
Towards Scalable Mobility in Distributed Hash Tables

Olaf Landsiedel, Stefan Götz, Klaus Wehrle

Distributed Systems Group

RWTH Aachen, Germany

firstname.lastname@cs.rwth-aachen.de

Abstract

For the use in the Internet domain, distributed hash tables

(DHTs) have proven to be an efficient and scalable approach

to distributed content storage and access. In this paper, we

explore how DHTs and mobile ad-hoc networks (MANETs)

fit together. We argue that both share key characteristics in

terms of self organization, decentralization, redundancy re-

quirements, and limited infrastructure. However, node mo-

bility and the continually changing physical topology pose a

special challenge to scalability and the design of a DHT for

mobile ad-hoc networks.

In this paper, we show that with some local knowledge we

can build a scalable and mobile structured peer-to-peer net-

work, called Mobile Hash Table (MHT). Furthermore, we ar-

gue that with little global knowledge, such as a map of the

city or whatever area the nodes move in, one can even further

improve the scalability and reduce DHT maintenance over-

head significantly, allowing MHT to scale up to several ten

thousands of nodes.

1 Introduction

Peer-to-peer networking has changed the way to store data

distributed in a network. Peer-to-peer networks are self main-

taining, resilient, and only need limited infrastructure and

control. The development of structured peer-to-peer net-

works, e.g. DHTs, extends these ideas to high scalability, in-

creased resilience and flat hierarchies.

Structured peer-to-peer networking provides a number of

key properties enabling efficient data access in mobile ad-hoc

networks: (1) commonly, ad-hoc networks have limited or

even no infrastructure. Thus, a fully distributed and hierarchy-

less substrate – such as a DHT – is required for efficient data

storage and access. (2) The high scalability of DHTs enables

large mobile crowds. (3) Furthermore, the fragile ad-hoc net-

work can benefit strongly from the redundancy and resilience

provided by structured peer-to-peer networks.

However, the random movement of nodes in a mobile ad-

hoc network makes it challenging to deploy a structured peer-

to-peer network. In this paper, we address these challenges

and introduce Mobile Hash Tables (MHTs), as a substrate for

scalable mobile peer-to-peer networking.

DHTs map data items, i.e. key-value pairs, on node IDs.

Commonly, a key is computed via a hash function from a

string describing the corresponding data item. And a node ID

is derived from its IP-address [16, 12] or its geographic po-

sition [13]. MHT – in contrast – introduces semantics to the

keys: it derives a geographic position, direction, and speed

from the key of a data item and stores this item on the node

which matches these properties best. Thus, a data item is as-

signed a path along which it moves by being stored on a node

moving along a similar path.

Apart from the mobility-aware DHT, a scalable and low

overhead routing protocol is required to form the base for an

efficient peer-to-peer substrate. Due to their limited scala-

bility, classic reactive and proactive routing protocols are not

sufficient for the support of large systems. We use geographic

routing, as its routing decisions are done locally resulting in

the necessary scalability. Furthermore, MHT itself relies on

position information.

The remaining paper is structured as follows: Section 2

discusses the limitations of current mobile peer-to-peer tech-

nologies. Section 3 introduces the initial MHT design, and

section 4 discusses various design extensions and their impact

on scalability. Section 5 evaluates the performance of MHTs

and section 6 concludes.

2 Related Work

Peer-to-peer communication has had a large impact in the

Internet research community. Various structured [1, 3, 12, 16]

and unstructured protocols – such as the well known file shar-

ing tools – have been presented. The peer-to-peer paradigm

has been extended to ad-hoc networks and even sensor net-

works [13, 6, 15].

Although their high scalability, resilience, and flat hierar-

chies make DHTs an interesting substrate for mobile network-

Proceedings of the Sixth IEEE International Conference on Peer-to-Peer Computing (P2P'06)
0-7695-2679-9/06 $20.00 © 2006

ing, only a very limited number of approaches base on this

principle. In this section, we discuss mobile peer-to-peer sys-

tems and their shortcomings and compare our work to them.

Most mobile peer-to-peer [8, 9] approaches deploy an un-

structured peer-to-peer network on top of a ad-hoc routing

protocol, such as AODV [10] or DSR [4]. Thus, they suffer

from the limited scalability of ad-hoc routing protocols and

the limited scalability of unstructured networks as both lay-

ers strongly rely on information flooding. Additionally, these

approaches do not use cross-layer optimization techniques so

both layers flood the network without being aware of each

other.

Ekta [11] maps a DHT on an ad-hoc source routing pro-

tocol, requiring the underlying DSR to frequently set up and

maintain routes to all entries in the DHT routing table. Fur-

thermore, the DHT routing is not aware of the underlying

topology, resulting in high routing and maintenance overhead.

Additionally, all of today’s DHTs require frequent discovery

messages to test whether their routing entries are still valid.

In comparison, our mobile hash table does not depend on this

mechanism.

Although not built for node mobility, the geographic hash

table (GHT) [13] is probably the concept most similar to our

approach. GHT maps a key associated with a data item to a

geographic location. Geographic routing is used to store and

retrieve a the data item at its location. We generalize the ideas

presented in this work to support mobile nodes.

The multi-level peer index (MPI) [7] extends the GHT ap-

proach from providing a specific geographic location to a spa-

tial area. However, this approach requires location updates to

be distributed in the entire network which severely limits the

scalability of this approach.

3 Introducing Mobile Hash Tables

First, we describe the basic design of mobile hash tables.

Later in Section 4, we present additional design optimizations,

which increase scalability and performance significantly.

The main challenge for structured mobile peer-to-peer net-

working is to apply a structure to the unstructured and seem-

ingly random node movements. Assuming that each node

knows its position, speed, and direction, we show how a struc-

tured DHT can be set up.

To map data onto the moving nodes, we propose the fol-

lowing scheme: for each data item we derive a path from its

key. A data item moves along its path and is stored on the

node which moves on the most similar path. A path consists

of two points, between which a data item moves back and

forth, and speed information. As the path of each data item

is derived from its key and the path is a loop, one can com-

pute the position of a data item at every point in time. Thus,

queries can determine a data item’s position and be routed to

it. In this paper we use a simple path consisting of two points,

e.g. we derive the x and y coordinates of these two points from

the key. The approach also allows for more complex mapping

functions, e.g. a rectangular path, were the points of the rect-

angle are derived from the key. Alternatively, a key can denote

multiple points in space from which a spline curve can be de-

rived.

By comparing position, direction, and speed, it is deter-

mined which node carries a data item. The scalability of the

proposed approach bases on the following observation: the

more nodes are in an environment, the higher is the probabil-

ity that a node with a path and speed similar to the path of

the data item exists. Thus, the more nodes, the better matches

exist. As result, data needs to be moved between the carrying

nodes less frequently.

3.1 Routing in a MHT

Mobile hash tables are built on top of GPSR [5], a ge-

ographic routing algorithm for multi-hop wireless networks.

We now briefly discuss design features of GPSR relevant for

our work and then propose a minor extension to GPSR to in-

tegrate the mobile hash tables.

GPSR is highly scalable, as its routing only depends on lo-

cal knowledge. In GPSR, packets are routed geographically,

i.e. based on physical positions of packets and nodes. Packets

to be routed are marked with their destination. Furthermore,

each node knows its own position and those of its immediate

neighbors. GPSR uses this local knowledge to route packets

to their final destination. In its default operation mode, GPSR

forwards packets greedily. Greedy forwarding fails, when a

node has no neighbor closer to the final destination: the packet

has reached a local maximum, e.g. a void. In this case, GPSR

switches to perimeter forwarding and routes packets with the

right-hand-rule around network voids. GPSR returns from

perimeter routing to greedy forwarding when it reaches a node

closer to the destination than the one at which it switched to

perimeter routing (its position was stored in the packet).

3.2 Extension of GPSR

In GPSR, each node knows the position of its neighbors in

one-hop distance and uses this information for its local rout-

ing decisions. In practice, each node regularly announces its

position to the surrounding nodes with local broadcast mes-

sages. We extend this announcement by the current speed and

the direction the node moves at. These values can be easily

derived from GPS position samples. In MHT, we use this ex-

tended information to find a node which has a position, speed,

and direction similar to the path of a data item.

3.3 Joining and Leaving an MHT

MHT bases on wireless communication so it benefits from

its local broadcast properties. Thus, there is no need to find

Proceedings of the Sixth IEEE International Conference on Peer-to-Peer Computing (P2P'06)
0-7695-2679-9/06 $20.00 © 2006

dn

r

r2/r
d n

Figure 1. As long as the data item d is stored

not farther away from its position than r/2,

e.g. node nd in the figure, a node n can reach

node nd when it comes into r/2 of the data d.

the ID space a node is responsible for via a search in the DHT

as commonly in Internet-based systems. For mobile hash ta-

bles, it is sufficient that a joining node starts the regular local

broadcast of its position, speed, and direction. Thus, its sur-

rounding nodes recognize its existence and will consider this

node for their routing and storage decisions.

To leave the system, the leaving node stops sending reg-

ular local broadcasts. Consequently, its surrounding nodes

stop using it for routing or storage. In such a passive leave,

the node does not announce its departure to its surroundings.

However, the DHT’s routing tables stays consistent after such

a passive leave, as all decisions are based on local knowledge.

No repair algorithm as in most Internet based DHTs – such as

fixing finger tables in Chord – is necessary.

However, nodes may still try to route data via this node un-

til their knowledge about this nodes times out. Furthermore,

all data stored on this node and all messages it might have

been forwarding at this moment are lost. Thus, next to the

passive leave MHT supports a so-called active leave, the node

announces its leave to its neighbors. This ensures that the

leaving node is not considered for routing and storage any-

more. Furthermore, it forwards all pending messages to their

next hop and stores all data on the now best matching partici-

pant.

3.4 Data Placement

Before discussing lookups and data placement, we explain

data movement in MHTs. Thus, for now we assume that a

data item d is stored on a node nd and we discuss how and

when it is moved to another node nnext. Furthermore, we

discuss how this node nnext is selected.

For simplicity’s sake, we assume a circular communication

range, e.g. a unit disk model, and that all nodes have the same

communication range1. Let r be the communication range of

1Please note that by introducing a factor α to the communication range,

a node, then a data item d needs to be stored on a node nd

not farther away than r/2 from the data item’s position pd –

the position pd is determined by the key which describes the

data item d. This ensures that a node n in r/2 distance from

pd can communicate to nd and retrieve the data item d (see

figure 1). Let pnd
be the position of the node nd. Thus, when

|pd−pnd
| > r/2, the data item d needs to be moved to another

node to ensure that queries can successfully find the data item.

As the data item d has to be stored not farther away than

r/2 from its position pd, nd selects the node nnext from its

surrounding nodes. Since all nodes frequently announce their

positions, directions, and speeds, to their neighbors, no ex-

plicit communication is necessary; nd does a lookup in its

neighborhood table. Among its neighbors, it selects the one

node nnext, for which |pd − pnnext
| > r/2 holds for the

longest time. It uses the current speed and direction of data

and nodes to predict future positions. When no node in range

fullfills these requirements the data item is stored on the node

which is closest to the data item’s position. Thus, it maybe

temporarily not reachable when this node is farther away than

r/2 from the data item’s position. In section 5 we evaluate

the probability that a data item is our of place and thereby

temporarily not reachable.

After discussing how the node which stores a data item is

selected, data placement in the MHT is straightforward. A

new data item is forwarded from its source to a node which is

not farther away than r/2 from the data item’s position. This

node then determines the node to store the data item the same

way that a new node for storage is selected.

3.5 Data Lookup

Data lookup, i.e. queries, use the same technique as the

above described data placement. Knowing the data items key,

the query compute the item’s position. Thus, the query is for-

warded from its source to a node which is not farther away

than r/2 from the data item’s position. A local broadcast from

this node reaches the node carrying the requested data item,

as the item itself is always on a node in r/2 or less distance

from its position.

Although the data item can be found easily, sending the

reply back to its source is not as trivial because the source

moves along its own path. To find the source, the query and its

reply store the position, direction, speed and ID of the source.

Thus, nodes forwarding the reply can determine the source

position at any time. However, the source might change its

direction or speed at any time. When this happens, the source

places a new (temporary) data item – a buoy – in the MHT. It

is placed at the current position of the source and moves with

the old direction and old speed of the source. Furthermore, it

stores the new direction and speed of the source. Thus, the

we can easily model heterogeneous communication ranges and non unit-disk

models.

Proceedings of the Sixth IEEE International Conference on Peer-to-Peer Computing (P2P'06)
0-7695-2679-9/06 $20.00 © 2006

reply reaches the buoy instead of the the source and retrieves

the new direction and speed of the source. Multiple direction

changes are handled by chains of buoy.

4 Design Improvements

After discussing the basic design of the mobile hash ta-

bles in section 3, we present more details and performance

enhancements.

4.1 Realistic Mobility

MHT focuses on systems with a high degree of node mo-

bility. In the real world, nodes move along a limited set

of paths, e.g. the roads of city. Thus, instead of arbitrary

paths, we derive paths along the roads of a city from the

data item’s keys. In our work, we use the Manhattan grid

as an example. As a result, the space and direction where

nodes and data items move become strongly correlated. Thus,

the chance of matching data and node paths increases signifi-

cantly and MHT provides better performance for lower num-

bers of nodes.

4.2 Traffic Adaptation

Furthermore, nodes in a city do not move at random

speeds. For example, the cars on a road drive with similar

speeds, as the they cannot pass each other arbitrarily. Thus,

we now discuss a technique which describes how data items

can adapt their speeds to the speed of the nodes surrounding

it.

For this we change the information derived from the key.

Instead of deriving the start and end points of a path, we derive

a center point p, a direction dir, and a circulation time t for

each data item d. Thus, from the center point p the data item

moves in direction dir and turns around after t/4. It passes

the center at t/2 and turns around the second time at 3/4 ∗ t.
It determines its speed from the speed of the nodes on the

road it currently moves on. Thus, while the circulation time is

constant, the distance a data item moves is determined by the

speed of the surrounding nodes. This approach reduces the

need to move a data item to another node, as nodes and data

items move with similar speeds.

Using traffic adaptation for data placement, queries also

need to perform a similar traffic adaptation. From the circula-

tion time, the query can predict on which side of the center a

data items is and into which direction it moves. Furthermore,

once the query reaches the street the item moves on, it can

refine its prediction using the speed of the surrounding nodes.

From this information the query can compute an “intercep-

tion” course to find the data item and so resolve the query.

Concluding, this technique enables an adaption of the data

movement to the movement of the surrounding nodes. This is

d 1r 2r 3r

(a) Local Redundancy: adding replicas with the same path,

but slightly different starting points.

d

2r
3r

1r
(b) Global Redundancy: adding replicas with uncorrelated

paths.

Figure 2. Local vs. global replication in the

Manhattan grid.

very interesting for real world traffic situations because node

speeds can vary highly. For example, a road accident can slow

down or even stop traffic. The described traffic adaptation

method allows data items to adapt their movement dynami-

cally to changing situations. As a result, the occasions where

a data items need to be moved from one node to another one

are reduced. However, it becomes more complex to resolve a

query, as the position of a data item needs to be predicted.

4.3 Redundant Data Storage

In this section, we discuss two redundancy techniques to

ensure the availability of data items: local and global redun-

dancy.

To ensure local redundancy, MHT places replicas of each

data item close their positions. We extend the information

derived from the key by an offset for each replica. This offset

is added to the start and end point – or the center point in

case of traffic adaptation – of the data item. Thus, replicas

and original data items move on the same path, i.e. the same

direction and speed, just slightly apart from each other (see

figure 2(a)).

A data item and its replicas need to exchange frequent “still

alive” messages to test their availability. When an item is lost,

a copy with the corresponding path information is created and

placed in the hash table. As all items are close to each other,

the “still alive” messages result in low overhead as they only

need to be transmitted via a limited number of hops. For the

same reason, updates to a data item have limited overhead.

Local redundancy allows MHT to efficiently deal with sudden

node death or departure. Furthermore, it allows some basic

Proceedings of the Sixth IEEE International Conference on Peer-to-Peer Computing (P2P'06)
0-7695-2679-9/06 $20.00 © 2006

load balancing as replicas and original data items can share

the query load.

Nonetheless, local redundancy has some limitations. When

a data item is very popular, queries can cause a high load on

the routes to the data item. Global redundancy addresses this

problem by placing a data item at various unrelated places in

the network (see figure 2(b)). This ensures better load balanc-

ing and furthermore ensures that the network stays alive even

when parts get disconnected. For global redundancy however,

“still alive” messages need to be sent across large parts of the

network and so increase the message overhead.

Concluding, both redundancy techniques have different

trade-offs, which depend on the deployment scenario. It is

beyond the scope of this paper to discuss these in more detail.

4.4 Data Locality

In some scenarios, it might be interesting to select the path

of a data item manually when it is inserted into the network.

For example, a restaurant might place its menu and other in-

formation on the road in front of it or in case of a traffic jam

a warning message can be published in its area. Commonly, a

data item’s key is derived via a hash function from the string

describing it. Alternatively, MHT allows the user to manually

select a path for data items and to publish these properties in

out-of-band media.

5 Evaluation

After discussing the initial MHT design and performance

enhancing features, we evaluate the proposed technique. First

we present our simulation setup and then discuss simulation

results.

5.1 Simulation Model

We implemented the mobile hash table in the OmNet++

simulator [17] to evaluate the MHT performance and scala-

bility. The mobility scenarios are based on the “random way-

point” model [4, 14]. When not denoted differently, between

1000 and 100000 nodes move with a speed uniformly dis-

tributed between 10 and 15 m/s in an area of 2000m x 2000m.

The wireless radio has a transmission range of 100m and its

propagation bases on the unit-disk model. The simulation du-

ration is 1000s and results are averaged over three runs. Our

simulation model ignores the capacity of, and the congestion

in the network. Additionally, the model ignores packet losses

and churn. While these assumptions are obviously unrealistic,

they allow the simulator to scale to tens of thousands of nodes

and us to evaluate the scalability of the proposed approach.

We evaluate the following performance metrics:

• Maintenance overhead: this metric evaluates how long

a data item is stored on a node until their paths do not

match anymore and the data item is moved to another

node. This metric is the key metric of MHT, as it de-

scribes its scalability.

• Path length: this metric evaluates the hops it takes to re-

solve a query in the MHT.

• Data item out of place: when a data item needs to move

to another node and there is no applicable node with sim-

ilar path properties in range, the data item can move away

from its path. Thus, queries fail until the data item is

back on an appropriate route.

For the simulation results, we evaluate the performance of

MHT in various scenarios: (1) node and data movement in the

open space, (2) nodes and data move in the Manhattan grid,

(3) nodes move in the Manhattan grid and traffic adaptation

of the data items. Of the approaches for mobile peer-to-peer

networking we are aware of only GHT scales up to several

thousands of nodes. Thus, in the evaluation we compare our

work to GHT.

5.2 Performance Results

Varying Number of Nodes

The results for varying the number of nodes in the system

are depicted in figure 3. With the raising number of nodes

the node density increases. Thus, the probability increases

that a data item finds a node with similar speed and direction

to be stored on. As figure 3(a) depicts, the average time a

MHT data item is stored on a node raises with the increasing

number of nodes. Consequently, the more nodes participate

in a system, the lower the maintenance overhead is. This is

a very interesting system property, as MHT – in contrast to

most other systems, including GHT – scales inverse with the

number of nodes. GHT does not show these scaling properties

as it does not benefit from node movement.

Furthermore, figure 3(b) shows that the MHT approach –

and particularly not the adaptation mode – does not impact

data lookup. The average number of hops to resolve a query of

MHT is nearly equal to the hops of GHT. Figure 3(c) depicts

the probability that a data item is stored farther away from its

position than half the transmission range when queried and so

cannot be retrieved via lookups. The figure shows that com-

monly for MHT this probability is lower than for GHT.

Varying Playground Size

To further evaluate the scalability, we varied the size of the

playground from 1km x 1km to 10km x 10km. Figure 4(a)

shows the average time a MHT data item is stored on a node.

The figure shows interesting results, as MHT performs best

on mid-sized playgrounds. For this we see two contributing

factors. On the one hand, for small playgrounds, the average

Proceedings of the Sixth IEEE International Conference on Peer-to-Peer Computing (P2P'06)
0-7695-2679-9/06 $20.00 © 2006

10
3

10
4

10
5

0

5

10

15

20

25

30

35

40

Number of Nodes

A
vg

. t
im

e
on

 b
oa

rd
 (

in
 s

ec
.)

(a) Maintenance overhead: average duration a data

item is stored on a node.

10
3

10
4

10
5

0

50

100

150

200

250

Number of Nodes

A
vg

. h
op

s
pe

r
qu

er
y

lo
ok

up

MHT adaptation
MHT Manhattan
MHT open space
GHT Manhattan
GHT open space

(b) Query Lookup: number of hops to resolve a

query.

10
3

10
4

10
5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of Nodes

P
ro

b.
 d

at
a

ite
m

 o
ut

 o
f p

la
ce

(c) Probability that a data item is out of place when

queried.

Figure 3. Evaluating the performance of MHT for varying node numbers. For comparison GHT perfor-

mance is depicted, too. The playground has a size of 2000m x 2000m. Please note the logarithmic

scale.

trip duration of a node is low and so a nodes changes its di-

rection more often than on bigger playgrounds. Thus, the per-

formance of MHT raises, when the playground gets bigger.

On the other hand, the bigger the playground is the lower the

node density is. This reduces the probability that a data items

find a node with similar path properties. Additionally, figure

4(c) shows, that with increasing playground size the probabil-

ity that a data is out of place when queried raises strongly for

GHT, while it remains low for MHT.

Varying Node Speed

Figure 4(b) depicts MHT performance for various node

speeds on a 7500m x 7500m playground. As the speed in-

creases, the average node trip duration is decreased. Thus,

nodes change their direction more often and so as stated above

data items need to be moved to another node more often.

However, MHT performs much better than GHT at all times.

Concluding the performance evaluation, the simulation

shows that MHT performs about 5 to 10 times better than

GHT depending on the simulation scenario.

6 Conclusion

Our work addresses two key problems of mobile peer-to-

peer networking: efficient data lookup and scalable routing

in a mobile environment. Our simulation results validate the

scalability of the design – in a network with 100000 nodes it

supports efficient data lookup and has low DHT maintenance

overhead.

Certain additional problems remain to be addressed be-

fore deploying a MHT. One important problem is the design

of a secure MHT which is resistant against denial of ser-

vice attacks. Just like in the internet-based peer-to-peer net-

work, nodes have two functionalities: they work as routers

and servers. Thus, malicious nodes can attack the network at

two structural points. We plan to evaluate how techniques al-

ready successfully deployed in internet peer-to-peer systems

can be adapted to the mobile environment. However, it is in-

teresting to notice that some threads, like the Sybil attack [2],

are not existent in the MHT environment, as routing decisions

and data storage are strongly bound to the physical network

topology and node positions. Thus, a malicious node can only

spawn identities at one geographic position in the network –

its own physical location.

In this paper, we presented a scalable approach to struc-

tured peer-to-peer networking in mobile environments. We

believe that mobile networks can strongly benefit from an ef-

ficient peer-to-peer substrate as it allows to store and retrieve

data items without the need for additional infrastructure.

References

[1] M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron. Pastry:

Scalable, distributed object location and routing for large-scale

peer-to-peer systems. In Proc. of IFIP/ACM Int. Conf. on Dis-

tributed Systems Platforms, November 2001.

[2] J. R. Douceur. The Sybil attack. In Proc. of First International

Workshop on Peer-to-Peer Systems (IPTPS), March 2002.

[3] N. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wol-

man. Skipnet: A scalable overlay network with practical local-

ity properties. In Proc. USENIX Symposium on Internet Tech-

nologies and Systems (USITS), March 2003.

[4] D. B. Johnson and D. A. Maltz. Dynamic Source Routing in

Ad Hoc Wireless Networks. In Mobile Computing, volume

353. Kluwer Academic Publishers, 1996.

Proceedings of the Sixth IEEE International Conference on Peer-to-Peer Computing (P2P'06)
0-7695-2679-9/06 $20.00 © 2006

0 2000 4000 6000 8000 10000
5

10

15

20

25

30

35

40

45

Playground size (in m)

A
vg

. t
im

e
on

 b
oa

rd
 (

in
 s

ec
.)

(a) Maintenance overhead for various playgrounds:

average duration a data item is stored on a node.

5−10 10−15 15−20 20−25 25−30
0

10

20

30

40

50

60

Node speed (in m/s)

A
vg

. t
im

e
on

 b
oa

rd
 (

in
 s

)

MHT adaptation
MHT Manhattan
MHT open space
GHT Manhattan
GHT open space

(b) Maintenance overhead for various node speeds:

average duration a data item is stored on a node.

0 2000 4000 6000 8000 10000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Playground size (in m)

P
ro

b.
 d

at
a

ite
m

 o
ut

 o
f p

la
ce

(c) Probability that a data item is out of place when

queried.

Figure 4. Evaluating the performance of MHT for varying playground sizes and different node speeds.

For comparison GHT performance is depicted, too. The number of nodes is 100000. Due to the large

number of nodes, we executed the simulations in this figure for 100s.

[5] B. Karp and H. T. Kung. GPSR: greedy perimeter state-

less routing for wireless networks. In Proc. of ACM Interna-

tional Conference on Mobile Computing and Networking (Mo-

biCom), August 2000.

[6] O. Landsiedel, K. A. Lehmann, and K. Wehrle. T-DHT:

Topology-Based Distributed Hash Tables. In Proc. of 5th IEEE

Conf. on Peer-to-Peer Computing (P2P), August 2005.

[7] M. Li, W.-C. Lee, and A. Sivasubramaniam. Efficient peer

to peer information sharing over mobile ad hoc networks. In

Proc. of Second WWW Workshop on Emerging Applications

for Wireless and Mobile Access (MobEA04), May 2004.

[8] C. Lindemann and O. Waldhorst. A Distributed Search Ser-

vice for Peer-to-Peer File Sharing in Mobile Applications. In

Proc. of 2nd IEEE Conf. on Peer-to-Peer Computing (P2P),

September 2002.

[9] M. Papadopouli and H. Schulzrinne. Effects of power conser-

vation, wireless coverage and cooperation on data dissemina-

tion among mobile devices. In Proc. of the 2nd ACM Interna-

tional Symposium on Mobile Ad Hoc Networking & Comput-

ing (MobiHoc), October 2001.

[10] C. E. Perkins and E. M. Royer. Ad hoc On-Demand Distance

Vector Routing. In Proc. of the 2nd IEEE Workshop on Mo-

bile Computing Systems and Applications (WMCSA), February

1999.

[11] H. Pucha, S. M. Das, and Y. C. Hu. Ekta: An Efficient DHT

Substrate for Distributed Applications in Mobile Ad Hoc Net-

works. In Proc. of 6th IEEE Workshop on Mobile Computing

Systems and Applications (WMCSA), December 2004.

[12] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker.

A scalable content-addressable network. In Proc. of ACM Con-

ference on Applications, Technologies, Architectures, and Pro-

tocols for Computer Communication (SIGCOMM), September

2001.

[13] S. Ratnasamy, B. Karp, S. Shenker, D. Estrin, R. Govindan,

L. Yin, and F. Yu. GHT: A Geographic Hash Table for Data-

Centric Storage in SensorNets. In Proc. of ACM Workshop on

Wireless Sensor Networks and Applications (WSNA), Septem-

ber 2002.

[14] G. Resta and P. Santi. An analysis of the node spatial distribu-

tion of the random waypoint model for Ad Hoc networks. In

Proc. of ACM Workshop on Principles of Mobile Computing

(POMC), October 2002.

[15] S. Shenker, S. Ratnasamy, B. Karp, R. Govindan, and D. Es-

trin. Data-Centric Storage in Sensornets. In Proc. ACM Work-

shop on Hot Topics in Networks (HotNets), October 2002.

[16] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-

akrishnan. Chord: A scalable peer-to-peer lookup service for

internet applications. In Proc. of ACM Conference on Appli-

cations, Technologies, Architectures, and Protocols for Com-

puter Communication (SIGCOMM), August 2001.

[17] A. Varga. The OMNeT++ Discrete Event Simulation System.

In Proc. of the European Simulation Multiconference (ESM),

June 2001.

Proceedings of the Sixth IEEE International Conference on Peer-to-Peer Computing (P2P'06)
0-7695-2679-9/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

