
Accurate Timing in Sensor Network Simulation
Muhammad Hamad Alizai, Olaf Landsiedel, Klaus Wehrle

Distributed Systems Group
RWTH Aachen

{hamad.alizai, olaf.landsiedel, klaus.wehrle}@rwth-aachen.de

ABSTRACT
Accuracy, speed and scalability are the basic requirements of
sensor network simulation. To comprehend the accurate behavior
of resource constrained embedded systems such as sensor nodes it
is important in simulations to model the time-dependent behavior
of the system. In this paper we present our extensions of TOSSIM
[2] – a widely used event-driven simulation environment for
sensor networks – to enable its simulation models to capture the
time-accurate behavior of sensor networks by exhibiting timing
and interrupt properties of the platform dependent source-code.
By mapping the device specific code with the simulation model,
we can derive the timing of functional code blocks. As result of
such a mapping it is possible to determine the time when a certain
code block gets executed and the time the execution takes,
eliminating the need of expensive cycle-accurate instruction level
simulators with limited speed and restricted scalability.

1. INTRODUCTION
Simulation indisputably remains one of the most important tools
for analyzing, evaluating and validating system design. The
importance of simulation is further aggravated for systems having
an embedded nature, high deployment costs, or possessing
unobservable fast interactions yet important to validate the system
design. Sensor Networks with their distributed behavior,
strenuous deployment requirements, constrained resources, and
invisible and unpredictable interaction between the sensor nodes
poses additional demands on their simulation.

In the past few years a great deal of effort has been invested in the
design and development of simulators for sensor networks to
embrace the special requirements imposed by the highly
distributed and dynamic nature of sensor networks. Unfortunately
all these efforts have made compromises over different attributes
of the simulation, for example, accuracy has been compromised
over scalability and vice versa. SWAN [4], SensorSim [5], and
SENS [6] are examples of sensor network simulators which
compromise scalability over accuracy by using nonfigurative
models of the sensor nodes. Such simulation models only
contribute to quantify network delays, throughputs, packet
collisions, power usage and the effect of several power
management schemes [3]. However, these models do not reveal
the timing and interrupt properties of applications, the operating
systems, and hardware components.

ATEMU [7] and Avrora [3] on the other hand are cycle-accurate
instruction level simulators for sensor networks with the most
expressive simulation models. Nevertheless, they compromise the
scalability and performance/speed. ATEMU is 30 times slower
than TOSSIM [3], and its poor performance limits its scalability
to 120 nodes. Avrora shows better performance measures than

ATEMU with reasonably good speed for small number of sensor
network nodes but it is still 50% slower than TOSSIM. The
performance measures of Avrora have been calculated on a 16
processor machine, not easily accessible to normal end-users and
developers. Avrora exhibits typical performance bottlenecks of
instruction level simulators when run on customary end-user
machines, especially, when several avrora-monitors are enabled
for detailed analysis of the sensor network behavior.

Our goal is to provide time accurate simulation for sensor
networks at the basic-block granularity (i.e. sequence of
instructions with a single entry point, single exit point, and no
internal branches) of the source code without compromising the
speed and scalability, and hence eliminating the need to use
expensive instruction level simulators. We extend TOSSIM to
exhibit the timing and interrupt properties of sensor network code
without destroying its performance and scalability advantages.

2. TOSSIM
TOSSIM is an extremely fast sensor network simulator scalable to
thousands of sensor network nodes. It compiles directly from the
TinyOS source code into the simulation environment by adding
an alternative compilation target. The fact that it compiles directly
from the platform dependent source-code makes it more
expressive than SensorSim, SWAN, and SENS. TOSSIM only
requires to model the low level components responsible for
hardware interaction such as low level access to timers,
communication channels, sensors, and the radio. These low level
components expose the real hardware and are placed at the
Hardware Presentation Layer (HPL) of the TinyOS-2.0’s platform
abstraction model [8]. TOSSIM also benefits from the event-
based, component oriented programming model of TinyOS by
translating the asynchronous-events and hardware interrupts into
discrete simulator events which drive the simulation.

TOSSIM’s level of detail was sufficient to measure packet losses,
packet CRC failure rates, and the length of the send queue for up
to 8,192 nodes [3]. However, TOSSIM’s compilation steps lose
the fine-grained timing and interrupt properties of the code that
are extremely important for a time-accurate simulation [3].

We address these problems by exploiting the fact that TinyOS
runs the same code (except the small platform dependent HPL
layer) in simulation and on the sensor network hardware. This
feature of TOSSIM enables to create a mapping between the
platform dependent binary and the simulation code. We use Mica-
2 as our target platform. Our method is to (1) analyze the platform
dependent assembly program and compute the cycle count
corresponding to each basic-block; (2) assign a priority number to
every simulator event to enable TOSSIM to model the interrupt

and preemption behavior of the real hardware; (3) extend the C-
source code generated by TOSSIM to (a) increment the
simulation clock at the start of every source-code line by the cycle
count information obtained in the first step, hence, enabling the
TOSSIM to exhibit the timing properties of the code. (b) Re-
schedule the TOSSIM event queue at the start of every basic-
block on the basis of new timing information obtained, and also
on basis of the assigned interrupt priority of each event in the
simulation queue to model the masking and preemption properties
of the hardware interrupts in the simulation infrastructure.

Our approach is different from CPU-profiling approach in
PowerTOSSIM[1] – an extension of TOSSIM for simulating the
power consumption of sensor networks, which does offline
processing to obtain the cycle counts for CPU power profiling.
We, on the other hand embed TOSSIM with the information
obtained from the assembly of Mica-2 motes to perform online
adjustments in the simulation clock and event queue.

3. TIME ACCURATE SIMULATION
This section describes the details of the time accuracy related
problems in TOSSIM and our approach to address these
problems.

3.1 Timing Discrepancy
TOSSIM captures the TinyOS event-driven concurrency model at
interrupt and task granularity [9], and it has a single queue both
for the tasks and the events. The simulation is triggered by the
events and the tasks in the TOSSIM event-queue which is sorted
in the increasing time order. TOSSIM adjusts its simulation clock
at the start of the execution of every event by assigning the time
stamp of the recently popped event from the queue to the
simulation clock. Events and tasks take zero execution time in
TOSSIM as the simulation clock remains unadjusted during the
course of execution; hence, TOSSIM loses the fine-grained time
accuracy of the code. This imperfection of TOSSIM introduces
even more problems, for example, TOSSIM is unable to
differentiate between a task requiring a large number clock cycles
to transmit several bytes over the radio from a task requiring few
clock cycles just to blink an LED attached to the microcontroller
pin or to report a timer fire.

The execution time of an event or task may also affect the timing
of next events or tasks in the queue as shown in Figure-1. For
example, if TOSSIM is currently executing an event associated
with high priority interrupt and there is an immediately scheduled
task or event representing a low priority interrupt, then its
execution time should be delayed – timestamp should be
readjusted, at least until the execution of current event is finished.
TOSSIM, because of its imperfection to track the system time
during execution of an event, is unable to capture this priority
based interrupt behavior of the hardware which masks the less
priority interrupt or delays the execution of tasks while handling a
high priority interrupt. Similarly, in TOSSIM the simulator events
run atomically one after another, therefore, unlike on real
hardware, interrupts cannot preempt one another [9]. On the other
hand, long tasks – tasks requiring several clock cycles to execute,

delay the execution of other tasks and can be preempted by
events, but TOSSIM is unable to model such behaviors as show in
Figure-2.

3.2 Our Solution
Our approach to solve this timing discrepancy involves three
steps.

3.2.1 Basic-block Mapping
We address the timing discrepancy of TOSSIM by enabling it to
exhibit the timing properties of the code at the basic-block
granularity. We achieve this by creating a mapping between the
TOSSIM’s C-source code and the assembly of platform
dependent code (Mica-2 in our case). Our mapping technique is
similar to PowerTOSSIM.

TinyOS uses the NesC compiler to compile the TinyOS
component graph to a single C-source file, which in effect is then
compiled into the binary for the specified target platform through
appropriate C-compiler (i.e. gcc for TOSSIM and avr-gcc for
Mica-2). We use the avr-objdump utility with appropriate options
to obtain the assembly of Mica-2 platform which also contains a
mapping of the assembly instructions to the original nesC source-
code. We parse this assembly file to obtain the cycle counts
corresponding to the basic-blocks of the source-code. On the other
hand, we use the C-source file generated by the nesC compiler for
the TOSSIM platform. The C-source file of TOSSIM also
provides the mapping between C-source code and the original
nesC source code, thus, enabling the mapping between the
platform dependent assembly and the TOSSIM’s C-source file.

Figure 1. TinyOS event handling and execution flow

Figure 2. TOSSIM execution flow

Figure 3. Block Diagram: Extending TOSSIM to capture time-accurate behavior of the system

We parse the C-source file of TOSSIM using ANTLR’s [10]
GNU-C grammar to perform source-to-source transformation. Our
transformation includes (1) extending the C-source file by adding
functions that increment the simulation clock and perform online
adjustments in the TOSSIM Queue; (2) adding a call to these
functions at the start of every basic-block. These transformations
enable TOSSIM to exhibit the timing properties of application at
the basic-block granularity. The whole process of extending the
TOSSIM is shown in Figure-3.

3.2.2 Rescheduling the TOSSIM Event Queue
By extending TOSSIM to incorporate the timing properties of the
system at basic-block granularity also enables us to reschedule the
TOSSIM queue and intensify TOSSIM even further to exhibit the
interrupt properties of the hardware. We do this by rescheduling
every event and task in the TOSSIM queue (hereinafter referred
to as target event) whose time-stamp is less than the simulation
clock time. Additionally, we assign interrupt priority numbers to
every event in the TOSSIM Queue. Tasks are assigned zero
interrupt priority. Rescheduling the event queue introduces two
possibilities; (1) either the target event in the event-queue has an
interrupt priority less than or equal to the current event or task
being executed. In this case we increment the time-stamp of the
target event by the amount of time needed to execute the current
basic-block; (2) or the target event represents a high priority
interrupt. In this case we interleave the execution of the current
event or task (i.e. at the start of the basic-block) and start the
execution of the target event in the queue with high priority.

3.2.3 Hardware Component Profiling
The NesC compiler, when compiling for TOSSIM, replaces the
components at the HPL of platform abstraction architecture with
their corresponding reimplementation for TOSSIM. Our
transformations work very well when the TOSSIM is executing
the platform independent part of the application code (i.e
.common for TOSSIM and Mica-2 platform), and we achieve
100% basic-block mapping. But this basic-block mapping fails
and we loose our granularity once the TOSSIM enters the

execution of its own reimplementation of hardware related
components.

We address this problem by profiling the hardware related
components. We observed that the behavior of these low level
components, that expose the hardware, is static. For example, it
always takes the same amount of cycles to turn an LED On or
Off. It is also possible to do some manual mapping between the
components that share the same algorithmic properties and
execution flow but their execution time is not static. For example,
TOSSIM has its own scheduler but its execution flow is
analogous to the TinyOS Scheduler, nonetheless, execution time
of the scheduler is not static because it performs some context
switching as well as processes long queues of tasks. We do
manual mapping between the TinyOS scheduler and the TOSSIM
Scheduler to maintain the same basic-block granularity and
timing resolutions that we desire to achieve.

4. CONCLUSION AND FUTURE WORK
In this paper we discussed the importance of timing properties of
the source code in simulations. We showcased a distinct technique
and demonstrated how time-accurate simulation can be achieved
using this approach as described in section-3.2. It enables to
model the time-accurate behavior of the system at the basic-block
granularity without using the non scalable and low performance
instruction level simulators.

We are still in the active development phase of our work. Intense
evaluation is yet to be performed, though the initial results are
very promising. We achieve a beyond 99% time accuracy with
basic prototype applications like Blink and TestScheduler. We
plan to rectify TOSSIM’s hardware models including timers and
radio to model the original hardware accurately. TOSSIM is also
unable to model the behavior of atomic statements – block of
statement that run uninterrupted. Access to the application code at
the basic-block level can also help in accurately modeling the
atomic statement blocks in the code.

5. REFERENCES
[1] Victor Schnayder, Mark Hampstead, Bor-rong Chen, Geoff

Werner Allen, and Matt Welsh. Simulating the power
consumption of large-scale sensor network applications. In
Proceedings of the 2nd international conference on
Embedded networked sensor systems (SenSys) 2003, Nov.
2003.

[2] P. Levis, N. Lee, M. Welsh, and D. Culler.
TOSSIM:Accurate and scalable simulation of entire TinyOS
applications. In Proceedings of the First ACM Conference
on Embedded Networked Sensor Systems (SenSys) 2003,
Nov. 2003.

[3] Ben Titzer, Daniel Lee, and Jens Palsberg. Avrora: Scalable
Sensor Network Simulation with Precise Timing. In
Proceedings of IPSN'05, Fourth International Conference on
Information Processing in Sensor Networks, Los Angeles,
2005.

[4] J. Liu, D. Nicol, F. Perrone, M. Liljenstam, C. Elliot, and D.
Pearson. Simulation modeling of large-scale ad-hoc sensor
networks. In Proc. European Interoperability Workshop
2001, London, England, June 2001.

[5] S. Park, A. Savvides, and M. B. Srivastava. SensorSim: A
simulation framework for sensor networks. In Proc. MSWIM
2000, Boston, MA, August 2000.

[6] S. Sundresh, W.-Y. Kim, and G. Agha. SENS: A sensor,
environment and network simulator. In Proc. 37th Annual
Simulation Symposium (ANSS ’04), 2004.

[7] J. Polley, D. Blazakis, J. McGee, D. Rusk, J. S. Baras, and
M. Karir. ATEMU: A fine-grained sensor network simulator.
In Proceedings of SECON’04, First IEEE Communications
Society Conference on Sensor and Ad Hoc Communications
and Networks, 2004.

[8] Vlado Handziski, Joseph Polastre, Jan-Hinrich Hauer, Cory
Sharp, Adam Wolisz, David Culler, David Gay. TinyOS 2.0
Enhancement Proposal (TEP – 2).
http://www.tinyos.net/tinyos-2.x/doc/html/tep2.html

[9] Philip Levis and Nelson Lee. TOSSIM: A Simulator for
TinyOS Networks
http://www.cs.berkeley.edu/~pal/research/../pubs/nido.pdf.

[10] Terence Parr. ANTLR Parser Generator.
http://www.antlr.org/.

