, type-unsafe languages without dy-
namic type checking and memory protection. Similarly, be-
cause the applications are highly data-flow oriented, the cor-
rect exception handling at full coverage is a challenging task.
Moreover, due to highly distributed and faulty nature of sen-
sor nodes, some of the program bugs are detected only after
the software is deployed.

C language has been the main choice for developing sensor
network applications. It provides great flexibility, expres-
siveness, and in particular, the required low resource foot-
print. However, the absence of dynamic type checking neces-
sitates very careful programming because many sensor OS’s
do not support memory protection. We argue that, besides
the particular sensor application semantic, the majority of
bugs comes from general programming flaws such as mem-
ory out-of-bounds references, null pointer dereferences, or
wrong type conversions. Especially, the widely used casting
between pointers to structures may lead to well-hidden type
errors. But in most cases, the given language features are
simply misused by novice programmers.

Starting with lint [8] tool nearly three decades ago, there has
been enormous effort spent on the error removal in C pro-
grams. Many techniques have been developed ranging from
static code analysis, formal verification, to full state model
checking. Numerous tools exist and are freely available to
use [4, 5, 7, 15]. Hence, our first step was to employ them
for testing sensor network software written in widely spread
TinyOS platform [12]. We encountered the following prob-
lems due to which the available tools are mostly not used at
all, and the developers fall back on manual code debugging
techniques:

• Sensor network applications are tightly integrated with
the whole operating system leading to time-consuming
manual code modification in order to perform the ac-
tual testing.

• Most of the tools perform only static code analysis
with limited support for C semantics. Since sensor
network applications mainly process data from the en-
vironment, possible runtime errors might stay unde-
tected.

• None of the tested tools can offer a push-button bug
finding technology and the usage learning curve is mostly
too steep for a typical developer.

We have discovered that recent research efforts in the area
of C code checking are now targeting the usability and full
automation as primary design goals [1, 2]. The philosophy is
to detect only definite errors, but automatically, at full ex-
ecution path coverage, and with minimum manual effort by
employing symbolic checking techniques [9]. We think that
these efforts could finally achieve the integration of sound
testing tools into the application development process.

2. RELATED WORK
To the best of our knowledge, currently there are no frame-
works for automatic bug detection in sensor network appli-
cations before deployment at bit-accurate C semantics. For
bringing memory safe executions of applications at runtime,
we only know of the related efforts [6, 10], where the sole
representative with fined-grained memory safety at C level
is Safe TinyOS.

Safe TinyOS adds dynamic memory checks during compila-
tion which allows to catch unsafe pointer and array opera-
tions without corrupting the RAM. Overall, this results in

Features Safe TOS KleeNet

Automatic code instrumentation − +
Target platform independence − +
Assembly level bug detection + −
Off-line bug detection − +
All possible input values checked − +
Automatic test case generation − +
Runtime safety enforcement + −
No additional resource usage − +

Table 1: Comparison: Safe TinyOS and KleeNet

13% increase in the code size and 5.2% increase in CPU us-
age. As with any dynamic assertion checking, Safe TinyOS
can detect program bugs only eventually after the software is
deployed. Therefore, still many corner-case bugs circumvent
this testing technique. KleeNet, on the other hand offers
offline bug detection with automatic code instrumentation.
In doing so, it doesn’t consume any system resources and
ensures memory safety by treating the inputs symbolically
i.e. checks any program variable for its all possible input
values. As the core engine of KleeNet interprets a virtual
instruction set, it cannot detect hardware platform depen-
dent assembly level bugs nor enforce runtime memory safety.
Thus, KleeNet complements the beneficial features of Safe
TinyOS allowing altogether even more rigorous application
testing (see Table 1).

Overall, we make following contributions: First, we integrate
an effective bug finding tool into the event-driven TinyOS
programming model with usability as a primary goal. Sec-
ond, we show that, apart from the general checks already
available, Klee can easily be extended to incorporate further
checks useful for testing sensor network applications. And
third, we practically demonstrate that sound testing tech-
niques can be used throughout the application development
process with minimum manual effort.

3. SYSTEM OVERVIEW
In this section, we present an overview of our system. First,
we introduce Klee, which we use for symbolically executing
C applications. We continue by discussing how we automat-
ically instrument source code without the help of applica-
tion developers. We conclude this section by presenting our
extension of Klee to enable struct type checking in sensor
network applications.

3.1 Klee
Klee is a symbolic execution tool for C programs based on
LLVM [11]. In contrast to common runtime testing where
the program input is (manually) generated, Klee runs the
code on symbolic input initially allowed to be “anything”.
The programmer only needs to specify which memory loca-
tions in his code are input-derived, e.g. an incoming network
packet. During code execution, all paths and operations on
symbolic variables are tracked. If a bug is detected, Klee au-
tomatically generates a test case with concrete values caus-
ing the bug. For example, consider a simple application code
in listing 1 and the associated KleeNet output in listing 2.

At the current state of its implementation, Klee reports only
memory reference and division by zero errors. It has been

developed to be scalable and to support all sorts of unsafe
type operations including pointer casts and pointer arith-
metics.

. . .
c a l l Timer1 . startPer iodic (500);
. . .
int a [1 0] ;
unsigned i ;
klee make symbolic name(&i , sizeof (i) , ”i ”) ;

event void Timer1 . f i r ed ()
{

c a l l Leds . led1Toggle () ;
// here we v io la te memory safety
// on the 11th signal of th i s event
i f (i < 11)

a [i++] = 1;
}
. . .

Listing 1: Array index out of bounds bug

$ make kleenet test
KLEE: ERROR: memory error : out of bound pointer
$ make kleenet display
BlinkFailC$i : ’ 10 ’

Listing 2: KleeNet detects the memory error and
generates a concrete test case

3.2 Automatic Code Instrumentation
As discussed earlier, one of the major limitations associated
with most software testing tools is the lack of user friendly
interfaces. Most of the available tools are either not properly
integrated into software development process, or they even
require manual code modifications for testing the code.

One of our major design objectives is to provide an easy to
use bug finding tool for sensor network applications which
is strongly integrated in the software development life cycle.
For this purpose, we use grammar based automatic code
instrumentation. We extend ANTLR [13] based GNU C
grammar to automatically insert symbolic annotations (i.e.
to mark the memory locations to be checked by Klee) in
the C source code. The user only needs to provide a high
level configuration stating the variable names that has to
be checked inside the code. However, providing a configura-
tion to insert annotations in the code to perform additional
checks is optional, as our solution performs some built-in
checks to detect common bugs in sensor network applica-
tions. For example, struct type cast checking (discussed in
section 3.3) and memory checks on received packet buffers.

3.3 Struct type checking
Type conversions in C using type casts is a very common
practice, and, definitely not an error. But since type safety
is not guaranteed, programmers can interpret each memory
region to be of any type. Especially, the casts between point-
ers to different structure types make the code maintenance
difficult [3, 14].

One of the main objective of sensor network applications is
to collect and process data from the sensors. The received
data is at first available only as an untyped bit stream. Af-
terwards the pointer to this data is casted to a known struc-
ture type based on particular bit fields. During code execu-
tion further casts on this memory location are executed. We
have extended the functionality of Klee to check the struct
type equality during casting operations. This check is op-
tional, but nevertheless the warnings as shown in listing 4
are useful and facilitate program comprehension.

. . .
NewRoute∗ msg = (NewRoute∗) payload ;
// message processing
c a l l Queue . enqueue(msg) ;
. . .
RouteUpdate∗ msg =

(RouteUpdate∗) c a l l Queue . dequeue () ;
// further message processing
. . .

Listing 3: Casting between pointers to different
structure types

$ make kleenet test struct
KLEE: WARNING: Struct types don ’ t match
KLEE: %struct .NewRoute∗ −> %struct . RouteUpdate∗

Listing 4: KleeNet warnings

4. INTEGRATION INTO TINYOS
We decided to integrate Klee into TinyOS by adding a vir-
tual KleeNet platform based on the TinyOS null platform.
This approach allows us to easily add different modules to a
platform, that automatically marks sensor value input and
incoming packets as symbolic.

Since TinyOS applications are event-driven, parts of the
code are executed only eventually after particular events are
fired. In order to cover all possible program control flow
paths during testing, we have extended our virtual platform
with an automatic event signaling mechanism. Once an ap-
plication is booted, all implemented events are signaled and
processed. Finally, after processing the last event TinyOS
scheduler is stopped.

Figure 1 shows an overview of KleeNet’s build process. First,
a user can optionally specify in a configuration file which
variables in his code should be marked as symbolic. For this
purpose we parse the C-code after NesC compilation and
insert calls to klee_make_symbolic function. Second, all
incoming packet buffers are also marked symbolic automat-
ically. Third, the instrumented code is then passed to Klee
which builds the C-object file. Finally, Klee interprets this
object file and terminates when no bug is detected. Other-
wise a test case with real input values is automatically gen-
erated. Running this concrete test case with the unmodified
version of the code will cause the deployed sensor network
application follow the same path and hit the same bug.

Please note that, as we apply code instrumentation to C
source-code, therefore, this process is neither bound to a
certain hardware platform nor to TinyOS and NesC. Hence,

!"#$%&'"#%

$%()*"%

+!!),-*"*%

$%$)*"%

./0"(,%&'"%

"12,% ,"#,%(-#"%

!"#$%&'((

)'&*+#,(

-).+/&'((

&//+$&.+/0(12(%03#(

4+,)"'&.+/(

5%6(73$38$37((93#,"/&.+/(

$ make kleenet

$ make kleenet test

Figure 1: Integration of KleeNet into TinyOS plat-
form

our approach can easily be integrated into any other sensor
network development platform and operating system.

5. EVALUATION
We first checked the BlinkFail application from the TinyOS
source repository. It is used to test if the Safe TinyOS
toolchain installation is working properly. After marking
the array index variable as symbolic we immediately de-
tected the known out of bound pointer error.

. . .
int rat io ;

event message t∗ Receive . rece ive (message t∗ bufPtr ,
void∗ payload , uint8 t len) {

i f (len!=sizeof (rece ive fa i l msg t)){return bufPtr ;}
else{

rece ive fa i l msg t∗ rcm=
(rece ive fa i l msg t ∗)payload ;

// poss ib le divis ion by zero here ,
// depending on received message
rat io = rcm−>good / rcm−>tota l ;
return bufPtr ;
}

}
. . .

Listing 5: Possible division by zero error

$ make kleenet test
KLEE: ERROR: divide by zero

Listing 6: KleeNet detects the div by zero error

In listing 5, we demonstrate the usability of KleeNet for
finding possible bugs without annotating application source
code any further. A received message is processed without
sanitizing the received message which is a typical fault of
students new to programming. KleeNet rapidly detects this
mistake and warns the developer (Lst. 6).

Overall, after our initial tests, we have confirmed the follow-
ing key benefits of KleeNet:

Usability: A programmer can test the code with minimum
manual effort and without any previous knowledge about
the checking tool.

Coverage: KleeNet covers all possible execution paths and
checks all possible data values before application deploy-
ment.

Integration: KleeNet is invoked by simply adding an extra
build flag enabling the permanent code checking during the
application development process.

Efficiency: It is fast for everyday use.

6. CONCLUSION AND FUTURE WORK
In this paper, we presented our technique and prototype
implementation for automatic testing of sensor network ap-
plications before deployment. It is important to fully test
(taking all possible inputs into account) embedded appli-
cations, such as sensor networks, where the cost of occur-
ring undetected errors after deployment could be fatal. We
have demonstrated that it is possible to close the gap be-
tween the testing and development community by providing
a user-friendly, automated bug finding tool which is strongly
integrated in the system development life cycle. We gave an
overview of our system design and of the preliminary evalu-
ation results achieved.

Strenuous deployment requirements and resource constrained
nature of sensor hardware, e.g. inadequate power supply and
limited computational power, demand even more rigorous
testing of sensor network applications. Incorporating fur-
ther useful checks in Klee, such as runtime monitoring of
long loops and computationally intensive tasks by adding
time annotations, is future work. Similarly, verifying the dis-
tributed behavior of sensor network protocols — such as cor-
rect state transitions — remains to be addressed. Moreover,
apart from TinyOS, we will apply our solution to other sen-
sor network operating systems and development platforms.

7. REFERENCES
[1] D. Babic and A. J. Hu. Calysto: scalable and precise

extended static checking. In ICSE ’08: Proc. of the
30th international conference on Software engineering,
2008.

[2] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill,
and D. R. Engler. EXE: automatically generating

inputs of death. In CCS ’06: Proc. of 13th ACM conf.
on Computer and communications security, 2006.

[3] S. Chandra and T. Reps. Physical type checking for C.
SIGSOFT Softw. Eng. Notes, 1999.

[4] H. Chen and D. Wagner. MOPS: an infrastructure for
examining security properties of software. In CCS ’02:
Proc. of the 9th ACM conference on Computer and
communications security.

[5] E. Clarke, D. Kroening, and F. Lerda. A Tool for
Checking ANSI-C Programs. In Tools and Algorithms
for the Construction and Analysis of Systems (TACAS
2004), 2004.

[6] N. Cooprider, W. Archer, E. Eide, D. Gay, and
J. Regehr. Efficient memory safety for TinyOS. In
SenSys ’07: Proc. of the 5th international conference
on Embedded networked sensor systems, 2007.

[7] T. A. Henzinger, R. Jhala, R. Majumdar, G. C.
Necula, G. Sutre, and W. Weimer. Temporal-Safety
Proofs for Systems Code. In CAV ’02: Proc. of the
14th International Conference on Computer Aided
Verification, 2002.

[8] S. Johnson. Lint, a C program checker. Computer
science technical report 65, Bell Laboratories, 1977.

[9] J. C. King. Symbolic execution and program testing.
Commun. ACM, 1976.

[10] R. Kumar, E. Kohler, and M. Srivastava. Harbor:
software-based memory protection for sensor nodes. In
IPSN ’07: Proc. of the 6th international conference on
Information processing in sensor networks, 2007.

[11] C. Lattner and V. Adve. LLVM: A Compilation
Framework for Lifelong Program Analysis &
Transformation. In CGO ’04: Proc. of the
international symposium on Code generation and
optimization, 2004.

[12] P. Levis, S. Madden, J. Polastre, R. Szewczyk,
K. Whitehouse, A. Woo, D. Gay, J. Hill, M. Welsh,
E. Brewer, and D. Culler. TinyOS: An Operating
System for Sensor Networks. In Ambient Intelligence.
2005.

[13] T. J. Parr and R. W. Quong. Antlr: a predicated-ll(k)
parser generator. Software: Practice and Experience,
July 1995.

[14] H. Shen, J. Wang, L. Ping, and K. Sun. Securing C
Programs by Dynamic Type Checking. In ISPEC,
2006.

[15] N. Volanschi. A Portable Compiler-Integrated
Approach to Permanent Checking. In ASE ’06: Proc.
of the 21st IEEE/ACM International Conference on
Automated Software Engineering, 2006.

	Introduction
	Related Work
	System overview
	Klee
	Automatic Code Instrumentation
	Struct type checking

	Integration into TinyOS
	Evaluation
	Conclusion and Future work
	References

