
When Timing Matters: Enabling Time Accurate & Scalable Simulation of
Sensor Network Applications

Olaf Landsiedel, Hamad Alizai, Klaus Wehrle
Distributed Systems Group

RWTH Aachen University, Germany
{olaf.landsiedel, hamad.alizai, klaus.wehrle}@rwth-aachen.de

Abstract

The rising complexity of data processing algorithms in
sensor networks combined with their severely limited com-
puting power necessitates a in-depth understanding of their
temporal behavior. However, today only cycle accurate em-
ulation and test-beds provide a detailed and accurate in-
sight into the temporal behavior of sensor networks.

In this paper we introduce fine grained, automated in-
strumentation of simulation models with cycle counts de-
rived from sensor nodes and application binaries to pro-
vide detailed timing information. The presented approach
bridges the gap between scalable but abstracting simula-
tion and cycle accurate emulation for sensor network eval-
uation.

By mapping device-specific code with simulation mod-
els, we can derive the time and duration a certain code line
takes to get executed on a sensor node. Hence, eliminating
the need to use expensive instruction-level emulators with
limited speed and restricted scalability. Furthermore, the
proposed design is not bound to a specific hardware plat-
form, a major advantage compared to existing emulators.
Our evaluation shows that the proposed technique achieves
a timing accuracy of 99% compared to emulation while
adding only a small overhead. Concluding, it combines es-
sential properties like accuracy, speed and scalability on a
single simulation platform.

1 Introduction

In recent years, the number of sensor network deploy-
ments and applications in use have registered a sharp in-
crease. Furthermore, from the basic deployments several
years ago, that were mostly recording and transmitting sim-
ple measurements [23], the complexity of deployed appli-
cations has heavily increased [4, 20, 28]. This complexity
requires a thorough evaluation of the application and the

underlying operating system to ensure that it provides the
required functionality. Similarly, it is of strong interest to
evaluate how an application operates under heavy load and
whether it can process the required number of events and
tasks such as sensing, packet forwarding, and data aggrega-
tion.

Commonly, due to its high performance, scalability, and
independence from the hardware platform, simulation is
used to evaluate algorithmic functionality of sensor network
applications. However, its high level of abstraction and
therefore lack of detailed timing prohibits the use of sim-
ulation to evaluate the exact timing and computational load
of algorithms and to determine limits of a hardware plat-
form envisioned for deployment. Currently, only emulators
and test-beds provide such detailed information about the
behavior of the application in “real life”. However, both
have a set of specific limitations and disadvantages.

An emulator imitates a specific hardware platform, i.e.,
it provides a software based implementation of all platform
components and executes the binary compiled for the spe-
cific sensor node. When an emulator implements all fea-
tures of the emulated platform correctly, it is inherently cy-
cle accurate and therefore of high use for a detailed eval-
uation of applications and operating systems. Exploiting
the fact that the platform exists virtually, a user can explore
states in registers, memory and corresponding transitions
by stepping through individual instructions. However, as
a result, emulation is heavyweight and compared to simu-
lation it strongly limits performance and scalability. Ad-
ditionally, an emulator is written for one specific platform.
Commonly, adding new platforms results in major porting
efforts. Avrora [24, 12] aimed to tackle this portability chal-
lenge by providing generic emulator building blocks such
as registers, memory, and timers. However, even the sub-
tle differences between various Atmel AtMega platforms
made adding new microcontrollers from the same family
work intense; not to mention the complexity of adding new
microcontroller types or radios. Furthermore, as mentioned
above, an emulator is only accurate when it implements all

instructions and operation modes without any limitations or
bugs. However, this seems to be challenging as Avrora still
has trouble to emulate TinyOS 2.x [26] radio communica-
tions while TinyOS 1.x [14] workes fine.

Next to emulation, test-beds are typically used for a
detailed evaluation of applications and operating systems.
Compared to real world deployments, test-beds are limited
in size, but provide functionality for event logging and in-
jection as well as additional wired or wireless communica-
tion channels for feedback, interaction and debugging. Ob-
viously, test-bed results are highly realistic. However, com-
monly test-beds contain some tens of nodes and therefore
the scalability of the proposed design and operations with a
large number of interactions are hard to evaluate. Further-
more, repeatability, controllability and system insight are
limited and test-beds are quite cost and space intensive.

In this paper we show that by automatically instrument-
ing the simulation model with cycle counts, we can unite the
advantages of simulation and emulation. We provide near
cycle accurate timing combined with the scalability, flexi-
bility and portability of simulation. Overall, we reach an
accuracy of over 99% compared to emulation while adding
only a small performance overhead compared to typical
sensor network simulators. Furthermore, the presented de-
sign and implementation is independent from specific sen-
sor network platforms and operating systems, ensuring easy
adaptation to various platforms and systems.

Typical sensor network operating systems such as
TinyOS, SOS [10], or Mantis [2] use the same code base
for simulation and on the devices themselves. For simu-
lation hardware specific device drivers are replaced with a
slim simulation wrapper. The observation that in such a sys-
tem large percentages of the source code in the device and
simulation are identical provides the basis for the approach
presented in this paper. It enables us to automatically instru-
ment the simulation code with timing information, such as
cycle counts, derived from the code compiled for the sensor
node.

The reminder of this paper is structured as follows. Sec-
tion 2 presents emulation and simulation systems that aim
for accurate and detailed evaluation of sensor networks and
compares our approach. Next, Section 3 introduces au-
tomated code-instrumentation to enable accurate timing in
sensor network simulations. Section 4 discusses implemen-
tation details, limitations and integration into TinyOS. A de-
tailed evaluation in Section 6 compares the achieved results
with emulation. Next, we discuss future work in Section 7.
Section 8 concludes the paper.

2 Related Work

In the past few years a great deal of effort has been in-
vested in the design and development of simulators to em-

brace the special requirements imposed by the highly dis-
tributed and dynamic nature of sensor networks. Unfortu-
nately, all of these efforts have made compromises over dif-
ferent attributes of simulation. For example, accuracy has
been compromised over scalability and vice versa. SWAN
[17], SensorSim [15], SENS [22], and TOSSIM [13] are
examples of discrete event simulators for sensor networks
which compromise accuracy over scalability by using non-
figurative models of the sensor nodes. Such simulation
models are the basis to quantify network delays, through-
puts, and packet collisions. However, these models do not
reveal the timing and interrupt properties of applications,
operating systems, and hardware components which are ex-
tremely important for examining resource constrained sen-
sor networks.

ATEMU [19], Avrora, Worldsens [3], DiSenS [27] and
others [9, 25, 11] on the other hand are cycle-accurate
instruction level emulators for sensor networks with the
most expressive models. Nevertheless, they compromise
scalability and performance. ATEMU is 30 times slower
than TOSSIM, and its poor performance limits its scala-
bility to about 120 nodes. Avrora, because of its multi-
threaded architecture shows better performance measures
than ATEMU when run on a multi-processor machine.
However, on multi-processor machines it is still 50% slower
than TOSSIM. Furthermore, Avrora shows typical perfor-
mance bottlenecks of instruction level emulators when run
on a customary end-user machine and can be up to a hun-
dred times slower than simulation as shown by the results of
our performance evaluation (see Section 6.3). DiSens and
Worldsens suffer from similar scalability problems and use
distributed simulation to address it. Thus, they do not only
benefit form multi-processor environments, but can also be
executed in clusters. Nonetheless, this distribution requires
a high degree of fine grained synchronization and there-
fore limits scalability. Furthermore, such emulation envi-
ronments have reached a complexity which is an order of
magnitude higher than the system to evaluate, i.e. the sen-
sor node. As a result, such cycle accurate emulators are
hard to maintain, extend and debug. Furthermore, they are
bound to one specific platform and hard to port.

Finally, test-beds such as Trio [6], Mirage [5], MoteLab
[29], or Kansei [7] are commonly used for in-deep sensor
network evaluation. To provide the user with detailed feed-
back, they use wired backchannels or even wireless con-
nections via a second radio chip operating with a different
technology or frequency band [1]. Nonetheless, high costs
of test-beds and binding to a certain platform combined with
limited scalability, insight, reproducibility and control can-
not replace emulation or simulation as important means of
evaluation.

Although designed for energy modeling instead of time
accuracy, PowerTOSSIM [21], uses offline code instrumen-

S
im

ul
at

io
n

R
ea

l S
ys

te
m

Execution Time

T1

T2

I1

Task posted

Interrupt

I1 interrupts T1

T2 is executed
after T1 and I1

T1 T2 I1

Figure 1. Simulation vs. real world event ex-
ecution: In reality – and in contrast to simu-
lation – event execution consumes time and
events may interrupt or delay each other.

tation on basic block level to predict the power consump-
tion of sensor nodes. The approach presented in this paper
is based on similar techniques. However, we generalize it
to provide online instrumentation and dynamic event queue
adaptation compared to offline (after the simulation) mod-
eling in PowerTOSSIM. Furthermore, we provide a more
fine grained instrumentation level and features – such as en-
ergy models – can be easily derived from the detailed timing
model presented in this paper.

Compared to existing work, automated simulation code
instrumentation – as presented in this paper – provides the
accuracy of emulation while perpetuating the key properties
of simulation such as scalability and easy adaptation to new
sensor node platforms and operating systems.

3 Enabling Time Accuracy

Classic simulation models the behavior of a system at
event granularity. It translates all events, e.g. interrupts and
tasks in TinyOS, into discrete simulator events. Events are
executed one after another. Thus, time in simulation is han-
dled discretely; at the beginning of an event the simulation
time is set to the execution time of the event and remains un-
adjusted throughout the event execution. Therefore, events
in simulation take zero execution time. However, in real life
events have an execution time and may interrupt, interfere
or delay each other (see Figure 1), resulting in different exe-
cution and completion order compared to simulation. Under
peak loads, this may even load to event misses on interrupts
and tasks.

Summarizing, simulation only contributes to testify the
algorithmic functionality of an application. It is unable to
provide any assistance in evaluating the performance of a

hardware platform and modeling the much important tim-
ing and interrupt properties of applications. Especially,
when the application is executed on a resource constrained
embedded platform such as sensor nodes, timing of inter-
rupts significantly impacts the performance of applications.
Thus, due to the lack of time accuracy in modeling a sys-
tem, false-positives about the performance of applications
are inevitable in simulation.

3.1 Fine Granular Simulation Clock

As events can delay and even interrupt each other, mod-
eling on a fine grained level is necessary to ensure the
required accuracy, a property that today only cycle accu-
rate emulation – executing hardware specific binaries – can
provide. In this paper we propose automatic instrumenta-
tion of each source code line in the simulation model with
its execution time. In our evaluation (see Section 6) we
show that code instrumentation on source code line gran-
ularity reaches an accuracy of 99% compared to emulation
while adding only a small overhead to the simulation per-
formance.

We resolve timing discrepancy of sensor network simu-
lation and emulation by enabling simulation to track the sys-
tem time during event execution. Our proposed solution de-
termines the execution time (clock-cycles) of each source-
code line being executed inside a simulator event and then
increments the simulation time accordingly. The underlying
technique is to automate the mapping between simulation
source-code and the platform specific executable. This is
only possible when nearly identical application and operat-
ing system code is executed in simulation and on the hard-
ware platform, which is typically the case in sensor network
operating systems. Such a mapping enables us to identify
the processor instructions corresponding to a source-code
line. From the respective processor data-sheet we next re-
trieve the number of cycles consumed by each instruction
and therefore can compute the time to execute each source
code line on the sensor node platform.

The code mapping technique is particularly suited for
embedded CPUs (such as in sensor nodes) employing se-
quential instruction execution without any pipelining and
caching strategies. For such platforms, the execution time
of a binary instruction is static and can be modeled without
interpreting each individual instruction.

As our design only instruments code on source code line
granularity and not on instruction level, it has one limita-
tion; it does not completely model the instructions that are
only partially executed such as logic operations. Patching
the corresponding compilers to add further code annotations
extends the accuracy to instruction level. However, due to
following reasons, we decided to base our prototype imple-
mentation on source code line granularity without compiler

modifications: (1) not to require compiler extensions en-
sures easy portability and adaptability to new sensor node
platforms, (2) our evaluation shows, the impact on accuracy
is limited on typical sensor network applications as external
events cause an automatic re-synchronization.

3.2 Delaying and Interrupting Events

Tracking system time during event execution may result
in overlapping events and only helps in determining the ex-
ecution time of each event separately. However, the over-
all timing and interrupt behavior of an application still re-
mains undetermined. For example, in TinyOS tasks are ex-
ecuted sequentially and therefore can delay each other’s ex-
ecution. However, interrupts are executed immediately and
delay the execution of any currently active task (see Fig-
ure 1). To accurately model the behavior under peak loads,
interrupts and tasks are dropped when their corresponding
queues overflow. By extending the simulation queue with
priorities representing tasks and the various interrupt lev-
els, we can easily model such a behavior. Finally, adding
atomic statements and the ability to disable interrupts even
in the simulation model completes our extensions to the tim-
ing model and event queue.

Overall, these timing and rescheduling extensions to
simulation models give a detailed insight into the perfor-
mance of a system without the need for complex emulators
or test-beds.

3.3 Automatic, Static and Manual Map-
ping

Although large percentages of the code in simulation and
on the real platforms are identical, device drivers and other
simulation specific parts such as the scheduler differ. Thus,
automatic code instrumentation cannot be applied to these
code sections.

For these sections we introduce static and manual map-
ping. We can apply static mapping to device driver code
that does not contain conditional statements and therefore
executes in a constant number of cycles. However, in more
complex scenarios, for example in the scheduler, such a
simple mapping fails.

Here we apply manual mapping, where we first match
the functionalities of code sections in the device specific
code and the simulation wrapper. Next, the code sections
in the simulation are instrumented with the cycles counts of
the matching device specific code. Although this process
does not introduce inaccuracies in terms of cycles, it is not
as fine granular as the commonly used source line granular-
ity. Thus, interrupts may be delayed by a number of cycles.

4 Implementing Time Accuracy in TinyOS

After introducing the concepts to enable time accurate
simulation of sensor networks, we discuss our prototype im-
plementation in this Section. A special focus is put on au-
tomated code mapping on source line granularity, dynamic
event queue adaptation and manual mapping for low-level
device drivers.

We introduce TimeTOSSIM, as an extension of TinyOS-
2.x based TOSSIM. We have chosen TinyOS as it is the de
facto standard sensor network operating system. Further-
more, the layered platform abstraction of TinyOS results
in slim low-level device drivers on the hardware presenta-
tion layer (HPL). Therefore, the simulation and platform
specific code has very limited differences, making TinyOS
2.x a perfect candidate for automatic simulation code instru-
mentation. However, the presented approach can be applied
to any operating system where simulation and device code
share large sections. It is not even limited to sensor nodes.

4.1 Code Mapping & Clock Advancement

TOSSIM as many other sensor network simulation en-
vironments compiles directly from the hardware-platform
dependent source-code and thereby enables us to create a
mapping between the simulation-code and the platform de-
pendent binary-code. The implementation of this technique
is summarized in the following steps: (1) Determine the
number of cycles needed by a source-code line to get exe-
cuted on the original hardware and (2) increment simulation
clock fine grained at runtime.

4.1.1 Determine execution time of a source-code line

First, we need to determine the number of cycles to execute
each individual line of source code on the original hardware.
We obtain this information from the debugging information
of the assembly program compiled for a specific platform.
Instructing the compiler to include debugging symbols in
the assembly code allows us to map each instruction to
its original source-code line. We implemented a grammar
based parser in ANTLR [16] to analyze the object dumps of
executables and retrieve source line information for each as-
sembly instruction. Using this mapping and a look-up table
storing the number of cycles required by individual assem-
bly instructions, the execution time of each source code line
can be computed (see figure 2).

4.1.2 Fine granular simulation clock incrementation

After computing the number of clock cycles needed by each
source line to get executed on the original hardware, we
need to instrument the simulation code with this knowledge.

Mica2 Assembly Program
TOSSIM C-source file
…/TestScheduler/TestSchedulerC.nc:117

…/TestScheduler/TestSchedulerC.nc:118
18e8: 80 91 lds r24, 0x0100
18ec: 88 23 and r24, r24

event void Timer0.fired() {
line 118 // line directive
if(!r){

line 119
r = 1;

18ee: 29 f4 brne .+10
…/TestScheduler/TestSchedulerC.nc:119

18f0: 81 e0 ldi r24, 0x01
18f2: 80 93 sts 0x0100, r24
/TestScheduler/TestSchedulerC nc:120

;
line 120
call TaskRed.postTask();

}
}

…/TestScheduler/TestSchedulerC.nc:120
18f6: 0e 94 call 0x1900
18fa: df 91 pop r29
18fc: cf 91 pop r28
18fe: 08 95 ret

T f d C fil

G
ram

m
ar

ASM
P

Transformed C-source file
…/TestScheduler/TestSchedulerC.nc:117
event void Timer0.fired() {

line 118 // line directive
adjustClock(4); rescheduleQueue();

Line: 118 Cycles = 4
Line: 119 Cycles = 2 Parser

j (); ();
if(!r){

line 119
adjustClock(2); rescheduleQueue();
r = 1;

line 120

y
Line: 120 Cycles = 8

line 120
adjustClock(8); rescheduleQueue();
call TaskRed.postTask();

}
}

Mapping
Data

Figure 2. Source-code mapping and instru-
mentation of TinyOS code

This process consists of three steps: (1) Parsing the appli-
cation source code to identify each source code line, (2)
instrumenting each line with corresponding execution time,
and (3) building the simulation from the extended sources.

As input for the parsing process we use the C code gen-
erated by the NesC compiler [8] and not the NesC sources
of TinyOS themselves. This has a number of advantages:
First, the NesC compiler extends certain programming con-
structs into multiple lines of code. Thus, instrumenting the
C sources instead of the NesC ones increases granularity.
Second, the NesC compiler uses internal variables, macros
and definitions for compilation, which are not available to
external parses. Finally, by applying transformations to C-
code, the instrumentation is kept independent from NesC
and TinyOS and therefore can be easily ported to other op-
erating systems. For parsing the implementation we use C
grammars from the ANTLR parser framework.

In the abstract syntax tree (AST) generated from the C
grammar, we identify each source code line and instrument
it with the corresponding execution time by incrementing
the simulation clock(see figure 2). The instrumented C-
source file is then simply compiled to obtain an object file
for TimeTOSSIM. This object file is later linked with a
TinyOS 2.x simulation driver for executing the simulation.

4.1.3 Trading accuracy for performance

Although instrumentation on source line granularity
promises fine grained timing information, such detailed tim-
ing modeling is not always necessary. Thus, TimeTOSSIM
also allows to instrument code on basic block or function
level. The resulting code has less overhead and allows to
flexibly trade performance and accuracy based on applica-
tion needs.

However, functions usually contain conditional state-
ments and loops whose execution cannot be determined at
compile time. Thus, function level granularity only gives a
rough estimate on the execution time. A basic-block rep-
resents a sequence of instructions with single entry point,
single exit point, and no internal branches. Therefore, code
instrumentation on basic block level results in an accuracy
equivalent to the source-code line instrumentation. How-
ever, the simulation clock is incremented less often and
therefore as a side effect interrupts may be delayed. Thus,
for evaluation we use source code line granularity to mini-
mize the gap between simulation and emulation of a hard-
ware platform.

4.2 Interleaving and Rescheduling Events

After instrumenting each source code line with the corre-
sponding execution time, we need to adapt TOSSIM’s event
queue to handle overlapping events. Thus, interrupts should
postpone current tasks and other interrupts based on their
priority. Additionally, execution of tasks should be delayed
until any current task has ended.

We assign execution priorities to different events. As
events in the event-queue represent hardware interrupts or
TinyOS tasks, it is possible to determine the type of an
event and its execution priority from the processor data-
sheets. By assigning a priority to every event enables us
to reschedule the event-queue and intensify the simulation
models even further to exhibit timing and interrupt prop-
erties of a hardware platform. Correct ordering of events
can be achieved by visiting the event queue at the start of
every source line after incrementing the simulation clock.
The idea is to reschedule events with lower priority, execute
events with higher priority immediately, and thereby delay
or interrupt the execution of currently active events.

As we extended TOSSIM’s simulation models to repre-
sent events with a duration, these events can now be inter-
rupted at any point in time by other events. Thus, it is re-
quired to incorporate the behavior of atomic statements into
the simulation model of TOSSIM. Thereby we ensure the
integrity of global data structures and model their temporal
behavior and impact on the overall system. Access to the
simulation code at the source-code line granularity also al-
lows to accurately model the behavior of atomic statements
in the code, as enabling and disabling interrupts itself takes
a number of cycles.

4.3 Static and Manual Instrumentation

For simulation, TOSSIM replaces low-level device
drivers on the hardware presentation layer (HPL) of TinyOS
with simulation wrappers. Therefore, simulation and plat-
form specific code differ on the hardware presentation layer

and the presented code automated instrumentation tech-
niques are of limited use for low-level device drivers. Fur-
ther differences can be found in code that has been extended
for TOSSIM to allow user interaction and the support for
multiple sensor nodes, such as the scheduler. However,
these layers are commonly quite slim. In this sub-section
we present the implementation of two techniques to enable
accurate timing even in these code section: (1) static code
mapping and (2) manual code mapping.

We apply static code mapping in simple device drivers
that do not contain any conditional statements and there-
fore execute in a constant number of cycles. For exam-
ple, we applied this approach to model the time required
to enable or disable pins of the microcontroller, timers and
to integrate the Mica2 CC1000 radio into TimeTOSSIM.
Here our design again benefits from the multi-layered hard-
ware abstraction of TinyOS. Code on the HPL level simply
presents direct hardware access and rarely contains com-
plex statements such as loops and conditionals. Although
this process does not introduce inaccuracies in terms of cy-
cles, it is not as fine granular as the commonly used source
line granularity. Thus, interrupts may get delayed a num-
ber of cycles. However, HPL code sections are usually 10
to 100 cycles and therefore executed in a couple of micro
seconds.

Likewise, to model code sections that were extended for
simulation in TOSSIM and to address that some code in
the HPL layer may have a higher complexity, we use man-
ual mapping. Based on the fact that the simulation model
needs to reassemble the functionality of the device specific
code, we manually map sections with equal functionality
and instrument the simulation code with the corresponding
number of cycles. We applied this approach to the TOSSIM
scheduler. Its implementation strongly differs from the de-
vice specific one, but it reassembles the same functionality
and therefore can be easily instrumented manually.

4.4 TimeTOSSIM: The Complete Process

After discussing the implementations of clock adapta-
tion, event rescheduling and extensions to the code mapping
process, we discuss their integration into TOSSIM and the
TinyOS build process.

Figure 3 shows an overview of TimeTOSSIMS’s build
process. TimeTOSSIM extends the platform specific build
process and the simulation specific one. On the platform
specific side, we parse the assembly code to retrieve cycle
counts from each source code line. On the simulation side,
we first extend the simulation platform with statically and
manually mapped code and the ability to model interrupts.
After NesC compilation, we parse the resulting C-code to
instrument it automatically with the cycle counts retrieved
from the assembly code. The instrumented code is then

ca
tio

n
es

C
on

en
ts

)

Ap
pl

ic
(N

e
C

om
po

NesC and
• Priorities
• HPL mapping

NesC
compiler

e

C-code C-code

avr-gcc /
msp430-gcc /…

S
im

ul
at

io
n

S
en

so
r N

od
e

S
im

ul
at

io
n C-code parser

• Instrumentation

Instrumented

Assembly

p g

extended
TOSSIM
driver

C-code
assembly code
parser standard

TinyOS
build

process

Source code
mapping

TimeTOSSIM
simulation

process

Time-
Tossim
exten-
sions

Figure 3. Integration of TimeTOSSIM into the
TinyOS and TOSSIM build process.

combined with a TOSSIM simulation driver. Please note
that this process is neither bound to a certain hardware plat-
form nor to TinyOS and NesC. Therefore, it can easily be
applied to any other sensor node architecture and operating
system.

5 CC1000 Radio in TOSSIM

One of the most important functions performed by a sen-
sor node is to communicate with other nodes in the network.
Currently, TinyOS-2.x only provides simulation of the Mi-
caZ sensor node platform which uses a packet level CC2420
radio chip. Our basic-block mapping technique success-
fully maps the communication related code of MicaZ sensor
nodes with the corresponding simulation models. However,
we are unable to evaluate the accuracy level achieved in ra-
dio communication and to profile the low level components
of the MicaZ platform due to unavailability of a suitable
emulator for CC2420 radio chip.

To overcome this limitation we provide our own simu-
lation wrapper for the CC1000 radio chip (used in Mica2
sensor nodes) for TinyOS-2.x based TOSSIM simulation,
as Mica2 and the CC1000 radio chip are supported by pub-
lically available emulation platforms such as Avrora. Our
CC1000 radio chip implementation benefits from the plat-
form abstraction architecture of TinyOS-2.x which only re-

TimeTOSSIM Sensor Node

A li ti A li ti

Send/Receive InterfaceHardware
Independent

Layer

Hardware
Independent

Layer

Application Application

CSMA

Radio Send/Receive

Hardware
Abstraction

Layer

Layer

Hardware
Abstraction

Layer

Layer

SPI bus

ADC

CC1000 Interface

Simulation
Wrappers

Hardware
Presentation

Layer

Radio
Engine

CC1000
Radio Chip

Figure 4. CC1000 radio simulation on HPL
level in TimeTOSSIM

quires re-implementation of the low level hardware depen-
dent code at the HPL layer. The original code at HIL and
HAL layers remains unchanged for simulation, thus, en-
abling a detailed mapping and instrumentation of code and
simulation models. 1

Figure 4 shows the architecture of our CC1000 radio
chip implementation. The hardware presentation layer
(HPL) architecture of TinyOS requires the simulation to
provide just four interfaces that expose the CC1000 radio
hardware, making the simulation wrapper easy to integrate
into TinyOS. Apart from this, we have implemented a small
radio engine that interacts with the TOSSIM simulation
core and stimulates the CC1000 specific radio simulation. It
provides mandatory signals such as SPI interrupts and RSSI
readings at the needed times and models the “air” between
sensor nodes.

6 Evaluating TimeTOSSIM

In this section we thoroughly evaluate TimeTOSSIM
both from performance and accuracy perspectives. We
compare TimeTOSSIM with the cycle accurate emulator,
Avrora, and to the original TOSSIM implementation. We
achieve beyond 99% time accuracy for sensor network ap-
plications using TimeTOSSIM while adding only a small
performance overhead compared to the original TOSSIM
implementations. The evaluation is based on three types
of benchmarks: (1) micro benchmarks, (2) evaluation of
static and manual instrumentation, and (3) macro bench-
marks. Micro-benchmarks evaluate the accuracy of Time-
TOSSIM at the level of programming constructs such as

1After code cleanup we will contribute TimeTOSSIM and our CC1000
simulation model to the TinyOS 2.x community.

conditional statements and loops. This evaluation gives a
detailed insight into the accuracy and limitations of the pre-
sented design. Next, we evaluate the accuracy of the man-
ually or statically instrumented low-level device drivers at
the HPL level of TinyOS. Finally, we thoroughly evalu-
ate the performance and accuracy of different off-the-shelf
applications (when run on TimeTOSSIM) in our macro-
benchmarks. Macro benchmarks present the accuracy level
that can be expected from typical sensor network applica-
tions and show the performance of TimeTOSSIM in terms
of CPU and memory overhead compared to TOSSIM and
Avrora.

Although TimeTOSSIM supports both the MicaZ and
Mica2 sensor nodes, Avrora is currently limited to the
Mica2 sensor node with CC1000 ChipCon radio. For
TinyOS 2.x even this radio is not fully supported by Avrora.
Thus, our evaluation bases on the Mica2 platform with lim-
ited support from the Avrora side.

6.1 Micro Benchmarks

In our micro-benchmarks we evaluate the time accuracy
of different types of mapped code-blocks (loops, control-
structures etc.) independently from each other to give a
deep insight into the timing properties of source-code. We
start with simple executable statements and then discuss
simple loops and conditionals. The presentation of nested
constructs and short circuit operators completes the micro
benchmarks.

Simple Executable Statements: With the term simple ex-
ecutable statements we refer to all statements that do
not alter the execution sequence of the program un-
like loops and control structures. These statements,
for example, include variable initialization, assignment
statements involving arithmetic expressions, and func-
tion calls. Commonly, simple statements make up for
the largest part of a program. We achieve 100% time
accuracy when the simulation is executing such state-
ments. The reason is that these statements are com-
piled into a single basic-block of assembly instruc-
tions. Hence, it is possible to determine the exact
clock-cycles consumed by such statements.

Loops: Loops can severely impact the timing of an appli-
cation in simulation because any program spends most
of its time in executing loops. We achieve 100% clock
synchronization in the case of non-nested while and
do-while loops. However, in the case of for loops
and nested while loops the simulation clocks get de-
synchronized just by a few clock cycles. Our stress
tests on loops evaluate accuracy by monitoring the
simulation clock for each single iteration of the loop

Code-block Clock drift in cycles
Statements 0
While loops 0
Do loops 0
For loops +4
Nested while loops -1
If-else 0
Switch statement ±15

Table 1. Simulation clock drifts for the execu-
tion of a code block in cycles for Mica2.

instead of calculating the total number of lost cycles
after the loop iterations are finished.

While loops: In the case of a single while loop (without
any nested loops) having a conditional expression that
doesn’t include any short circuit operators, we achieve
100% clock synchronization between TimeTOSSIM
and Avrora. However, for nested while loops we loose
synchronization only by a single clock-cycle for each
iteration of the loop as shown in Table 1. From our
point of view, a single clock-cycle de-synchronization
in nested-loops has a negligible impact on the timing
of an application: Commonly, loops consume several
hundred of cycles, reducing TimeTOSSIM’s error to
below 1%. Additionally, external events - such as in-
terrupts - re-synchronize TimeTossim at the start of ev-
ery new simulator-event as they are scheduled accu-
rately (see section 6.3).

For loops: In the case of for loops the simulation clock
of TimeTOSSIM gets de-synchronized typically by 4
clock-cycles for each iteration of the loop. It is because
the for loops allow variable declaration and initializa-
tion inside the loop statement, which takes 4 clock-
cycles in the case of an integer variable (which usually
is the case). These clock cycles are counted for each
iteration of the loop in TimeTOSSIM as debugging in-
formation in the assembly code combines all assembly
instructions corresponding to a for loop declaration.
However, the declaration and initialization takes place
only once at the beginning of the loop. Our parser,
as it abstracts from single instructions and operates on
complete source code lines, reports the total number
of cycles needed for variable initialization, condition
check, and increment. Similarly to while loops, we
consider the average four clock cycles of inaccuracy
acceptable.

Control Structures: Control structures include if-else and
switch statement clauses. Control structures are exam-
ples of such statements which may get compiled into
several basic blocks of assembly instructions and get

executed based on runtime decisions.

If-Else: We achieve 100% timing accuracy if the
condition-check in the if-else statements do not include
short circuit operators.

Switch clause: A switch clause jumps to one of the sev-
eral case blocks depending on the value of the decision
variable. Therefore, a switch statement also gets com-
piled into several basic-blocks of assembly instructions
and the number of cycles consumed can only be deter-
mined at run time (i.e. it depends upon the case block
the decision variable refers to). We take the average of
the number of cycles reported by the assembly parser
to increment the simulation clock for minimizing the
clock de-synchronization. Our evaluation shows that
the average corresponds to 75% of the total clock-
cycles. For a switch clause containing five case blocks,
the maximum clock drift is therefore only 15 cycles (2
microseconds).

Short circuit operator: Although TimeTOSSIM models
most programming structures with no or just minimal
inaccuracies, its accuracy is limited when evaluating
short circuit operators. For example, the right-hand-
side expression of an AND operator will only be exe-
cuted if the left-hand-side expression is true and there-
fore requires an instrumentation granularity beyond
source line level. Additionally, in contrast to loops
and control statements we cannot bound the error in-
troduced by these operations as they may be arbitrary
complex. However, in practice – to insure code read-
ability – most of these constructs turn out to be lim-
ited in complexity and therefore the error introduced
by short circuit operators is acceptable.

Concluding the evaluation on micro benchmark level,
it can be said that TimeTOSSIM models most program-
ming structures with no or just minimal inaccuracies. Just
short circuit operator show the limitations of the chosen ap-
proach. However, as the macro benchmarks show, the over-
all accuracy of TimeTOSSIM is only slightly influenced by
these inaccuracies.

6.2 Hardware Components

After evaluating the accuracy of TimeTOSSIM regard-
ing programming structures, we evaluate time accuracy of
different operations performed on the most frequently used
on-chip hardware components: LEDs and timers. Cur-
rently, apart from instruction execution, Avrora emulates
only these two on-chip hardware components correctly for
TinyOS-2.x based applications.

LEDs are the simplest example of a hardware compo-
nent attached to a micro-controller pin. Evaluating LED

Component Accuracy Minimum Granularity
Led 100% 47 cycles
Timer 100% same as emulation

Table 2. Accuracy and granularity of hard-
ware components in TimeTOSSIM.

operations fully tests the functionality of our approach be-
cause any operation on LEDs involves automatic, static and
manual code mapping and instrumentation, as all hardware
components are accessed via the hardware abstraction layer
of TinyOS. Profiling of the low level LED component of
TinyOS shows that the minimum granularity (maximum
clock advancement) achieved in LED operations is 47 clock
cycles (6 microseconds).

Similar to the access to microcontroller pins, we evalu-
ated the accuracy of Timer components in TimeTOSSIM.
Our results show, that we achieve the same accuracy and
granularity as emulation (see Table 2).

6.3 Macro Benchmarks

For our macro-benchmarks we evaluate TimeTOSSIM
from two perspectives: time accuracy and scalability. We
have a very limited choice of off-the-shelf applications to
evaluate TimeTOSSIM. Firstly, because TinyOS 2.x is still
in its active development phase and offers very few stan-
dard applications. Secondly, Avrora is still unable to em-
ulate TinyOS-2.x based applications involving radio com-
munication (which mostly is the case). Table 3 shows the
accuracy level we achieve with different off-the-shelf ap-
plications. We compare the simulation traces of Time-
TOSSIM with Avrora. Our measured results show beyond
99% time accuracy for most of the applications. Addi-
tionally, we use the TestScheduler application to stress-test
the accuracy of TimeTOSSIM from the worst-case point of
view. The TestScheduler application is a sanity check for
TinyOS scheduler and has no hardware events that could
re-synchronize the simulation-clock. Nonetheless, we still
achieve 88% accuracy.

Table 3 depicts the accuracy for code instrumentation
on different optimization and instrumentation levels. For
source line granularity we show that we can achieve an ac-
curacy beyond 99% for typical applications. This level of
accuracy is independent from the compiler optimizations of
the sensor node application. Basic block level instrumen-
tation achieves similar timing results as source line instru-
mentation. However, it has a lower granularity and there-
fore may delay interrupts under high load. Function level
instrumentation results in less accurate modeling compared
to basic block and source line granularity. However, basic
block and function level granularity result in less code in-

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 100 200 300 400 500 600 700

T
im

e
 [
S

e
c
o
n
d
s
]

Number of Nodes

Tossim
TimeTossim

Avrora

Figure 5. Scalability comparison for sensor
network simulators and emulators. Please
note the logarithmic scale on the y-axis.

strumentation and therefore increase the simulation speed
in TimeTOSSIM.

After evaluating the accuracy achieved with Time-
TOSSIM, we evaluate the speed and memory consumption
of TimeTOSSIM by comparing it to TOSSIM and Avrora.
All experimental results discussed in this section were ex-
ecuted on a customary end-user machine, a Pentium IV
with 3 GHz clock frequency and 1GB of RAM. Our eval-
uations show that TimeTOSSIM when using instrumenta-
tion on source line granularity is up to 10 times slower
than TOSSIM while being more than 100 times faster than
Avrora, especially when using large numbers of nodes (see
Figure 5). For single node simulations the overhead of
TimeTOSSIM is reduced to a factor of 1 to 6, as the num-
ber of adaptations of the event queue gets reduced drasti-
cally (see Table 4). The results in Table 4 are based on sim-
ulation runs for 60 simulated seconds of 20 simulated sen-
sor nodes; except for the TestScheduler application which is
for one simulated sensor node. Furthermore, TimeTOSSIM
consumes nearly the same amount of memory as TOSSIM.

In comparison to PowerTOSSIM, TimeTOSSIM shows
a similar performance overhead. Thus, PowerTOSSIM and
TimeTOSSIM need about the same time for simulation.
However, TimeTOSSIM provides much more functionality
and energy modeling can be easily added to TimeTOSSIM
based on the derived cycle counts.

Concluding the performance and accuracy evaluation,
it can be said that TimeTOSSIM, though slower than
TOSSIM, provides a very accurate simulation of sensor net-
works. Although code instrumentation on source code line
granularity introduces some inaccuracies, their overall im-
pact seems to bee small. Furthermore, the fact that instru-
mentation of source lines does not require any special com-

Application Instrumentation level and accuracy (in %)
Source line Source line Basic Block Function

no optimization (-O0) space optimization (-Os)
Blink 99.69 99.63 99.69 98.93
BlinkTask 99.73 99.55 99.73 98.84
CntToLeds 99.69 99.64 99.69 98.97
TestScheduler 87.7 81.44 87.7 NA

Table 3. Accuracy for different applications achieved in TimeTOSSIM (in comparison to Avrora) for
different instrumentation granularities and compiler optimizations.

Application TimeTOSSIM TOSSIM Avrora
Time (sec) Memory (kB) Time (sec) Memory (kB) Time (sec) Memory (kB)

Blink 5.2 1064 1.7 1064 129 42892
BlinkTask 1.80 1064 1.5 1060 131 42504
Sense 3.1 1068 0.5 1064 NA NA
CntToLeds 7.5 1068 4.0 1064 133 42604
RadioCountToLeds 20.3 1168 9.83 1168 NA NA
TestScheduler 2.4 976 NA 976 29.4 20584

Table 4. Performance comparison for sensor network simulators and emulators: TOSSIM, Time-
TOSSIM and Avrora

piler extensions, ensures that TimeTOSSIM can be easily
ported to various sensor node platforms and operating sys-
tems.

7 Future Work

After implementing and evaluating the design of Time-
TOSSIM a number of interesting questions remain open
that we are addressing currently.

Although we were able to partially evaluate the accuracy
of the CC1000 and CC2420 radios of Mica2 and MicaZ
sensor node platforms, limitations in the current version of
Avrora prohibited a full evaluation. As the radio in TinyOS
is one of the most complex components, we think that the
radio stack and its dynamic interaction with other sensor
nodes requires a detailed evaluation to further explore the
possibilities and limitations of the presented design. Thus,
we are currently working on Avrora to provide the required
radio support for TinyOS 2.x.

TimeTOSSIM is 5 to 10 times slower than TOSSIM.
During evaluation, we observed that most of the per-
formance overhead introduced by TimeTOSSIM is due
to queue rescheduling mechanisms of TOSSIM. It stores
events of all the simulated nodes in a single simulation
queue. Therefore, the process to find target events - simula-
tor events corresponding to the node currently being simu-
lated - requires to search the whole queue. We believe that
by implementing separate event-queues for each simulated

node, the overhead of TimeTOSSIM simulation can be re-
duced significantly.

Furthermore, the grammar based code instrumentation
allows for a flexible, plugin-based extension of Time-
TOSSIM. Thus, features such as energy modeling and even
shutting down nodes during simulation when their energy
resources exceed, can easily be added to TimeTOSSIM.

Sensor network research offers a variety of sensor node
platforms. Therefore, it is important to provide multi-
platform support in sensor network simulations. Discrete
event simulation, by virtue of its design, is easily extend-
able to multiple platforms. We plan to extend TimeTOSSIM
to provide time accurate simulation of multiple sensor node
platforms. Adding multi-platform support for AVR based
sensor nodes only requires profiling the low-level hardware
components. Similarly, adding support for the Texas Instru-
ments MSP-430 based sensor nodes (e.g. Telos platform
[18]) only requires – in addition to profiling – to extend the
assembly parser to recognize the instruction set of the cor-
responding platform.

Finally, we can provide code instrumentation on opcode
granularity to address the errors introduced by short circuit
operators and loops (see section 6.1). We believe that it will
enable 100% accuracy while still outperforming emulation,
as instructions do not need to be interpreted. Although this
would require compiler extensions, we expect the complex-
ity of such extensions to be much less compared to design-
ing and implementing a complete emulator.

8 Conclusions

The increasing complexity of sensor network applica-
tions combined with the resource constrained hardware of
sensor networks requires a deep evaluation before deploy-
ment. For example, time consuming tasks such as data anal-
ysis or cryptography suffer significant delays and bottle-
necks due to severely limited computation power of sensor
nodes and periodic interrupts from external devices. Hence,
it is important in simulations to model timing and interrupt
properties of applications and operating systems at a fine
granularity.

In this paper we present automated instrumentation of
simulation models to enable the required time accurate sim-
ulation of sensor networks allowing deep analysis of appli-
cations. We show that this automated instrumentation on
source-code line granularity provides an accuracy beyond
99% for typical sensor network applications while offering
much higher performance, scalability and easy portability
compared to today’s emulators. This slight accuracy degra-
dation was intentionally traded for easy portability and lim-
ited complexity of the overall system, as these were main
design goals in addition to accurate timing. We believe,
that with the strongly increasing number of different sen-
sor node platforms, it is mandatory to provide accurate and
flexibly portable tools – such as TimeTOSSIM – to easily
evaluate applications for arbitrary platforms.

9 Acknowledgements

This work is supported by the DFG Research Cluster on
Ultra High-Speed Mobile Information and Communcation
(UMIC).

References

[1] J. Beutel, M. Dyer, L. Meier, M. Ringwald, and L. Thiele.
Next-generation deployment support for sensor networks. In
SenSys ’04: Proceedings of the 2nd International Confer-
ence on Embedded Networked Sensor Systems, Nov. 2004.

[2] S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth,
B. Shucker, C. Gruenwald, A. Torgerson, and R. Han.
MANTIS OS: An Embedded Multithreaded Operating Sys-
tem for Wireless Micro Sensor Platforms. MONET, Special
Issue on Wireless Sensor Networks, 2004.

[3] G. Chelius, A. Fraboulet, and E. Fleury. Worldsens: a fast
and accurate development framework for sensor network ap-
plications. In The 22nd Annual ACM Symposium on Applied
Computing (SAC 2007), Seoul, Korea, March 2007. ACM.

[4] K. Chintalapudi, T. Fu, J. Paek, N. Kothari, S. Rangwala,
J. Caffrey, R. Govindan, E. Johnson, and S. Masri. Moni-
toring civil structures with a wireless sensor network. IEEE
Internet Computing, 10(2), 2006.

[5] B. Chun, P. Buonadonna, A. AuYoung, C. Ng, D. Parkes,
J. Shneidman, A. Snoeren, and A. Vahdat. Mirage: a microe-
conomic resource allocation system for sensornet testbeds.

In Proceedings of the 2nd IEEE Workshop on Embedded
Networked Sensors (EmNets), May 2005.

[6] P. Dutta, J. Hui, J. Jeong, S. Kim, C. Sharp, J. Taneja,
G. Tolle, K. Whitehouse, and D. Culler. Trio: enabling sus-
tainable and scalable outdoor wireless sensor network de-
ployments. In IPSN ’06: Proceedings of the fifth interna-
tional conference on Information processing in sensor net-
works, 2006.

[7] E. Ertin, A. Arora, R. Ramnath, V. Naik, S. Bapat,
V. Kulathumani, M. Sridharan, H. Zhang, H. Cao, and
M. Nesterenko. Kansei: a testbed for sensing at scale. In
IPSN ’06: Proceedings of the fifth international conference
on Information processing in sensor networks, 2006.

[8] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and
D. Culler. The nesc language: A holistic approach to net-
worked embedded systems. In In ACM SIGPLAN Confer-
ence on Programming Language Design and Implementa-
tion, 2003.

[9] L. Girod, T. Stathopoulos, N. Ramanathan, J. Elson, D. Es-
trin, E. Osterweil, and T. Schoellhammer. A system for sim-
ulation, emulation, and deployment of heterogeneous sensor
networks. In SenSys ’04: Proceedings of the 2nd interna-
tional conference on Embedded networked sensor systems,
2004.

[10] C.-C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava.
Sos: A dynamic operating system for sensor networks. In
Proceedings of the Third International Conference on Mo-
bile Systems, Applications, and Services, June 2005.

[11] O. Landsiedel, K. Wehrle, and S. Gotz. Accurate prediction
of power consumption in sensor networks. In Proceedings of
The Second IEEE Workshop on Embedded Networked Sen-
sors (EmNetS-II), 2005.

[12] O. Landsiedel, K. Wehrle, B. L. Titzer, and J. Palsberg. En-
abling Detailed Modeling and Analysis of Sensor Networks.
PIK Journal, 2005.

[13] P. Levis, N. Lee, M. Welsh, and D. Culler. Tossim: accu-
rate and scalable simulation of entire tinyos applications. In
SenSys ’03: Proceedings of the 1st ACM Conference on Em-
bedded Networked Sensor Systems, November 2003.

[14] P. Levis, S. Madden, D. Gay, J. Polastre, R. Szewczyk,
A. Woo, E. Brewer, and D. Culler. The emergence of net-
working abstractions and techniques in tinyos. In NSDI’04:
Proceedings of the 1st conference on Symposium on Net-
worked Systems Design and Implementation, 2004.

[15] S. Park, A. Savvides, and M. B. Srivastava. Sensorsim: a
simulation framework for sensor networks. In Proceedings
of the 3rd ACM international workshop on Modeling, anal-
ysis and simulation of wireless and mobile systems, 2000.

[16] T. J. Parr and R. W. Quong. Antlr: a predicated-ll(k) parser
generator. Software: Practice and Experience, July 1995.

[17] F. Perrone, D. Nicol, J. Liu, C. Elliot, and D. Pearson. Sim-
ulation modeling of large-scale ad-hoc sensor networks. In
Proceedings of the 2001 Simulation Interoperability Work-
shop., 2001.

[18] J. Polastre, R. Szewczyk, and D. Culler. Telos: enabling
ultra-low power wireless research. In IPSN ’05: Proceed-
ings of the 4th international symposium on Information pro-
cessing in sensor networks, 2005.

[19] J. Polley, D. Blazakis, J. Mcgee, D. Rusk, and J. S. Baras.
Atemu: a fine-grained sensor network simulator. In Pro-
ceedings of the First IEEE Conference on Sensor and
Ad Hoc Communications and Networks (SECON), October
2004.

[20] L. Selavo, A. Wood, Q. Cao, T. Sookoor, H. Liu, A. Srini-
vasan, Y. Wu, W. Kang, J. Stankovic, D. Young, and
J. Porter. Luster: Wireless sensor network for environmental
research. In SenSys ’07: Proceedings of the 5th ACM Con-
ference on Embedded Networked Sensor Systems, November
2005.

[21] V. Shnayder, M. Hempstead, B. rong Chen, G. W. Allen, and
M. Welsh. Simulating the power consumption of large-scale
sensor network applications. In SenSys ’04: Proceedings of
the 2nd international conference on Embedded networked
sensor systems, pages 188–200, 2004.

[22] S. Sundresh, W. Kim, and G. Agha. Sens: A sensor, envi-
ronment and network simulator. In 37th Annual Simulation
Symposium (ANSS37), 2004.

[23] R. Szewczyk, J. Polastre, A. M. Mainwaring, and D. E.
Culler. Lessons from a sensor network expedition. In Pro-
ceedings of the First European Workshop on Sensor Net-
works (EWSN), January 2004.

[24] B. L. Titzer, D. K. Lee, and J. Palsberg. Avrora: scalable
sensor network simulation with precise timing. In IPSN ’05:

Proceedings of the 4th international symposium on Informa-
tion processing in sensor networks, 2005.

[25] M. Varshney, D. Xu, M. Srivastava, and R. Bagrodia. Senq:
a scalable simulation and emulation environment for sensor
networks. In IPSN ’07: Proceedings of the 6th international
conference on Information processing in sensor networks,
2007.

[26] V.Handziski, J. Polastre, J.-H. Hauer, C. Sharp, A. Wolisz,
and D. Culler. Flexible hardware abstraction for wireless
sensor networks. In Proc. of 2nd European Workshop on
Wireless Sensor Networks (EWSN 2005), Feb. 2005.

[27] Y. Wen, R. Wolski, and G. Moore. Disens: scalable dis-
tributed sensor network simulation. In PPoPP ’07: Proceed-
ings of the 12th ACM SIGPLAN symposium on Principles
and practice of parallel programming, 2007.

[28] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and
M. Welsh. Fidelity and yield in a volcano monitoring sensor
network. In 7th Symposium on Operating Systems Design
and Implementation (OSDI ’06), November 2006.

[29] G. Werner-Allen, P. Swieskowski, and M. Welsh. Motelab:
a wireless sensor network testbed. In IPSN ’05: Proceedings
of the 4th international symposium on Information process-
ing in sensor networks, 2005.

