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Abstract

In this thesis I present an approach for implementing the liquid democracy con-
cept in a secure, anonymous and publicly verifiable manner via the Internet. Liquid
democracy is gaining traction in the context of open government and civil partici-
pation, as it allows vote delegation and thereby presents a hybrid form of direct and
representative democracy.

Combining RSA public-key cryptography with hash-based data structures, this sys-
tem allows the acquisition of anonymous voting tokens, their delegation while still
allowing outvoting, and secret, anonymous voting. Voters can verify their own vote,
while the public can check the consistency of the overall voting results. The so-
lution thereby enables the wider use of liquid democracy to further enhance civil
participation in the government process, while having a high resilience against vote
manipulation, i.e. manipulation will be discovered with a probability of higher than
99% with less than 1% of the voters verifying their vote.

Zusammenfassung

Diese Diplomarbeit stellt einen Ansatz zur Implementierung des Liquid-Democracy-
Konzepts vor, um dieses auf eine sichere, anonyme und öffentlich überprüfbare
Weise über das Internet verwenden zu können. Das Liquid-Democray-Konzept
gewinnt an Bedeutung im Kontext von Open Government und Bürgerbeteiligung
am Regierungsprozess, da dieses eine Stimmendelegierung ermöglicht und damit
eine Mischform zwischen direkte und representative Demokratie darstellt.

Über die Kombination von asymmetrischer RSA Kryptographie und hash-basierten
Datenstrukturen erlaubt das System den Bezug anonymer Wahltokens, ihre Delegier-
ung mit vorbehaltenem Überstimmungsrecht und eine sichere, anonyme Stimmab-
gabe. Jeder Wähler ist in der Lage, seine eigene Stimme zu überprüfen, während die
Allgemeinheit die Konsistenz des kompletten Wahlergebnisses verifizieren kann. Die
hier vorgestelle Lösung ermöglicht die verbreitete Nutzung des Liquid-Democracy-
Konzepts um die öffentliche Teilname an dem Regierungsprozess weiter zu erhöhen.
Diese hat eine hohe Resistenz gegen Stimmenmanipulationen — diese werden mit
einer Wahrscheinlichkeit > 99% erkannt, selbst bei einer Prüferanzahl von ≈ 1% der
Wahlbeteiligten.
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1
Introduction

Online services introduce on the one hand a possibility to carry out everyday life
duties in a comfortable and fast way. Besides that they are accessible 24/7 and
from any place of the world which additionally grants their users a great flexibility.
This enables the implementation of electronic voting systems allowing a democracy
concept, where the population can directly influence the government process of its
county. Though such systems should be designed with caution, as user privacy and
information secrecy problems can arise.

1.1 Motivation

In this thesis we introduce the Liquid Democracy concept. It represents a mixture
of both direct and indirect democracy for a decision-making process and allows every
participant to decide how involved in this process he wants to be. For every election
taking place it is possible to either take part directly or delegate the own voting
rights to a representative/expert. This way the voters are not limited to taking one
decision for legislative period as opposed to indirect (representative) democracy, but
are able to actively and continuously take part in the decision-making process. This
concept furthermore integrates ways of collaborative decision making.

Currently existing implementations of Liquid Democracy focus mainly on collabo-
rative decision making and pretty much neglect aspects like secrecy and anonymity
of the voting process. They save enough information about the participating users
making it possible for a system operator to find out how each of them voted in a
given decision-making round.

This thesis focuses on the design and implementation of a system, which allows
secure and anonymous voting in such a way that it is not possible, even for the
system operator, to find out the identity of a voter or to prevent certain voters (for
example minority groups) from casting a ballot. Anonymity is guaranteed through
the blind signature of a user generated token at the voting register, which turns
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this token into a voting credential. As none of these credentials are readable on the
server side, it is impossible to connect the user’s identity with the voting decision
even if both the databases of voting register and voting computer are combined.
Public-key cryptography is used for securing the data transmission, peer verification
and verifiable voting token retrieval.

Only the owner of given voting credentials is able to verify with confidence, what
these were used for. This combined with the fact that the voting credentials and re-
sults are published online by the voting server, makes the overall results verifiable on
a probabilistic basics. As in normal paper based elections, a possibility of cheating
still exists – a given subset of votes could be manipulated by the voting computer.
The detection rate in this case depends on the number of voters checking the cor-
rectness of their own votes and is high (over 80%) even for a small amount (about
10%) of checkers. Vote selling and coercion can’t fully be eliminated. A bystander
present at the moment of voting can observe the voter’s choice. Furthermore as
the results are verifiable by everyone, extortion or buying of voting credentials and
verification of the vote validity after the election is possible.

The reliability of a voting system against attacks is an important aspect to be con-
sidered. To minimize/mitigate the risk of (distributed) Denial-of-Service attacks it
is possible to use a distributed network of Voting Computer and Voting Register
servers. In such a scenario no user supplied information needs to be shared between
the system instances, but a strict time synchronisation is needed to prevent cheating.

There are three possible scenarios, how a voting round using our system can be
carried out:

1. In kiosk mode at a supervised location (voting booths, etc.) only.

2. Using own device (desktop PC, laptop, smartphone, etc.) over the Internet
only.

3. A combination of (1) and (2).

The system is applicable using ordinary voting booths, but allows also remote voting
over the Internet. This grants the voters a great flexibility without sacrificing the
security and anonymity. Nobody has to go to a predefined voting booth but everyone
can vote while on the go, e.g. on a business trip to a destination thousands of
kilometers away.

1.2 Thesis Structure

Chapter 2 contains the background knowledge needed for understanding the concept
of this work. It gives an overview of direct and indirect democracy and uses them
to define the Liquid Democracy concept. As the implementation makes heavy use
of cryptography, a whole subsection introduces some basic building blocks and then
shows their usage in complex structures like hash chains and Merkle trees. One
aspect of securing the voting process bases on public-key cryptography and blind
signatures, they are explained in detail to ease the understanding of system design.
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Chapter 3 presents related implementations and introduces both their strengths and
weaknesses. Chapter 4 contains the detailed design of the system. It gives exam-
ples of possible attack vectors and what design decisions are taken to circumvent
the corresponding security related problems. A simple python implementation of
the concept is present in Chapter 5. It is thought of as Proof-of-Concept code
and includes only the basic features needed to show that the design works as de-
sired. Chapter 6 describes possible problems in the system, gives an estimate on
the scalability and performance and compares it to the implementations described
in Chapter 3. This is meant to give you a good understanding of the strengths and
weaknesses of my design and implementation of the Liquid Democracy concept.
Chapter 7 summarises the content of my theses and gives ideas of possible future
work in this field.
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2
Background

This chapter gives an overview of all topics needed for understanding the rest of my
thesis. First I describe the democracy concepts leading to the existence of LD, then
present the voting regulations in Germany. Next I briefly discuss electronic voting
and give then a short overview of cryptographic basics needed to secure my design
presented in Chapter 4. Finally, a detailed introduction to the topics of public-key
cryptography, connection encryption and anonymity conclude the this chapter.

2.1 Democracy Concepts

Democracy is a government form originating from ancient Greece. In the Greek
language it is a compound of the two words δη̃µoς (demos) meaning people and
κράτoς (kratos) meaning power/strength which can be translated as rule of the

people. Nowadays the three types direct, indirect and semi-direct or Liquid
Democracy (LD) can be distinguished.

2.1.1 Direct Democracy

Direct democracy, also referred to as pure democracy, has evolved in Athens around
500BC. It is a type of government where every citizen is allowed to directly take part
in the decision-making process implying their active involvement. This required a
possibility for all of them to take part in direct voting procedures. Because of this
fact it is not trivial to support such a concept even for a small modern country like
the Principality of Monaco with its 36 thousand citizens.

The most important advantage of direct democracy over other systems is that people
directly represent their own opinion on every decision to be taken. Furthermore it
also limits the influence of small, but powerful groups (lobbying), which lies in the
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fact, that positive sum proposals 1 are more likely to be accepted, as they cover the
interest of the largest voters group. The most important disadvantage is the fact,
that it is complicated and costly to support this concept through standard voting
procedures. In ancient Athens the 30 to 60 thousand citizens were the upper limit,
which modern countries exceed even within small towns. The government process
is hence inflexible and slow as every decision has to be taken from a large amount
of people.

The Swiss Confederation is an example of a modern country using the direct democ-
racy concept on a large-scale. Despite the fact that there is an indirect government
layer, Swiss citizens are able to directly influence the government process of their
country through tools like recalls, referendums and initiatives.

2.1.2 Indirect Democracy

In indirect or representative democracy voters elect a group of individuals for a
legislative period2, which then rules on behalf of the voters and represents their
interests. This makes elections the only point in time, when citizens influence the
governance course directly.

Compared to direct democracy, the representative form is more flexible. Elections
are held only at regular intervals of typically 4 to 5 years making this form also
cost efficient. The government process is much simpler and persistent as decisions
are taken from a small group of people. The individuals forming the government
ideally are highly qualified, have a good overview on current topics and excel in
decision making, which isn’t expected from the average voter. Reality tends to be
less optimal. A more important disadvantage is that representatives are not bound
to promises given in their election campaigns or views they claimed to have. While
in government, they don’t need to answer to the people who have elected them.

2.1.3 Liquid Democracy

A lot of concepts try to combine the strengths of direct and indirect democracy to
improve government, however this thesis considers only LD. The Adhocracy devel-
opers define it as “a collective term for different approaches to making democracy
more liquid, more transparent and more flexible. What all these approaches have in
common is the concept of delegating your vote”[5]. This means that you as a voter
can directly vote on every topic under consideration, but also have the possibility to
delegate (proxy) your own vote to a trusted entity3. This delegation process re-
duces the number of people taking part in the decision-making process, but weights
their voting power according to the number of delegations they received, as shown
in Figure 2.1. Forwarding is possible in many different ways. In the left part of the

1A positive-sum (win-win) game is a “game which is designed in a way that all participants can
profit from it in one way or the other”[6]. In this sense a positive-sum proposal means that the
sum of all benefits exceeds the sum of all costs when measured across the society as a whole.

2The time span between two elections for an institution, for example country government.
3A better informed and qualified person (an expert) on a given topic or a political party of

choice.
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Figure 2.1 The Liquid Democracy concept allows single or multiple delegation.
Furthermore priorities and delegation of delegated votes are allowed.

figure we can see the same voter delegating to multiple recipients, where one of the
delegations has a low priority and is only accounted, if the high priority delegation is
not used. The upper right corner exhibits a circular forwarding, so eventually none
of the delegators submits a ballot. In the bottom two voters delegate to a trustee,
which then further delegates the delegated votes to another proxy (delegation chain).

A key feature of proxy voting, mentioned in most of the concepts, is its reversibil-
ity – you as a voter can revisit the delegation, take it back and vote for yourself.
This action is effective for all ballots that are not already closed at the moment of
revocation.

LD provides great flexibility. You do not have to decide yourself on the program of a
political party, which only suits some aspects of your opinion. You have the freedom
to express your views on every topic to be voted on or possibly delegate to someone
you trust and hold best qualified to decide on an issue. As a result, all voters can
choose between direct and indirect democracy creating a hybrid government form
suiting their own views.
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2.2 Voting Regulations in Germany

The government form of Germany is a federal parliamentary republic. The Consti-
tution (Grundgesetz) defines the basic rights of German citizens and the judical and
political basic order. “Alle Staatsgewalt geht vom Volke aus. Sie wird vom Volke in
Wahlen und Abstimmungen und durch besondere Organe der Gesetzgebung, der vol-
lziehenden Gewalt und der Rechtsprechung ausgeübt. (All state authority is derived
from the people. It shall be exercised by the people through elections and other
votes and through specific legislative, executive, and judicial bodies.)”[22, Article
20, Paragraph 2] This describes the fact, that in the Federal Republic of Germany
the citizens govern the country indirectly through the parliament (Bundestag). Its
representatives are appointed through elections and the requirements on them are
the following:

“Die Abgeordneten des Deutschen Bundestages werden in allgemeiner, unmittel-
barer, freier, gleicher und geheimer Wahl gewählt (Members of the German Bun-
destag shall be elected in general, direct, free, equal, and secret elections.) [. . . ]”[22,
Article 38, Paragraph 1]

The five election characteristics are described below:

• Free – Nobody can be coerced to cast a certain vote

• Equal – The votes of all participants have equal weight.

• Secret – Nobody knows what other people voted for.

• General – An election Involves all constituencies in the selection of the can-
didates.

• Direct – Ballots are cast for the representative entity (person or political
party) to be elected.

Although a general description of the voting characteristics appears in the German
constitution, no exact definition of the election process is given. The overview of
the electoral system and its bodies, the franchise are election process are described
in the Federal Electoral Law (BundesWahlGesetz, BWG). Section 5 of the BWG is
of further interest, as it depicts the three possible ways of casting a ballot:

• paper ballot ([1, Article 34])

• voting machines ([1, Article 35])

• postal ballot ([1, Article 36])

Paper ballot is the default way of voting and covers all of the requirements stated
by the German constitution. It is carried out in supervised locations (voting booth)
on election day. In recent years we see a trend toward the postal ballot, as in the
last elections in 2009 about 21.5%[12, Postal Ballot in 2009] of the Germans used
this way to vote. In comparison in 2005 the percentage was only 18.7. Even though
this type of voting probably violates both the secret and free requirements, it is
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more comfortable and less time consuming for voters to take part in the process
from home.

The use of voting machines covered by Article 35 causes still ongoing discussions. On
the 3rd of March 2009 the Federal Constitutional Court (Bundesverfassungsgericht,
BVerfG) judged against electronic voting machines used in the elections in 2005[7,
BVerfG Judgement: Wahlcomputer unconstitutional, 2009], though didn’t declare
the Article 35 as unconstitutional. The problem was that the voting machines used
did not allow every citizen, taking part in the election, to verify the fundamental
steps in the voting procedure. According to the courts view, it is easier to manipulate
the data available only in electronic form. Compared to that, manipulation of paper
ballots is possible[10, Election Manipulation in Dachau (Bayern), 2002], but seen
as much more expensive and difficult to achieve. Nevertheless the use of electronic
voting has appealing advantages compared to paper ballots, so the next section will
introduce electronic voting schemes and their benefits.

2.3 Electronic voting

Electronic voting, also referred to as e-voting), is characterised through the use
of electronic devices for both the vote casting and counting. Compared to paper
based ballots, its advantages are the faster, flexible, cost effective and accessibility
suitable ballot procedures. Though currently existing e-voting systems suffer a
major problem - vote manipulation is not detectable.

Electronic voting can be divided into two types:

1. traditional polling stations using electronic equipment

2. voting over the Internet (a.k.a. i-voting)

In case of 1) the voting process is supervised through government representatives
or independent authorities, which guarantees the smooth course of the voting pro-
cedure. This is not possible in case of 2) as all voters use their own electronic
equipment (desktop PC, laptop, mobile phone, etc.) and can even be abroad at the
moment of voting. For this reasons vote selling or coercion present another major
problem in such systems.

In recent past a large number of electronic voting systems were proven insecure ([20],
[25], [21], [32]). This shows how important it is to design the system with main focus
on security.

2.4 Cryptographic Basics

This section introduces the cryptographic basics needed to understand the Chap-
ter 4 and 5. The main focus in on data structures created with the help of a hash
function and the RSA algorithm for blind signatures. As the RSA encryption algo-
rithm is a well known, it is only summarised shortly.
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2.4.1 Hash Function

A cryptographic hash function h() is defined as a “computationally efficient function
mapping binary strings of arbitrary length to binary strings of some fixed length,
called hash-values” [30, Menezes, Oorschot, Vanstone]. The resulting hash values
represent a compression of a variable length input set to a fixed length output set.
As a result collisions arise – different input values x1 and x2 generate the same
output y = h(x1) = h(x2) . Furthermore has every cryptographic hash function
the two important characteristics one-way and collision-resistant. The former
expresses, that it is easy to compute the result h(x) given the binary string value
x, but hard to compute x for a given hash h(x). In this context the terms easy and
hard refer to the algorithmic complexity and describe if a polynomial time algorithm
to solve a given problem exists or not. The latter characteristic implies that finding
two values x, y with x 6= y that hash to the same value h(x) = h(y) is a hard

problem. For more details refer to [30].

As reversing the output of such functions is not efficiently possible with current
mathematical approaches and finding a matching input hashing to the same value
is hard, this class of functions can be used for example as randomisation functions
(password hashing), checksumming (data integrity) and digital fingerprints (source
verification).

2.4.2 Hash Chains

A hash chain can be generated from a starting value x using the cryptographic hash
function h() (see Subsection 2.4.1) in the way presented in Figure 2.2

Figure 2.2 Hash chains are generated with the help of a cryptographic hash func-
tion repeatedly applied to an input value hS. The input value and the
last element hA, which is called anchor, define the hash chain.

First of all, the supplied input x is fed into the function h(). The resulting output
h1 is then fed again as input to the hash function and this process is iterated up to a
number of steps n. This way a hash chain Hn(x) = y with starting element x, depth
n and output y, also called anchor, is generated. Because of the characteristics
of the hash function h() there is no way to find out the starting element x only
knowing the anchor y, so giving away the value y leaks no information about any of
the previous elements in the chain.

A standard application area for hash chains is password protection in insecure envi-
ronments as described by Lamport in [9].
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2.4.3 Hash Trees

A hash tree is build, alike a hash chain, with the help of a hash function h(), as
shown in Figure 2.3. This data structure is developed by Ralph C. Merkle and is
therefore also called Merkle tree ([30, Page 464]).

Figure 2.3 A hash tree again requires a cryptographic hash function, but the con-
struction has the form of a binary tree. The string values of the nodes
on position 2i and 2i+1 are concatenated and hashed together to gen-
erate their parent element in the tree. The most significant element is
the tree root.

The generation process starts with a list containing a power of two number of input
values, which are hashed to generate the lowest level nodes (leaves) of the tree.
These are then pairwise concatenated and hashed to generate the upper level of
the tree. This way every transition to an higher level has twice as few nodes as the
previous and in log (n) steps the complete tree is build. Constructing a tree with the
same root node without knowing the starting values and their arrangement in the
lowest level is exactly so hard as reversing the hash function h(), as all transitions
base on it.

2.5 Public-key Cryptography

In the following two different public-key algorithms will be presented. The first one
is the Diffie-Hellman (DH) algorithm, which can be used only for establishing a
shared encryption key over an insecure communication network. The second is the
RSA algorithm, which allows encryption and decryption of information and also can
be used for digitally signing messages for the purpose of sender verification.

2.5.1 Diffie-Hellman Key Exchange

The Diffie-Hellman Key Exchange (DHKE) algorithm allows two parties communi-
cating over an insecure network to exchange encryption keys in a secure manner. No
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third party having access to the messages exchanged is able to efficiently generate
the same key. The base of the algorithm is the difficulty of computing a discrete
logarithm of a given number in a finite field, however the exponent in the same finite
field is a computationally easy operation. The algorithm can be used by two or more
parties and is executed on the same way, so only an easy to understand example
from Schneier [31, Chapter 22] is presented in the following.

Algorithm steps:

1. Alice and Bob agree over a possibly insecure channel on two large primes n,g
(public key parts), where g is primitive mod n, over a possibly insecure channel

2. Alice chooses a random large integer x (private key Alice) and sends Bob
X = gx mod n

3. Bob chooses a random large integer y (private key Bob) and sends Alice
Y = gy mod n

4. Alice computes k = Y x mod n

5. Bob computes k′ = Xy mod n (shared secret key)

At this point k = k′ = gxy mod n so Alice and Bob have generated the same key.
An adversary observing the communication between them has the values g, n,X and
Y but is not able to compute either x nor y - discrete logarithm computation in finite
fields is an NP problem - thus it can neither compute gxy mod n.

The algorithm is practical in many situations as no secure channel for information
exchange is needed and the parties do not need any information about each other,
but it has a serious problem if an adversary is in the MitM position. As no mutual
authentication between the parties takes place, the attacker Mallory can pretend to
Alice to be Bob and to Bob to be Alice. This way Mallory generates common keys
with Alice and with Bob gaining the possibility to decrypt messages from Alice to
Bob and the other way round. If the attack is to remain undetected, he just has to
retransmit the messages to the right recipients using the keys he shares with them.
To remedy this problem, some form of authentication has to be done before DHKE
is used.

2.5.2 Encryption and Decryption with RSA

The name RSA is a combination of the initials of the surnames of his developers –
Rivest, Shamir and Adleman. RSA bases on the factoring large integers problem,
which is supposed to be NP-hard at the current state of mathematics knowledge.

The RSA algorithm allows the encryption and decryption of data with the math-
ematically connected key pair (Kpub, Kpriv).The first part (Kpub) is used for data
encryption and consists of the modulus n and the exponent e, which are prime to
each other. This key is to be shared with everyone willing to securely communicate
with the key owner and is therefore called public. The second part (Kpriv) is the
decryption key, has to be kept in secret and is hence called private key. It consists
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of the same modulus n and the multiplicative inverse d = e−1. Though they are
mathematically connected, there is no efficient way to compute the private key from
the public key.

This method gives two arbitrary parties the possibility to communicate over an
insecure network without having to exchange common encryption key over a secure
channel, but it is about 1000 times slower than symmetric algorithms. If used directly
on the data to be encrypted it is also vulnerable to so called chosen-plaintext attack.
This means that an attacker having the key Kpub is able to encrypt chosen texts and
compare them to a intercepted ciphertext (encrypted text block). This way a match
between the ciphertext and the attacker’s encrypted value reveals the encrypted
content of an intercepted message. This method does not allow the decryption key
to be recovered, even if a successful attack can be mounted.

2.5.3 Digital Signatures with RSA

According to Schneier [31, Chapter 19.3], the RSA scheme can also be used to
digitally sign a message M so that a receiver can verify the identity of the sender
this message. This time the encryption operation is used for signature verification
and the decryption operation matches the signing of a message. As both tuples
(signing, encryption) and (verification, decryption) are reverse operations, caution
is to be taken when the same key is used for both encryption and signature purposes.
If an attacker is able to influence the input and get the resulting output, attacks
on these schemes are possible. Examples like chosen ciphertext, common modulus
and low exponent value attacks and further problems connected with this type of
cryptography are described in detail in [31, Chapter 19.3].

In this subsection the principles of asymmetric cryptography were presented and the
RSA algorithm for data encryption and digital signing was explained. In the next
section an algorithm based on RSA will be presented, which makes it possible to
achieve a digital signature from a third party on your own data, without having to
disclose the data to it.

2.5.4 Blind Signatures

The concept of blind signatures was invented by David Chaum [31, Chapter 23.12]
and uses the already presented RSA scheme for digital message signing. It allows
one party to receive a signature on a transformed (blinded) message, which can later
be transformed back to the original message with a signature. This way the signing
party does not see what is the content of the message to be signed, which makes this
approach appealing for privacy-concerning applications like online voting systems.

To give an example of the algorithm, the two parties Alice and Bob are again involved
in communication. Alice uses the private key (d, n) and Bob is in possession of the
corresponding public key (e, n) (see Section 2.5.2). So if Bob wants Alice to blindly
sign a message that Bob generated, the following steps are to be executed (following
Schneier [31, Chapter 23.12]:

1. Bob choses a random number k, where 1 < k < n.
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2. next he blinds the message M by computing
t = Mke mod n.

3. Alice signs the blinded result t by computing
td = (Mke)d mod n.

4. Bob reverses the blinding procedure by multiplying td (signed message) with
k−1:
s = tdk−1 mod n = (Mdked)k−1 mod n = Md mod n
(ked mod n = k, see above).

As this approach bases on the RSA algorithm, the same concerns on the security
apply here too.

2.6 Connection Security

To ensure the integrity and secrecy of any data transferred over a network the data
should be transmitted only in combination with a Message Authentication Code

(MAC) and be in encrypted form. This way no adversary is able to manipulate or
read the information while in transmission.

The MAC value is generated with the help of a special cryptographic hash function,
which compared to normal ones takes an additional parameter. This is a secret
key known only by the parties communicating, making it impossible for adversaries
to generate a valid MAC for a given message. For the encryption of the traffic
both symmetric or asymmetric cryptography can be used. The advantages and
disadvantages for both types are shown in Table 2.1.

Symmetric cryptography is easy to use, as the algorithm is straightforward, the
shared key is generated randomly and the encryption/decryption functions are about
thousand times faster than the asymmetric counterparts. Though key negotia-
tion/exchange has to happen over a side channel or an already existing secure channel
over the insecure network e.g. over a trusted third party. If communication with an
unknown party is needed, there is no way to verify that only the right person got
the shared key which makes MitM attacks possible.

Asymmetric cryptography enables the parties having each others public keys to
establish a secure key (thus secure channel) over a public network without any
difficulty. As the keys needed for this purpose are public, they can be uploaded to
servers accessible by anybody or even send unencrypted per e-mail. Though using
public-key cryptography is really slow. Furthermore it has to be verified, that the
key does belong to the right person.

Because of these weaknesses both methods are not directly suitable for ensuring
connection security. If a connection with large data volume is to be secured, no
asymmetric cryptography should be used. In contrast, if only a small data volume
is to be transferred, the enormous costs needed to share a key for a symmetric
algorithm are not justifiable. Thus hybrid algorithms evolved, which use asymmetric
cryptography to establish shared keys over an insecure network and then symmetric



2.7. Anonymity 15

Symmetric Cryptography Asymmetric Cryptography

Pros

• fast encryption/decryption

• easy to use scheme

• shared key generated at ran-
dom (one-time usage)

• usable on insecure networks

• no secrecy needed by public
key distribution

Cons

• access to shared secure chan-
nel for key distribution

• key distribution problematic

• communication with unknown
parties complicated (no secure
channel for key exchange)

• slow encryption/decryption

• public key of communication
party has to be available

• identity of public key owner
not directly apparent

Table 2.1 Comparison of the advantages and disadvantages of symmetric and
asymmetric cryptography.

algorithms are used to secure the data. But this is still not enough, as no MAC
information for data authentication/integrity is contained.

A for this purpose suitable cryptographic protocol is Transport Layer Security

(TLS), the successor of the Secure Socket Layer (SSL) protocol. It exhibits a hy-
brid behaviour negotiating an encryption key over asymmetric methods, supporting
a lot of symmetric ciphers for the actual connection encryption and providing hash
functions allowing MAC generation for integrity protection. As TLS works on layer
6 in the ISO/OSI network model, no changes in the application functionality are
needed to implement it, but only the socket of a newly established connection has
to be extended to use the protocol. As SSL/TLS had a number of security related
problems ([13] and [11]) in recent years, the protocol has to be used with caution,
so that no security issues are introduced in the implementation.

2.7 Anonymity

In this section two different ways will be presented which allow users to guard their
privacy while using a network like the Internet. There are anonymous message
boards and anonymous proxies. The former focus on not saving any connection data
which can be used for identification. The latter are servers operated by independent
organisations, which users can use as packet relays. They forward (proxy) packets
on behalf of the users and hide the real connection data from the server the user
wants to communicate with.
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2.7.1 Anonymous Message Boards

In the sense of computer science, a message or bulletin board is piece of software
allowing users to post messages, which are available to all visitors. Nobody (be-
sides the system operator) is able to modify or delete them. If the message board
system does not exhibit the information needed to connect a given post to a user
identity, the system is called Anonymous Message Board (AMB), hence allowing
anonymous postings to all reading the respective board. Such systems are mainly
used in electronic voting systems, where a adversary has to make a commitment in
an anonymous way.

2.7.2 Anonymous Proxy Servers

An Anonymous Proxy Server (AP, APS) or anonymiser is a intermediate entity
providing a packet forwarding service on behalf of the clients using it. Furthermore
the IP address information of every client is hidden and it seems that the anonymiser
is the connection endpoint. This allows users to anonymously use the Internet
making their online activities untraceable, which is the main reason for using an
APS. An additional purpose could be to circumvent access control (filtering) based
on geographical location, nationality and so on.

Though the client requests coming through the APS are indistinguishable for a
service provider, the IP address information of every client is available on the APS.
Because of this fact a certain degree of trust in the APS operators is required, when
using an APS.

To reduce the needed trust in a single operator/authority a high number of anonymis-
ers can be used simultaneously to build a chain of APSs to communicate with a given
service. In this scenario the information of all used proxies is needed to be able to
correlate the clients with the services they used. This way the privacy is enhanced
proportionally to the number of APS nodes used. The Tor4 project and JAP5 are
a nice example of software implementations allowing chaining of anonymous proxies
and using also other innovative concepts like dynamic chains (proxy servers used
change in time) to improve the anonymity of their users.

However there are still some security relevant problems when using an APS with an
unencrypted connection. The proxy server (or proxy chain) is able to read all data
transmitted through it as it is in the man-in-the-middle (MitM) position. This
is a security risk if confidential data is exchanged. Furthermore if adversaries have
access to the local network of a given area, they can check if a specific server is being
contacted through observing the traffic on the network. As it is generally a good
idea to uses encrypted connections, it is much more important in the case where
anonymisers are used, as the anonymity/privacy is obviously highly prioritised.

4https://www.torproject.org/
5http://anon.inf.tu-dresden.de/
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The rising interest of more and more citizens in directly influencing the govern-
ment course gives rise to several new implementations of LD. Currently more than
20 projects exist and most of them are actively developed. In this chapter I will
present only the three mostly used and best-known of them, which are Adhocracy,
Votorola and LiquidFeedback. The reader will be able to see the advantages and
disadvantages in these systems and be able to compare them to my design described
in Chapter 4. I will come back to these approaches in my evaluation in Chapter 6.

3.1 Adhocracy

Adhocracy is an open-source project developed by the Liquid Democracy associa-
tion and is available under the Affero GPL v3 (AGPLv3) license1 meaning, that the
source code is included and it can be freely used, redistributed and modified. At
the time of writing version 1.2 of the project is available in the code repository.
The development is done in the high-level scripting language Python2 with the help
of the Pylons Framework3. Though Python is not extraordinary fast in execution
time compared to low-level programming languages, it allows rapid and straightfor-
ward software development. Furthermore the usage of software like Apache Solr4

and Memcached5 used normally in scalable, high-performance systems suggests, that
the performance of Adhocracy is good even by reasonably large (> 100k) amount
of participants. Much work is invested in the graphical user interface - it’s default
appearance is simple and appealing, as shown in Figure 3.1. This allows even un-
experienced users to operate the system with ease after a short adaptation phase.

1http://www.gnu.org/licenses/agpl.html
2http://www.python.org
3http://www.pylonsproject.org/projects/pylons-framework/about
4http://lucene.apache.org/solr/
5http://memcached.org/
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Figure 3.1 The simple and appealing design of a sample Adhocracy installation.

“The core process of Adhocracy is focussed around the creation and collaborative
development of (policy) Proposals” [15, Platform Basics]. Proposals are actually
objects consisting of Text objects. The system allows suggestions on both types
to be made through the use of the Comment objects. So a discussion about the
strengths and weaknesses of one Proposal as a whole can be started, but also a minor
problem concerning only a part (one or more Text objects) of the Proposal can be
addressed. Voting procedure can be started for any of the three types of objects. For
the Text or Comment objects it rates their popularity, whereby only the users voting
in favour or against the object are counted. As a result the object is either included
in or rejected from the Proposal. In the case of a Proposal, the voting procedure
is considered successful only if a quorum of all system participants is reached (e.g.
66%) and hold for a minimal amount of time (e.g. 1 week).

Both of this voting procedures described above allow proxying of the own vote. The
delegation types supported by the system are one-time, multiple, only for an area
(e.g. politics, health care) or a global, not limited in time delegation. In case of a
multiple delegation, only if the same decision is made by all, the vote is counted.
The vote owners have the right to outvote their delegatees at any time.

Every Adhocracy installation allows a large number of instances to coexist on the
same system. User registration is required for system access, but no encryption and
integrity protection is supplied in any form. “Adhocracy does not allow for any
kind of secret voting. A full public voting record is available for all users, at any
time.”[16, SecretBallots]. On the topic of system security, the Adhocracy developers
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deliberately do not deploy complicate protocols and cryptographic routines to secure
the voting procedure. They state:

“Unfortunately, most of these proposals are extremely complicated and
require the user to install special software on their PC, follow non-trivial
processes and to manage cryptographic keys. Yet, even these tools do
not guarantee perfect security: shit just happens.”[16]

which makes clear how highly improbable it is, that the developers focus on security
aspects any time soon. Despite the developer’s attitude with respect to anonymity
and security, Adhocracy is the most commonly used and tested system by the po-
litical parties in Germany, regarding LD. Bündnis 90/die Grünen (Alliance 90/The
Greens), die Linke (the Left), SPD and FDP are experimenting for more than a year
with the software. It was also used in the Munich Open Government Day6 to collect
proposals for the Munich Open Government initiative. On the one hand, this shows
the necessity of a LD implementation, but on the other hand, it raises the question,
why the most common of the implementations does not even try to design a secure
and anonymous voting system.

3.2 LiquidFeedback

The next software project I will discuss here has the name LiquidFeedback and
is developed by the Public Software Group association. The system is split in two
packages – the core (backend) and the user interface (frontend).

According to the Public Software Group their implementation“focuses on structured
feedback and the voting process itself while leaving the means of discussion within
an initiative (alliance or party as far as an issue is concerned) to the choice of a
given initiative”[18]. As these are also key aspects in Adhocracy, a similar approach
is applied in LiquidFeedback. The key difference is the hierarchical layer, which
is used to categorise the initiatives in themes. Initiatives are the equivalent to
proposals in Section 3.1 and are used as the main tool in the consolidated decision
making. A user willing to start a new initiative has to find the best matching theme
and initiate it there. Comments and competing initiatives can be issued there as
well.

Before the initiatives are mature enough to start a voting procedure, the theme
containing them has to run through a number of the following statuses:

1. NEW - A theme with newly added initiative(s).

2. DISCUSSED - Comments on and changes of initiatives are allowed.

3. FROZEN - No modifications of the theme are allowed.

4. VOTING - Voting procedure on the initiatives currently takes place.

5. CLOSED - Voting procedure has finished.

6http://mogdy.adhocracy.de/instance/mogdy
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6. ABORTED - Theme didn’t reach the minimal requirements for a voting
procedure to be initiated and the theme has been closed.

These statuses are bound on quorum levels and time spans, which are defined by
the operator of the LiquidFeedback instance. Typical numbers for the quorum can
be from 20 to 30%. and 2 to 4 weeks for the time spans.

A new theme with shortly added initiatives first has to constitute a quorum by ex-
ceeding a minimum user interest level for a specified period of time. If one or more
initiatives of the theme fulfill these conditions, the theme state changes to DIS-
CUSSED, otherwise it is closed and the status is changed to ABORTED. In this
state every user is able to comment the initiatives and add new possibly competing
initiatives. After another time span, the theme status changes to FROZEN. This
phase has a proportionally short duration and its purpose is to hinder last minute
changes in the text of every initiative. It furthermore includes the condition, that
every initiative has to reach a specified quorum to be added to the list with choices
for the vote. This way the users are not flooded with too many possibilities, but
have a small amount of well supported initiatives to choose from. After a theme
has reached the VOTING status and at least two initiatives reached the quorum,
a voting procedure can take place. As the system implements the LD concept, it
implicitly allows vote delegation. For example a user Alice can delegate her voting
rights to one or more experts simultaneously, whereby the vote can be used only by
the one of them. Furthermore she can delegate her voting right only for a certain
theme to another user. This way she doesn’t have to bother any more about this
particular decision, but still actively takes part in other voting processes. An im-
portant difference to the other systems presented in this chapter is the time-bound
delegation – after a given period of time this delegation is automatically canceled.
This allows users to think over their decision in regular intervals. The cancellation
can also be issued by the vote owner, allowing to recall the delegation at any time.

While a voting procedure is ongoing, related informations are kept private, but
after its end all the information is made public. This allows users to check how
their delegations have been used, and check the correctness of the voting results.
Consequentially no anonymous vote can be held with the help of LiquidFeedback.
The direct connection between user account and vote can be established by everyone
having access to this public data, which also makes it impossible to hold a secret
election. Recently the use of pseudonyms has been implemented to counter this
problem. Although the mapping between real name and pseudonym can still be
achieved by the system operator, which would allow vote filtering based on the user’s
identity. As no receipts are issued, nobody is able to prove that a manipulation has
taken place.

To safeguard the secrecy and integrity of information exchanged with the Liquid-
Feedback system TLS can be used on the web server, which weakens the chance of a
MitM attack. Although no security concerns are discussed on the homepage of the
system and there is no infrastructure to detect modification in the database or en
route.

LiquidFeedback is primarily used by the Pirate Party in Germany, therefore the
developers focus on implementing features interesting for this party. Still, the soft-
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ware is open source and published under the MIT license7. This allows everyone to
acquire the source code, distribute or modify it and use it for his purposes.

The primary users of LiquidFeedback are the local branches of the Pirate Party,
which set up on-site instances of the system and use them for internal decision
making. Since August 2010 a nationwide Pirate Party LiquidFeedback instance8 is
available. At the time of writing, it has about 7000 users with 1400 themes open for
discussions and comments and is the largest installations in existence, showing the
largest interest in LD.

3.3 Votorola

Finally, I discuss the software project Votorola. In comparison to both previous
systems, it is developed by a small group of only three active contributors and is not
connected to any political party or association. Votorola is being developed in Java,
which makes it OS independent. The system architecture is modular and contains
among others the following modules:

• Vote engine

• User interface (UI)

• Voting register

• Discussion platform

Because of this structure it is possible to exchange single modules without modifying
the complete system. Distributed voting approach is feasible, as the modules don’t
have to run on the same server nor to have access to the same database. Currently
the user interface looks similar to Mediawiki9, as Votorola uses it as a discussion
platform. Though the implementation is still a prototype and is actively tested
and developed, the architecture seems promising. Compared to Adhocracy and
LiquidFeedback, it uses another approach for consolidated decision making called
communicative delegation10, which is presented in Figure 3.2.

In the first step of this process participants make drafts with their views publicly
available. Next every participant searches for similar views, is able to discuss them
with the owner and possibly modify them, so that they correspond to common
views. To support this new draft the panellists delegate their own votes to the
owner of the draft, who becomes a proxy/expert for their views. Stepwise every
group searches for other groups having similar views and cooperates with them.
Agreeing to compromises and creating new drafts, all can achieve greater support
for their cause in form of more delegated votes to the new draft. This repetitive
proxying results in a number of delegation trees, which contain all drafts. As every
time compromises are made to get further support in the next tree level, at some

7http://www.opensource.org/licenses/mit-license.php
8https://lqfb.piratenpartei.de/
9http://www.mediawiki.org

10http://zelea.com/w/User:ThomasvonderElbe GmxDe/Communicative Delegation
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Figure 3.2 Communicative delegation process, where a large amount of small
groups discuss proposals and cooperate on shared-interest drafts. At
the end only a reasonable amount of drafts is available for voting.

point in time the interests of a individuals supporting the draft in tree nodes, e.g.
in the leaves, are not present any more. This voters can withdraw their support
and hence delegation and search for a new draft better suiting their views. After
a number of iterations this process stabilises and results in small amount of final
drafts (tree roots) with large support, which are then used as possible choices for
the voting procedure.

As a result of its architecture, Votorola has support for delegation of delegated votes,
as this is the way the support in the tree is represented. Delegation is possible only
to one entity. Delegation to multiple entities would make it hard to oversee in which
tree branch a delegation is really counted and if it is counted only once. The system
does support outvoting and also a permanent domain delegation is planned, but not
yet implemented. This would allow a proxy to permanently (with outvoting still
possible) use a vote in a given domain e.g. privacy, politics, health care.

The Votorola system is designed in such a way, that voting procedures are fully
transparent. Every participant is able to access the votes of others and reconstruct
the proxy chain for their votes. This facilitates a publicly verifiable voting results but
also makes it impossible to hold a secret or anonymous election. Changes allowing
secret or anonymous voting make the Votorola system unfeasible. Furthermore no
measures have been planned to secure the votes in case of system state manipulations
or allow the voters to prove their voting decisions using receipts.
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3.4 Summary

The currently existing projects implementing delegated voting concepts focus mainly
on the collaborative decision making and allowing verifiable results through making
the voting information public. This way no anonymous and secret voting can take
place. Furthermore none of the systems issues receipts in any form to supply the
user with a way to prove manipulation by the system operator. No cryptographic
procedures are used to secure data on the transport way or in the system making
it possible for attackers to influence the result of such a voting procedure without
being detected. None of the presented systems even roughly satisfies the voting
requirements put in place by the German Constitution. Consequently, they are not
useful as a electoral procedure on the state or regional level.

In the following chapters I will describe a system implementing vote delegation,
which strongly bases on cryptographic routines and focuses mainly on the security
aspects of the voting procedure. My aim is to have a system conforming with
German Constitution and allowing a publicly verifiable voting results in a secure
and anonymous way.



24 3. Related Work



4
Design

This chapter introduces the design of the system and is divided in five sections. First
I formulate the requirements for the system and then present the architecture on a
conceptual level. This is followed by a detailed description of the voting process and
a section dedicated to further improvements of the concept. The last section shortly
summarises the system design.

4.1 System Requirements

The main goal of my thesis is to create a voting architecture based on the LD concept.
The focus is on the security of the system and the anonymity of the participating
users. Both attributes are not guaranteed in the current implementations discussed
in Chapter 3 as these mainly concentrate on consolidated decision making. Further-
more I aim at conforming to national voting regulations and laws in Germany, which
would allow the concept to be used for elections on the regional or state level. This
leads to the following requirements, which have to be satisfied by the design:

1. Voting over the Internet - The voting procedure can be carried over an
insecure network like the Internet.

2. Anonymity - The information available in the system doesn’t allow the iden-
tification of individual voters or the correlation between them and their votes.

3. Secrecy and integrity of transferred data - The data is transferred only
over encrypted and integrity protected connections, so no third party is able
to intercept plain text data or manipulate it unnoticed.

4. Voting results integrity - Manipulation of voting data is not possible or
highly improbable.
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5. User authentication/authorisation - The identity of the individual can be
checked at the moment of issuing voting credentials and the right to vote can
be verified during voting.

6. Generation of credentials only to valid users - The server can generate
valid credentials only on request of an authorised user. If it randomly generates
legit credentials, the chance of being detected is high.

7. Non-repudiation - Voting credentials are acquired in such a way, that the
client can’t deny having acquired such.

8. Proxying - The own voting rights and delegated votes can be further delegated
to one or more entities, albeit only a limited number of times. (demanded by
LD)

9. Proxy-Reversing - A delegator can revise a vote-forwarding decision at any
time before the election is over. (demanded by LD)

10. Public voting results - The voting results are public and verifiable by ev-
eryone.

The German Constitution (see Section 2.3) regulates the voting procedure and re-
quires, that every election for the parliament is general, direct/immediate, free,
equal and secret. General, free and equal are fulfilled through the anonymity-
requirement (2.) as this prevents the system to distinguish between different users.
Discrimination is theoretically possible (though prohibited by law) on the side where
voting credentials are acquired. But as this is comparable with the state-of-the-art
voting procedures, there should be no drawbacks for the concept based on this fact.
Fulfilling the requirements (2.) and (3.) makes it impossible for an observer with
(insider) or without knowledge (outsider) of system information to know what a
voter has voted for. Though bystanders, who are able to repress/threaten the voter,
can be present at the moment of voting. This is mitigated by the requirements (8.)
and (9.), which would allow a repeated voting, but would suppose that the bystander
is no longer on site. This problem also exists in the postal voting mechanism, which
conforms to the German Constitution. For this reason the way to eliminate it will
not be discussed in the main concept part but is introduced in Section 4.4, where a
further improvement of the design is presented.

The system architecture presented in the next section fulfills the above defined re-
quirements and should satisfy the regulations in the German Constitution with re-
spect to voting. It should therefore be usable for parliamentary elections.

4.2 Conceptual Overview

The architecture of my system is presented in Figure 4.1. There are three servers
employed in the process – the Voting Register (VR), the Voting Computer (VC)

and the Anonymous Proxy. The VR contains all the information needed to verify
the identity of the voters, supplies them with voting credentials and records who did
get credentials and who did not. The VC is responsible for verifying the validity of
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Figure 4.1 System design showing the relations between the entities Voting Reg-
ister (VR), Anonymous Proxy (AP), Voting Computer (VC) and the
three voters. Alice, Bob and Carol can interact between each other
and the servers through the operations having an arrow in front of
their name. The three remaining operations are executed only from
VR and VC and don’t require any interaction.

the voting credentials, recording the ballot and issuing a receipt for it. The AP is
needed so that the VC is not able to tell voters apart (relying for instance on IP
address information) and not able to discriminate them.

To be able to take part in a voting procedure, valid voting credentials are needed.
Acquiring these can happen either through directly interacting with the VR (1) or
through proxying (2). The actual voting (3) is the concluding step, that if success-
fully carried out, results in a receipt from VC and implies a successful completion of
the procedure.

The following section describes in detail the three processes from Figure 4.1 and
adds two additional steps to round the procedure off. Subsection 4.3.1 presents the
pre-processing needed, for an actual voting to be able to take place. Subsection 4.3.2
shows how voting credentials can be acquired anonymously and securely, followed
by Subsection 4.3.3 showing the vote forwarding process, focusing on the security
issues which can arise, if the voting credentials are not kept secure. Section 4.3.4
and presents the actual voting consisting of verification procedures and receipt gen-
eration. The following Section 4.3.5 describes the post-processing actions like voting
results calculation and publishing.

4.3 Voting Procedure

The design of the voting system presented in Figure 4.1 can be divided into the
following six phases:
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1. Preparation (Section 4.3.1)

2. Interaction with VR (Section 4.3.2)

3. Sealing VR’s database (described in election finalisation, see Section 4.3.5)

4. Delegation process (Section 4.3.3)

5. Interaction with VC (Section 4.3.4)

6. Election finalisation (Section 4.3.5)

Each of them describes in detail the exact actions users and servers, involved in
the election process, are allowed and able to carry out and the interaction that
can or must occur between them. Furthermore I describe the problems in terms
of secrecy and anonymity and present solutions for them. If further issues arise
by the deployment of a specific solution, their impact and severity is subsequently
discussed.

Before we can proceed with the vote preparations section, a problem arising from
requirement (7.) in Section 4.1 has to be discussed. The non-repudiation feature of
the VR can be achieved through the use of RSA keys (see Subsection 2.5.2, Chap-
ter 2) as an authentication mechanism. The only person able to decrypt/sign a given
message is the owner of the private key, so the identity can be determined unam-
biguously. As a consequence, every citizen willing to take part in voting procedures
has to possess a RSA key pair and the corresponding public key has to be known by
the VR. The procedure of acquiring the public part of the user’s key can be handled
by the authority responsible for the register lists and should require the verifica-
tion of the user’s identity prior to updating the saved key. The exact procedure of
supplying the user’s public key to VR is out of scope of this thesis. It is assumed,
that the register lists needed for the initialisation of every voting procedure include
the personal information of all citizens allowed to vote and their public keys. The
way these public keys are used to guarantee non-repudiation by acquiring voting
credentials is described in Section 4.3.2.

4.3.1 Preparation Phase

Before a voting procedure can be started, both VR and VC have to generate fresh
RSA key pairs and reinitialise their internal databases. This explicitly invalidates all
voting credentials issued in former rounds. Then, the VR has to acquire a fresh copy
of the register list containing all citizens and their public keys from the responsible
authorities. This list is then signed with the fresh private key of VR and both the
signed list version and its public key are made public. This ends the preparation
phase for the voting.

Publishing the signed register list allows citizens to verify whether they are on the
list and if the appropriate public key is saved for them. As the VR is allowed to
generate credentials only for users on this list, which is sealed through the signature,
the upper limit of voters and their particular keys are publicly known. If the VR
manipulates the list and modifies a public key for a person, this person will, with
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high probability, detect the changed key and can prove that the VR tried to cheat.
The reason is, that the list is acquired from a trusted third party. In the next
phase we will see, why the VR is not able to randomly generate and sign credentials,
though having the ability to issue valid credentials.

The possibility to acquire voting credentials is time limited. After the period has
elapsed, the VR has to publish the list of all citizens, who have acquired voting
credentials. This way there is no possibility to add additional credentials later and
the number of voters is delimited again. This makes it more probable to detect a
manipulation by VC.

4.3.2 Voting Register Interaction

After the initialisation procedures communication with the VR is possible and every
user on the already published register list can acquire voting credentials. Figure 4.2
describes this process and presents the information exchanged between clients and
server. To start the procedure the client initiates an encrypted and integrity pro-
tected connection to the VR. The exact type of encryption is not important, as long
as no content is transferred in plain over the network. Then, an authentication pro-
cedure takes place to determine the identity of the client, which allows the VR to
check if the user is allowed to acquire voting credentials (authorisation) and didn’t
do that already. The procedure is carried out with the help of the public key mapped
to the user and consists of the following steps:

1. The client sends an identification token to the server, which states the identity
of the user.

2. The VR encrypts a randomly generated secret with the public key of the
specified user identity.

3. The VR sends the encrypted content over to the client.

4. The client uses the private key to decrypt the secret and sends it back to the
server.

5. The VR checks, if its saved value is equal to the value returned from the client
and if so, has verified the client’s identity.

6. The VR notifies the client if the process was successful or not.

The only person able to decrypt this secret is the one in possession of the private
key matching the public key saved on the VR. This way the identity of the client
can be proven unambiguous, as long the private key is kept secure.

Hash Chain Generation

At this point the VR has verified the voter’s identity, e.g. Alice, and has to check
if she has already acquired credentials. As these are signed blindly, there is no
means of differentiating if two voting credentials were issued for the same user or
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Figure 4.2 Encrypted communication between Alice and the VR with the purpose
of acquiring anonymous voting credentials in a secure way.

for two different users. Hence she has to acquire only one successful blind signature
otherwise cheating will be possible. Next a hash chain is generated on the client side
through the following procedure:

1. Generate random data RAND.

2. Calculate hS = h(RAND) with the help of a cryptographic hash function (see
Section 2.4.1).

3. Use hS to calculate a hash chain HC with an anchor element hA and depth D
(see Section 2.4.2).

4. Save the elements hS and hA as they define the hash chain HC.
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In step 2) the RAND can directly be used as hS, though to ensure all elements of
the HC have the same length and structure, the h() is used on this value. As a
cryptographic hash function is used to generate HC, only the user in possession
of the starting element is able to achieve the same result. Having an element hI
between hS and hA allows the generation of the part (hI , hA) (see Figure 4.3), but
does not divulge any information about the preceding elements. This characteristic
of hash chains is used for the delegation. The starting first element is kept secret,
other elements can be delegated. The distance from the anchor defines the priority of
the delegated votes – the further away an element is, the higher the voting priority.

Figure 4.3 Alice possesses the Hash Chain (hS, hA). To delegate a Vote, she gen-
erates a Hash hI positioned between hS and hI and supplies it with
sigV R(hA) to the Delegatee.

Blind Signature Acquirement

To make it possible for the VC to verify, that the credentials supplied are valid, a
signature from VR on the anchor element is used. As the voting procedure has to
be anonymous, no connection between the voter’s identity and the credentials used
should exist. To ensure this Alice’s anchor hA is blindly signed through the following
procedure:

1. Alice generates a random value RANDB for blinding and uses it in combina-
tion with the public key of VR (see Section 2.5.4) to scramble hA producing
BLINDED.

2. Alice signs the triple (BLINDED, TIMESTAMP, IDENTITY ) with her
private key resulting in V R RECEIPT .

3. Alice sends BLINDED and V R RECEIPT to VR.

4. The VR checks the signature on V R RECEIPT and if successful, saves the
value into its database, signs BLINDED and returns the resulting string
SIG BLINDED to Alice.

5. The VR additionally makes (BLINDED, TIMESTAMP, IDENTITY ) and
SIG BLINDED available on a web page and reflects in the database, that
Alice got credentials.
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As the blinding operation uses a random value RANDB, whose length VR neither
knows nor is able to brute force, its security is comparable with that of the one-time
pad scheme. Furthermore the only value VR can observe is the blinded anchor, so it
can’t deduce the value of the anchor hA. This makes it impossible for both VR and
VC to map this blinded hash value to a user’s identity and meets for this reason the
anonymity requirement.

The signed triple V R RECEIPT is used to preclude VR from issuing randomly
generated voting credentials. As the triple contains a fresh timestamp and the
actually used blinded value and only Alice is able to generate a valid signature on
it, she has actively participated in the protocol, so no cheating by VR is possible.
The TIMESTAMP value is used as a nonce and counters replay attacks by VR.

After signing BLINDED, the VR transmits the result to Alice and makes the
signed triple public. As Alice’s public key is available in the voters list, everyone
can check if she really requested a signature on the blinded value (triple is signed by
her). If this is not the case, it is clear that a manipulation occurred.

On the point before Alice has received the signed value VR is able to interrupt the
protocol, as it is in possession of the receipt (signed value) from Alice in form of
the signed triple. To circumvent this problem, the communication protocol can be
changed so, that the VR is required to post the value sig(BLINDED) as a message
on an anonymous message board and forward the link to Alice. If the data behind the
link doesn’t contain the right signature, Alice can prove VR cheated (commitment
scheme).

Once the communication with VR is over Alice is definitely in possession of the signed
and blinded value SIG BLINDED. With the help of BRAND the blinding can
be stripped and the result is a signature on the anchor element hA denoted here as
sigV R(hA). A triple in the form (hA, sigV R(hA), hI), where hI ∈ HC and hI 6= hA,
represents the voting credentials for VC.

4.3.3 Vote Delegation

To demonstrate the delegation procedure the users Alice, Bob and Carol will be used.
Alice, who is in possession of the hash chain HCAlice = (hS, hA), decides to delegate
her voting rights to both Bob and Carol, where she sees Bob as the trustworthier.
The result of this process is presented in Figure 4.4.

Alice takes the starting hash hS and computes the hash value h64, which is the 65th
hash in HC (h() applied 64 times). So the new hash chain HCBob is defined through
the elements h64 and hA and is a suffix of HCAlice. Supplying Bob with HCBob

in combination with sigV R(hA) allows him to vote on behalf of Alice, as the new
starting element h64 can be used to generate hA in d − 64 steps and the signature
sigV R(hA) is still valid for the new chain, as the last element is the same. He can
also use HCBob to delegate Alice’s voting rights on the exact same way, allowing
further forwarding (proxying) of the delegated voting rights, which is limited only
by the depth of the hash chain in possession.

At a later time Alice thinks the matter over, and decides to delegate her voting right
to Carol. Alice repeats the procedure described above but uses smaller number of
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Figure 4.4 Alice first delegates the credentials (h64, hA, sigV R(hA)) to Bob, then
she reconsiders her decision and supplies Carol with the higher priority
credentials (h32, hA, sigV R(hA)).

steps, for example 32. The new hash chain HCCarol is then defined as (h32, hA) and
has the depth d− 32 thus having 32 elements more then HCBob. Alice supplies both
tokens HCCarol and sigV R(hA) to Carol using a secure and possibly anonymous

channel, for example encrypted e-mail, encrypted posting on an AMB, randomly
generated URL on a private web server unknown to anyone else or a side channel
like telephone.

As the voting rights of Alice are now available to three different voters, the priority of
the tokens needs to be unambiguously defined, so no problems occur and no cheating
is possible. In the example described here Alice has the highest priority allowing her
to outvote both Bob and Carol. As Carol has the second longest hash chain with
the same anchor element and signature, she is able to outvote Bob, but not Alice.
For Bob to be able to successfully vote with the credentials he acquired from Alice,
both Alice and Carol should not use this credentials in the voting procedure.

4.3.4 Voting Computer Interaction

After acquiring credentials directly by the VR or through proxying Alice can con-
nect to the VC and take part in the voting procedure. This process is represented in
Figure 4.5. First Alice uses an anonymous proxy server (APS) to connect to the VC.
This way her identity can not be determined though the IP address of the computer
she uses. Next an encrypted and integrity protected connection is initiated between
Alice and the VC. This way the APS is not able to read any plaintext traffic although
in a MitM position. To start the authorisation procedure Alice sends the anchor and
the corresponding signature to VC. This happens anonymously, as neither VR nor
VC knows whom this (anchor,signature) tuple belongs to. This prevents malicious
users without valid credentials to connect to the VC and cause useless computa-
tions beyond signature checking, which would exhaust system resources. To further
mitigate the possibility of Denial-of-Service (DoS) attacks, it is even possible as
a precautionary measure to block users with valid (anchor,signature) tuples, who
connect too often or establish a lot of simultaneous connections to the VC.

The demand for public and verifiable voting presents one problem with information
contained in the results published online. Participants delegating their own creden-
tials have all the information available to see for what the delegated vote has been
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used. This means that the authorisation tokens in form of the hash chain and the
voting decision taken by the delegatee must not be directly connected on the web
page as this would otherwise directly contradict the vote secrecy. Though the users
should be provided with the possibility to verify only their own voting decisions.

For this purpose every time a connection between a user and the VC takes place,
a fresh random value (nonce) is generated with the help of the DHKE algorithm,
as described in 2.5.1. This nonce is only known to the actual voter so if published
together with the voting decision, it allows verification and does not break the secrecy
of the voting. As active participation is needed from both sides to generate it,
no client-side replay attacks are possible. This also mitigates VC’s possibility to

Figure 4.5 Encrypted communication between the voter Alice and the VC. Alice
uses an AP to disguise her identity to VC, and acquires a receipt after
the voting procedure is completed, which can be used to verify the
correctness of her own vote.
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generate collisions in the random values used for the check. A collision in this value
would make it impossible for the clients having the same value to verify their choices
unambiguously.

At the end of the DHKE both Alice and VC are in possession of the same value
NONCE. Alice concatenates it with her voting decision to a string S. With the
help of VC’s public key she blinds S using the starting hash VHASH of her hash
chain as a secret and transfers the resulting value BS (blinded string) to VC over the
existing encrypted connection. Through this procedure the risk of VC filtering based
on the choice of a voter is mitigated, as VC commits to the choice without seeing
it and moreover still has no access to the actual voting credentials (only anchor
known). VC saves the value BS temporarily (until the end of connection), signs BS
with its private key (commitment) and returns the result to Alice. She reverses the
blinding and acquires a signature of the vote she would like to submit. As the VC
can’t read the submitted vote, she has to send it the value VHASH used for scrambling
S to BS for the vote to become valid.

At this point in the protocol VC is in possession of both V HASH and sigV R(hA),
which are the voting credentials, and could interrupt without supplying a receipt to
Alice. This allows vote falsification, as Alice isn’t able to proof she submitted a vote
without the receipt. To avoid this problem, Alice can encrypt the values (sigV C(S),
V HASH, sigV R(hA)) she exchanged with the voting computer using its public key
and post them on an AMB. She then sends the link to the encrypted message to
VC. This way if VC is accused of cheating it can decrypt this message, which is an
evidence if this is really the case or not.

Now that the VC is in possession of the VHASH, it first checks if the hash chain was
not already used for voting. If this is not the case VC verifies that VHASH is really the
secret used for blinding and also that it allows the generation of the signed anchor
presented for authorisation in a maximum of nmax steps. If all this is the case, the
voting values are checked for correctness - the value NONCE has to be equal to the
one generated on the server side and the vote has to be contained in the list of
voting options. When this last check is satisfied, a new receipt depending on the
last issued receipt is generated with the help of another cryptographic hash function,
all information (meaning: anchor, signature, VHASH, NONCE, vote, receipt) is saved in
the database and the receipt it returned to the user. The (anchor,signature,VHASH)
values are added in a black list. This way voting with the same credentials is no
more possible.

With this procedure VC is able to block voters from taking part in the procedure
through not accepting valid credentials. Though as every user is anonymous, this
can be done based on the information send to VC and is hence reproducible. A user
can demonstrate the problem and prove this way, that VC cheats.

4.3.5 Election Finalisation

After the period assigned to the voting has elapsed, the results have to be sealed.
This way no further modification is possible. For this purpose two lists are generated
by VC, signed with its private key and made publicly available. The first contains
all the triples (voting hash,anchor,signature). Its purpose is to allow everyone to



36 4. Design

check, if only unique anchors are used and verify the corresponding signatures. Fur-
thermore the voting hash to anchor relation (the hash chain) can be tested. The
second list consists of the (nonce,vote) pairs. This allows voters to check if their
submitted values match the recorded ones, though no connection between vote and
(anchor,vhash) pair is publicly present. The finalisation process ends when the saved
data is signed by a trusted third party and is copied to a secure location. All the
generated data can now be cleared and the VC instance is ready to start a new
voting round.

4.3.6 Structure of the Public Lists

Through the voting procedure VR and VC generate lists containing information im-
portant for the verification process. This section gives an overview of their structure
in chronological order.

First, the structure of the list generated by the VR is presented in Figure 4.6.
The voter’s identity and the corresponding RSA public key are available from the

Figure 4.6 Header of the list generated by the VR, which contains the required
information to allow the public to verify, that VR issued credentials
only to valid voters.

voters list. With their help and the information from the list presented here, every
ballot verifier is able to check, if only real voters acquired voting credentials or a
manipulation took place. To not allow analysis of the data based on timings, it is
published ordered by identity.

Next, the VC has to generate and publish two further lists, which structure is pre-
sented in Figure 4.7. With the help of the VHASH and signed ANCHOR values

Figure 4.7 Header of the two voting procedure verification lists generated by the
VC. The first allows the public to verify, that only valid credentials
were used in the voting process. The second facilitates the check, if the
own vote is present and counted in the overall results.

from the first list the hash chain can be checked. The DEPTH value is an easy way
to verify if outvoting took place or not. Furthermore, if a valid signature is present
on the ANCHOR, it is clear that the VR has issued the voting credentials and this
is a valid ballot.
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The second list has a twofold ability. On the one side it allows voters to verify that
the votes are correctly recorded using their receipts. On the other side the verifiers
can calculate the overall voting results from this data and assure no modification or
cheating has taken place.

4.4 Further Improvements

This section discusses two improvements of the design presented above. The first one
describes a way of mitigating the vote-buying/coercion problem. The second one
aims at extending the delegation possibilities presented in Section 4.3.3. It describes
the use of a data structure more complex than the hash chains, and enables period
and topic based delegation.

Coercion/Vote-Buying Remedy

In the design discussed in Section 4.3 vote buying or coercion is possible as the
voting results are public and all participants can check their own votes. To counter
this problem a trusted third party can be used to verify the results on behalf of
the users. Supplying it with all the voting information (credentials, nonce, vote and
receipt) allows the review of the voting results. If an error is detected, the trusted
third party can issue a complaint and so the identity of the user is not connected
with the modified vote. As the use of only one such party results in a single point
of failure, it is better to allow the users to choose for example 3 or 5 parties, which
they trust in and supply them all with the voting information. This increases the
chances for an error to be found.

For the connection to the trusted third party an APS could be used again. This way
the identity of the user is not leaked.

Another solution can be to use a variable depth hash chain, which would allow users
to outvote the adversary before the voting procedure is closed. Nevertheless, this
doesn’t mitigate the problem, as in case of publicly available results the adversary
is able to verify if outvoting took place or not.

Period and Topic Delegation

The system presented in Section 4.3 allows single and multiple delegations, but the
voter has no way to delegate voting credentials only for a given topic. Besides that
no period (global but timely limited) delegation is possible. With the help of a
Merkle tree (see Section 2.4.3) combined with hash chains, the system can easily be
extended to simultaneously support all these features. For this purpose, first N hash
chains are generated. Next the hash chain anchors hA,1, · · · , hA,N are used as leaves
for the Merkle tree generation. Then the resulting tree is divided into two different
subtrees (not necessarily equal once), as shown in Figure 4.8. The first subtree, e.g.
the left one, is used for the topic delegation and each of its leaves corresponds to
a given subject, e.g. politics, health care, economics, renewable energy. The leaves
of the second (right) tree allow period delegations and describe the time spans, e.g.
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Figure 4.8 Merkle tree structure divided into two equivalent subtrees. The left
one is defined as topic and the right one as period delegation.

the first validity week, second validity week, first validity month. The depth of the
Merkle tree and the division in subtrees is defined by the authority operating the
VC and voters have to conform with that in order to get their ballots accepted by
the system. Instead of blindly signing all hash chain anchors, it is sufficient to only
acquire a blind signature by VR on the Merkle tree root node (tR).

To demonstrate the delegation and verification process supported by this new ex-
tension, lets simulate it by means of the data structure presented in Figure 4.9.
Alice, who is in possession of this structure would like to delegate to Bob the topic
renewable energy, which is represented by the hash chain (hS,1, hA,1). She uses the
same mechanism for generating a suffix chain HCBob = (hI,1, hA,1) as described in
Section 4.3.3. This time it is not enough to forward HCBob to Bob, as only the tree
root tR has been signed by VR. To generate the complete Merkle tree Bob needs
also the elements hA,2, t2 and t6 (solid filled elements in Figure 4.9). This means,
that Bob has to acquire from the delegator the following three items:

1. The hash chain HCBob.

2. The remaining elements besides hA,1 needed to generate the Merkle tree up to
the root node tR.

3. The signed tree root sigV R(tR).

In this delegation scenario, Alice supplies to Bob only her hash chain correspond-
ing to renewable energy and there exists no efficient way for him to generate any
elements from the tree, which Alice didn’t delegate. As the Merkle tree data struc-
ture is used to define the authorisation area only, delegations can be carried out as
described in Section 4.3.3 for standalone hash chains. The period delegation is ana-
logue to the process described above, however a hash chain residing in the period

subtree needs to be utilised.

Through a combination of these two delegation types, a timely limited delegation
on a specified topic can be achieved and I will simulate it with the help of Alice’s
credentials presented in Figure 4.9. This time she wants to delegate voting rights to
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Figure 4.9 An exemplary hash chain/Merkle tree construct containing four topic
and four period leaves. Alice delegates to Bob only the topic chain
(hS,1, hA,1) and to Dave additionally to it also the period chain
(hS,8, hA,8). Furthermore, they both receive from Alice the VR signed
tree root tR and the nodes needed to calculate it.

Dave again on the topic renewable energy, but only for a limited amount of time.
Figure 4.10 illustrates the period subtree and the denotes its chains exemplary. To
be able to delegate the intended voting rights to Dave, Alice has to execute the
following procedure:
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1. Generate a delegation hash chain HC1 = (hI,1, hA,1) belonging to the topic
renewable energy.

2. Identify the set of elements SET1 = (hA,2, t2, t6) needed to calculate tR with
the chain from 1)

3. Generate a delegation hash chain HC2 = (hI,5, hA,5) belonging to the selected
period first validity week.

4. Identify the set of elements SET2)(hA,6, t4, t5) needed to calculate tR with the
chain from 3)

Supplying Dave with the values HC1, SET1, HC2, SET2 and sigV R(tR) allows him
to use Alice’s voting rights for the validity period specified by the delegated hash
chain belonging to the period subtree.

t3

t4

t
6

A,6h

A,7h

A,8h

A,5h first validity week

second validity week

first validity month

whole validity period

Figure 4.10 A zoomed view of the period subtree (see Figure 4.9). The leaf nodes
are denoted with the time span, during which the delegation can be
used.

The rightmost hash chain is treated differently than the other hash chains in both
the topic and period subtrees, as it represents the maximal delegation rights for
a subtree. This means for the topic subtree, that the delegatee can represent the
delegator for all existing topics, and for the period subtree – that the maximal
validity time span is being delegated.

4.5 Summary

This chapter presented a system design based on the LD paradigm, which allows
anonymous and secret elections to be held through an insecure network like the
Internet. The architecture of the systems builds upon the constructs hash chains
and Merkle trees to enable the needed delegation features. This way a topic or time
limited delegation to one or more entities is possible, which can be revoked at any
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moment. With the help of blind signatures and anonymous proxies the identities
of the voters can be disguised, so that there is no possibility to circumvent the
voting secrecy, even if both VR and VC cooperate. Through application of public-
key cryptography the credentials acquirement and voting processes are protected,
so that a manipulation in the system is obvious for every verifier. The next chapter
discusses the building blocks of my Proof-of-Concept (PoC) implementation.
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5
Implementation

This section presents in detail the PoC code to the system architecture described in
Chapter 4. It first introduces the python libraries used in the implementation, then
gives an overview of its structure and the way the code is separated into packages.
At last the unit testing framework developed to verify the behaviour of the code is
described.

5.1 Employed Tools

For implementation of the system I decided to use the high-level scripting language
Python[3]. As it has a clear syntax and intuitive object orientation, rapid software
development is possible. It further supports hierarchical packages and allows full
modularity, which makes the code easy to understand and maintain. The extensive
standard libraries includes implementations of network communication and encryp-
tion functions, regular expressions, base64 encoder/decoder, hashing, TLS connec-
tion encryption and argument parsing, which allowed me to directly concentrate on
my main problems. Third party modules for every protocol I needed are also avail-
able. The external library gdata supplies the RSA based public key cryptography
routines e.g. data encryption, signatures and blind signatures, M2Crypto contains the
required DHKE code and pysqlite the database interface to the SQLite databases
I employ. With the help of these building blocks I was able to implement complex
data structures like the hash chains and Merkle trees. Different python interpreter
exist for all major platforms so the code can be easily tested and further developed
on any operating system. Though python also has an important drawback – com-
pared to compiled languages like C, it can be around 100 times slower. Although
the low level functions like encryption/decryption and hashing are C libraries and
the python code is a wrapper to them, a performance relevant system might have
to be written in C.

My development environment consisted of a Gentoo linux machine and the Vim
editor. Furthermore the python interpreter in version 2.7 or 2.8 has to be installed
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on the system and the libraries gdata1, M2Crypto2 and pysqlite3 have to be available
for the code to execute properly.

5.2 Proof-of-Concept Overview

To recall the system architecture presented in Chapter 4, Figure 5.1 presents it again,
but this time from the viewpoint of the user Alice. There are two types of entities

Figure 5.1 System structure and interactions from the viewpoint of the user Alice
participating in the voting procedure.

in the concept – the server instances (VR and VC) having a passive role and the
voters, who can interact with the servers and eventually with each other. Because
of this, the PoC code is separated in different packages. In the following section the
structure of these packages will be described.

5.3 Implementation Details

The implementation code is split in two main packages. The first one consists of
library files containing the functions required for my design and is situated in the
folder ./lib/. This way code duplication can be avoided, as every program requiring
a specific functionality can simply include these libraries and directly use it. The
second one supplies the executable python scripts, which can be found in the ./bin/
folder. They use the supplied libraries and form the interface to the actual system.
With the help of command line arguments their execution behaviour can be modified.

The structure of the packages and the dependencies between their files is presented in
Figure 5.2. Every reference arrow describes a dependency between two subpackages

1http://http://packages.python.org/gdata/
2http://chandlerproject.org/Projects/MeTooCrypto
3http://readthedocs.org/docs/pysqlite/en/latest/sqlite3.html
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Figure 5.2 The dependency graph of the packages used in the PoC code. The
library subpackages common, server and client contain most of the
code and are required by the remaining packages.

not necessarily from the same package. It is drawn from the subpackage requiring
further code to the one containing it. As we can see, all the name strings contain
dots (“.“). These are used as delimiter symbols and separate the location from
the actual subpackage name. For example, the string bin.vr.user add key from
the upper left corner of Figure 5.2 specifies that the subpackage with the name
user_add_key is situated in the subdirectory bin/vr/ of the package containing
the executable scripts. The subpackages client and server in the lib directory
are libraries implementing the code functions needed in the client and the server
instances respectively. As functions like encryption, decryption and signing are used
by both server and client, these are implemented in a shared library subpackage
common. It is then included in further scripts, to allow no code duplication and to
ease maintainability.

Figure 5.3 presents the python classes used in the PoC implementation and the func-
tions associated with them. The class named VoterObject contains nine functions.
With their help an encrypted connection to a remote machine can be established
either directly (connect()) or through an AP (proxy_connect()). The protocol I
used in the prototype for connection encryption is TLS, as it does both encrypt and
integrity protect the data while transfered. Further functions form the VoterObject
class make interaction with the two types of server entities possible (interact_vr(),
interact_vc()) and allow the result of a voting procedure to be checked for cor-
rectness (check_voting_results()).

The server library defines two more classes – ServerObject and HandleClient.
The former initialises through the run() procedure the server process as a dae-
mon waiting for connections on a supplied port number and configures the TLS
interface (open_socket()), so that encryption of the traffic is possible. The client
connections can then be accepted and handed over to the HandleClient class. The
client_status() function allows the operator to debug problems or generate statis-
tics about the server load with regard to online users. For every incoming connection
a new thread in HandleClient is started, so that clients can be served simultane-
ously. Every of these instances is able to handle both connections to VR and VC
through the functions register_server() and voting_server(), though the cur-
rent implementation sets a variable in the ServerObject indicating the type of
service to be provided. This means that a server instance for every type has to
be started. The functions data_get() and data_send() are wrappers used to pre-
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pare the data for processing or network transmission respectively. The remaining
two functions auth_pkey() and check_auth() serve the purpose of authorising the
client on the VR and VC side.

As already noticed, the bin/ directory contains the executable python scripts. With
the help of client-start.py the communication with VR and VC can be carried
out. Accepted arguments range from action to execute (get credentials, vote,check
results) to connection information e.g. IP address and port. The script server-

start.py is used to start a server instance through creating a ServerObject (as
described above).

5.4 Autonomic Testing

With the help of the python scripts client-start.py and server-start.py I was
able to set up two different testing scenarios. In the first all instances (VR, VC
and client) ran on the same machine, in the second - all were started on different
machines. To be able to run the tests a way of initialising the databases and setting
up the user information is needed (recall Chapter 4). For this purpose the following
helper scripts under bin/ are available:

• cleanup – A shell script that cleans up all data from the test instance.

• client/delegate.py – Take as input a voting credentials block and allow
validity check and delegation from it.

Figure 5.3 Python classes and their associated functions from the subpackages
server and client. The subpackage common contains only functions,
which are shared between both server and client scripts, and has no
classes.
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• vr/user_modify.py – Add user’s information to the SQLite database, describ-
ing who is allowed to take part in a voting procedure.

• vr/user_add_key.py – Generate asymmetric RSA key for a user and add its
public key part in VR’s database.

• vr/lists_create.py – Generate the lists to be published as described in the
design chapter (Chapter 4 , Section 4.3.1 and 4.3.5).

• vc/choices_generate.py – Generate the list with voting options.

• vc/results_generate.py – After the voting procedure ends, generate the lists
allowing the public voting check.

To facilitate easy testing of the system, I wrote a simple unit tests package consisting
of Bash4 shell scripts. It can be found in the folder unittests in the repository base
and contains the following files:

• allinone.sh - Executes all unit tests with default values, no user input needed.

• check-vc.sh - Carries out a voting through the client interface using the voting
credentials supplied as command line argument.

• check-vr.sh - Acquires credentials from the VR using the client interface.

• declarations.sh (*) - A library containing variable and function definitions.

• delegate.sh - Carries out a delegation and allows the validity check of delegated
tokens.

• prepare.sh - Deletes all content in the local databases and initialises both VR
and VC for a new voting round.

• servers.sh (*) - Contain function definitions allowing to check if the VR and
VC server are running, to start them as background processes if not, or stop
them if desired.

The two files marked with an asterisk (“*“) are not meant to be directly executed,
they contain variable and function definitions required by the remaining shell scripts.

The file named allinone.sh allows a voting procedure to be carried out without
any user input. For this purpose the rest of the files in the unittests folder is called
in a predetermined sequence and default arguments are used as their input. It is
possible to check only a given part of the code. To run the tests on the delegation
procedure for example, the file delegate.sh has to be called with the appropriate
command line options.

The next thesis chapter discusses in detail the characteristics of my system, e.g.
verifiability, performance and scalability. In addition a feature comparison with
the implementations presented in Chapter 3 is done to make the advantages and
disadvantages of the here presented system even clearer.

4http://www.gnu.org/software/bash/manual/bashref.html
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6
Evaluation

This chapter analyses the system design (Chapter 4) and the PoC implementation
(Chapter 5) with regard to security, reliability, performance, distribution and scal-
ability. Furthermore some details on the delegation based on Merkle trees will be
discussed. To summarise the results of the thesis, I will compare in tabular form my
own implementation with these presented in Chapter 3.

6.1 Manipulation detection probability

The verifiability of the design presented in Chapter 4 bases on the availability of the
voting results, which are published by VC. Hence all participants are able to check,
if their voting credentials and votes are correctly recorded. Furthermore, with the
help of the lists published by VR containing the voting credential requests from all
participants in combination with their corresponding public keys, everyone is able
to verify that all requests came from valid voters and none were falsified by the VR.
As even paper based ballot systems are prone to errors and manipulation[17], the
important question here is how prone to manipulation my design actually is. As it
is unlikely that all participants check their submitted votes, no 100% reliability can
be expected. This section analyses the number of voters in percent needed to check
their votes or credentials, so that it is highly improbable for a manipulation in the
system to remain undiscovered.

6.1.1 Calculation Methods

Lets assume an imaginary example, where the voting community consists of 100.000
participants, the number of verifiers (vote and credential checkers) is 1.000 and
exactly 100 votes or credential requests (both VR and VC could cheat) are ma-
nipulated. The experiment is then equivalent to a drawing from an urn without
replacement, where from the N = 100.000 marbles, 100 are black (B = 100), the
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remaining are white (W = 99.900) and a number of n = 1.000 draws are made.
Thereafter is the probability pB of drawing a black marble is:

pB = B/N = 100/100.000 = 0, 001(= 0, 1%) (6.1)

As this probability distribution is discrete, the following holds:

For the calculation of the probability normally the hypergeometric distribution1

function is used. Though as B is negligibly small compared to N , the easier to
calculate binomial distribution2 can be used instead. For a maximally x successes
in n draws, the binomial function is defined as follows:

F (x;n, p) = P (x ≤ X) =
x∑

i=0

(
n

i

)
pi(1− p)n−i (6.2)

As already stated above, this is a discrete probability distribution, so the following
equation holds:

∑
u

P (X = u) = 1 (6.3)

The reason for this is, that the sum of the probabilities for a variable u running
through all possible values for X has to be 1 (or exactly 100%). Consequently we
can simplify equation (6.2), calculating the probability of no modification being

detected. Subtracting this value from the probability 1 leads to the same values as
in equation (6.2). Thus the formula we will use for all further calculations has the
following form:

F (x;n, p) = P (B ≤ X) = 1− P (k = 0)

= 1− (

(
n

k

)
∗ pkB ∗ (1− pB)n−k)

= 1− (

(
n

0

)
∗ p0B ∗ (1− pB)n−0)

= 1− (1 ∗ 1 ∗ (1− pB)n)

= 1− (1− pB)n

6.1.2 Real Life Examples/Showcases

Replacing the variables with the values from the example above results in the de-
tection probability of 63,23% by a vote manipulation of 0,1% and a verifier quota of

1The hypergeometric distribution describes the probability of k successes in n draws from a
finite population of size N without replacement

2The binomial distribution describes the probability of k successes in n draws from a finite
population of size N with replacement.
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1%. This shows, that even for a small amount of manipulated votes, the probability
of detection is well over 50%. Though an interesting real life showcase is calculating
the probability of detection, if an entity tries to manipulate the results so, that one
whole seat in the elections for the German parliament is given to a non-existent
party. Using official data from the elections in 2009, the parameters are defined as
follows:

• N = 44.000.000 – Number of voters, who have taken part in the election.

• B = N/620 = 71.000 – Voters per parliament seat.

• pB = 0, 001613636 – Probability of drawing a manipulated vote or credential
request.

• n = variable – The number of checkers is used as a second parameter.

The results are presented in Figure 6.1. Even by a marginal amount of 1.000 verifiers
(≈ 0,0023% of all votes),the probability of detecting at least one of the manipulated
71000 items is approximately 80%. Though it is also interesting, if the design copes
so well with other numbers of manipulated votes or credential requests. Figure 6.2
compares the results (≈ 70.000) from the election example above with three more
numbers of modified votes (20.000, 40.000 and 100.000) to show the resilience of the
system.

Even for values three times lower than the election example, about 10.000 verifiers
(≈ 0,023% of all voters) are enough to reach a probability of nearly 100%. This
shows, that the system is well designed with respect to detecting manipulations in
the voting procedure.
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Figure 6.1 Manipulation detection probability for a constant number of manipu-
lated votes (71.000) and variable number of result verifiers.
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Figure 6.2 Manipulation detection probability for 4 different constant numbers of
manipulated votes (20.000, 40.000, 70.000 and 100.000) and variable
number of result verifiers.

6.2 Ballot Security/Reliability

The VR and VC instances could be run on the same server, but then the following
problems occur:

1. A single point of failure (e.g. DoS, hardware problems).

2. One successful attack on the shared server would compromise the complete
voting process.

3. As only one system operator has access to all information, statistical methods
could be used to analyse voters’ behaviour on-the-fly.

Running the two instances on separate systems makes the system reliable against
DoS and hardware problems. Furthermore a distribution of the VR and VC instances
is possible, as it reflects the way elections are organised nowadays. Having a VR
responsible only for a small part of the citizens (for example a city or an urban
district) allows a much more reliable system to be created. The same is possible for
VC instances, as long these are time synchronized to avoid cheating.

RSA Key Security

As attacks on the user’s system make it possible to steal the RSA private key, a
smartcard can be used for the purpose of assuring private key security. There is
no possibility to extract data from the internal memory of such a card without
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destroying it. Hence copying or stealing the private key will be detected by the card
owner. As a result the public key saved in the register list can be revoked, so nobody
is able to vote with this stolen identity.

The new German ID card offers a functionality to generate digital signatures on
behalf of its owner and is a smartcard. This functionality can be used instead of
the VR identification procedure based on RSA encryption and would not require
utilising additional asymmetric keys. In this case the card reader in use has to
be a trusted one. It has to be taken into consideration, that the German ID card
already had a couple of major security problems, which are discussed in [14] and
[8]. Therefore, before either a stand-alone smartcard or the new German ID card
can be adopted to protect the security of the authentication process, it should be
thoroughly tested.

6.3 Discussion on Merkle Trees

Section 4.4 presented an improvement of the basic design through the use of a Merkle
tree structure, which allows time or topic delegation to be carried out. Nevertheless
the use of this data structure exhibits also drawbacks. Using a single hash chain for
delegation requires only two tokens (voting hash and signed anchor) to be transfered
to the delegatee. In the case where a Merkle tree is combined with hash chains to
allow multiple delegation features, a larger amount of data has to be transferred to
the vote recipient. Furthermore, the validity verification of voting credentials and
the decision, if these are used to outvote an already submitted ballot, requires more
calculations by the VC. For the number of D = 2n − 1 tree nodes exactly n + 2
values – 2 for the selected hash chain and n for every level in the tree – are needed
to generate the tree root and compare it with the by VR signed value. If more than
one hash chain (topic or time signifier) is to be delegated or verified, more nodes and
respectively more processing power are required. The exact number depends on the
position of the hash chains in the tree. Although common nodes (covered by more
than one generation path) don’t have to be transferred multiple times, the worst case
scenario requires n + 2 data sets for every hash chain delegated. For this reason,
compared to the hash chain delegation only design, a higher performance system
for the VC is needed. A detailed discussion on the system performance follows in
Section 6.5.

6.4 Possible Weaknesses

Even with the improvements described in Chapter 4, Section 4.4 the system design
still contains possible weaknesses, which will be discussed in this section.

6.4.1 Vote Selling or Coercion

The improvement in Chapter 4, Section 4.4 addresses the possibility of vote selling
and coercion prevention. Although the use of a trusted third party complicates
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both of the above mentioned actions, it does not prevent them completely. If an
insider from one trusted third party cooperates with an extortioner or vote buyer,
the system suffers the same attack types as if no trusted third party was used. In
addition the voters don’t get direct feedback, if the vote is counted or not. VC has
access to a large number of (hS, hA) pairs, which it receives in the voting procedure.
If it is in possession of a hash, that can be used to generate the hash used in one
submitted vote block, VC is able to manipulate the voting by outvoting. As the
trusted third party is not the real owner of the votes, it does not know how long
any of the used hash chains really is. As a result the outvoting procedure is not
recognised as cheating.

6.4.2 Hash Chain Delegation Priority

The way delegation priority is defined gives rise to two problems in the design. First
of all, collisions in the hash function are possible albeit unlikely, so it is imaginable,
that two different participants might have the same value for their anchor elements of
the hash chain or even the same hash chain. This can be circumvented by adoption
of a hash function with a low collision probability or a large co-domain. The second
problem is that over proxy voting the same hash chain can be generated for two
delegatees. A simple example is the case when Alice uses the same depth for both
delegations in the example described in Chapter 4, Section 4.3.3. This can of course
happen in different branches of the delegation graph making this phenomenon hard
to foresee. As it is an unwanted side effect of the proxy voting and happens only in
cases with complex proxy graphs (a high number of branches raises the possibility of
collisions) the problem is handled on VC’s side - only the submission, that happened
earlier in time, of duplicate voting credentials is counted as valid. Furthermore as a
future work a delegation scheme can be developed, which minimises the probability
of collisions.

6.5 Performance

In this Section the performance of individual building blocks will be described. For
all the tests the same system will be used. It has 3 GB of RAM and an Intel Core
2 Duo CPU with 3MB layer 3 cache. The operating system is a Gentoo3 linux with
the kernel version 3.1.1 and uses the python 2.7.2 interpreter.

For measurement of the execution time, the clock() function from the time python
module will be used. On Unix systems it returns “the current processor time as
a floating point number expressed in seconds. The precision, and in fact the very
definition of the meaning of “processor time”, depends on that of the C function of
the same name, but in any case, this is the function to use for benchmarking Python
or timing algorithms.”[2].

For procedures involving more than one party, additional machines on a LAN with
low latency will be used, though all the measurements are taken on the testing
machine described above.

3http://www.gentoo.org
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6.5.1 Hash Chain as Voting Credentials

As described in Chapter 2, Section 2.4.2, to generate the next element in a hash
chain, the current element is hashed. Hence it is clear, that there is no way to
parallelise this process. To calculate the execution time of a single operation of the
hash function sha512, I used the following routine:

1 de f pe r f ha sh cha in ( sva l , depth ) :
t s = time . c l o ck ( )
shash = hash l i b . sha512 ( )

4 thash=hash l i b . sha512 ( s v a l )
f o r x in xrange ( depth ) :

thash = hash l i b . sha512 ( thash . hexd ige s t ( ) )
7

thash . hexd ige s t ( )
re turn time . c l o ck ()− t s

For the calculation of the execution time I used a depth value of 1.000.000 and a
repeated the measurement 100 times. The resulting average value for a single hashing
operation on my testing system amounts to 4µs with a deviation of ±0, 1µs. Hence
even for a hash chain consisting of 1.000 elements, 500 (2x250 because of the dual
core) hash chains can be calculated in one second. As the clients need to calculate
only one hash chain, and the VC will be a dedicated server with enough resources,
neither the generation nor the verification are a performance bottleneck.

6.5.2 Merkle Tree as Voting Credentials

Using a Merkle tree for the vote delegation is the second interesting aspect in respect
of performance. My implementation uses again the sha512 hash function to generate
the tree nodes, so the same time is needed for a single operation. Though compared
to a hash chain with a flat structure, a Merkle tree with height of 10 has exactly
1.024 leaf nodes and a total of 2.047 elements. As every node is generated with the
help of the hash function, the lower limit for the execution time of a routine creating
a Merkle tree is:

2.047 ∗ 4µs ≈ 8, 2ms(deviation : ±0, 2ms) (6.4)

The actual testing results show that the average execution time of a function gener-
ating the tree is ≈ 10ms with a (deviation of 0, 2ms), as there are also concatenation
and memory allocation operations, which weren’t considered in the above estimation.

This amount of time is needed for the Merkle tree generation exclusively. Assuming
that the user is to generate the complete vote delegation structure consisting of a
tree with the height 10 (1.024 leaf nodes) and the corresponding hash chains with
the depth of 1.000, the execution time needed is roughly:

10ms+ 1024 ∗ 4ms ≈ 4, 1s(deviation : ±0, 1ms) (6.5)

To verify the correctness of the above calculations, I used the following python code:
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de f gen tree row ( row ) :
nextrow = [ ]

3 f o r i in range (0 , l en ( row ) , 2 ) :
nextrow . append ( hash ca l c ( row [ i ]+row [ i +1]))

6 re turn nextrow

de f p e r f m e r k l e t r e e ( l e a v e s ) :
9 whi le ( l en ( l e a v e s ) > 1 ) :

l e a v e s = gen tree row ( l e a v e s [ l en ( l e a v e s )−1])

12

p r e f m e r k l e t r e e ( [ p e r f ha sh cha in ( ’ ’ ,1000) f o r i in range ( 1 0 2 4 ) ] )

It uses the previously defined function perf_hash_chain() and generates the Merkle
tree recursively row by row until the root is calculated. The measurement is again
repeated 100 times in a row and the average is taken. On my testing setup the
approximate of 3, 8ms was required for the code to execute. In spite of this high
number, this procedure is performed only by the client. The VC has to only verify
that the credentials supplied to it are valid. For this only the hash chain used for
voting has to be verified, meaning that the maximal amount of operations is 1.000

(in case of no delegation) or lower. Furthermore the tree verification has to be
proceeded, but it requires an amount of operations proportional to its height, thus
10 in this example. Assuming both topic and time delegation was used (two hash
chains delegated) the worst-case execution time is:

2(10 ∗ 4µs+ 4ms) ≈ 8ms (6.6)

This shows, that even a slow desktop computer like my dual core testing machine
is able to perform more than 250 voting credential verifications in one second. This
performance measurements and calculations show, that not even the deployment of
the Merkle tree based structure should present a bottleneck in my design.

6.5.3 Blinding and Signing Procedures

The RSA public key routines for blinding, signing and signature verification supplied
by the python library gdata play an important role in the my system implementa-
tion. Therefore it is important to know how they perform to be able to estimate
the resources needed for the server instances VR and VC. As the implementation
employs keys with the length of 2048 bit, this length will be used for the tests.

The blinding and unblinding procedures are the basis of the anonymity in my system.
Although they are both performed only on the client side, it is important to know
their execution time. RSA signatures allow on the one hand verification, if every
vote issued by the VR is legitimate and on the other hand, if credentials supplied to
the VC are really issued by the VR. Thus both VR and VC have to issue verification
procedures, whereby VR needs to also sign a blinded hash for every valid client.

To check the runtime of both (blinding,unblinding) and (signature,verification) op-
eration pairs, the following scenario is used:
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1. generate a random value BSEC (blinding secret)

2. blind the HASH with the help of an RSA public key and BSEC

3. sign the blinded value with the RSA private key

4. strip the blinding to receive a valid signature on HASH

5. verify the signature on HASH

This way all relevant execution times can be measured at one. The python code
used for this performance check is available in the appendix. Every single function
is executed repeatedly and only the averaged execution time and the deviation are
presented here, so that the results are more accurate.

The blinding, unblinding and signature verification operations requires 265, 70 and
185µs respectively with a deviation in the interval ±1µs, which is fast for functions
operating on asymmetric keys. The signing operation is the slowest of them and has
an execution time of 3, 645ms, having a deviation of ±0, 02ms. In spite of this fact,
my system was able to generate more than 400 signatures for a second. So even this
comparably expensive function doesn’t represent a bottleneck in my implementation.

Next I will examine the interaction procedures with VR and VC as a whole to give
you a better idea of their execution time and the load they generate on my testing
machine.

6.5.4 VR and VC Interaction

The previous three sections discuss the performance of the separate functions used
in the system design presented in Chapter 4. Though their analysis doesn’t include
the execution time needed for memory management and IO operations needed by
the program. So in this section the execution time of the PoC code and the load on
the test system will be measured.

First the execution time of the credentials acquirement procedure is measured. Gen-
erating a hash chain with the depth of 1024 as a voting credential occupies the
processor on the client side for 0.14 seconds on average. In contrast, the execution
on the server side requires half the time and is completed in approximately 0.07
seconds. The memory occupied by both of the processes is under 0.5% and the load
temporarily jumps to 5% during the interaction. A simulation with 20 parallel clients
using the server, the load for the server jumps to 15% not affecting the amount of
RAM needed. The execution time has only a slight variation of 0.01 seconds more
compared to the case of a single client connection. In the case of a Merkle tree
used as voting credentials no difference can be determined, as the tree is generated
entirely on the client side and the server sign only one element, which is comparable
to the signing of the chain anchor.

Next the voting procedure is timed, where the hash chain is used as a whole – no
delegation, use of the starting hash for voting. On the VC an execution time of 0.15
seconds in average and around 0.5% memory usage could be measured. On the client
side, the python script is running under 0.1 seconds and uses about the same amount
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of memory as the server process. For 20 simultaneous voting connections, the peak
load reaches 30%, but again no impact on the used RAM can be determined. As the
complete depth of the hash chain is used for the tests, this is the scenario with worst-
case load and execution time. In the case of a Merkle tree as voting credentials, the
length of a path from a tree leaf to the root node is negligible compared to the depth
of the hash chain(s) used for delegation. Because of this, no extensive impact on
the performance is to be expected. Furthermore, the delegation procedure arranges
for reducing the depth of the hash chain and the amount of hash operations needed
to generate the from VR signed significant element. With a well-thought division
scheme for the hash chain both more flexibility for the user and higher system
performance can be achieved.

6.5.5 Input/Output Costs

IO operations can easily cause a bottleneck in a system, where much information
is to be read or written to disk. The PoC implementation currently reads the RSA
keys from disk and stores the data in local SQLite4 databases. The former is done
only once by starting the corresponding server and should therefore have no relevant
impact on the performance of the system. The latter can easily be diminished by
replacing them with relational databases (SQL, e.g. MySQL5) and storing the tables
in RAM or deploying structured storages (NoSQL, e.g. BigTable6, Memcached7) al-
lowing rapid read/write operations. Currently the amount of time for IO operations
is around 40% of the wall clock execution time, though this is not directly reflected
in the measurements presented above. This is due to the fact IO is handled with the
help of DMA8. As the purpose of the implementation is to show, that the system
concept is usable, I intentionally decided against a complex data storage system.

As we have seen, the voting acquirement procedure does Using the calculations and
measurements from above, my testing system should be able to handle approximately
500 simultaneous voter connections on full capacity. For an election duration of a
12 hours and assumed that the ballot procedure needs 6 seconds9 to complete, the
maximum amount of 3.600.000 submitted votes can be reached. A realistic number
will be in the range 400.000 to 600.000. With a high-performance CPU, more cache
and RAM the performance of the system can at least be doubled. So it should be
feasible, that roughly 1.000.000 voters can submit their votes using one such VC
instance.

6.5.6 Voting Lists Verification

As the resilience of the system against manipulation relies on the fact, that the
voters verify their own vote and the consistency of the overall voting results, it
is important to know how much time such an verification procedure requires on a

4http://www.sqlite.org
5http://www.mysql.com
6http://research.google.com/archive/bigtable.html
7http://memcached.org/
8http://en.wikipedia.org/wiki/Direct memory access
9This assumption includes network delay, possible thread waiting, RAM swapping and so on.
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voter’s computer. To be able to calculate the execution time, the following relevant
actions need to be timed:

1. Read in the file containing the tuples (signed_nonce,public_key) for every
user, who has acquired voting credentials, and verify the signatures. (generated
by VR)

2. Read in the file containing the quadruples (vhash,anchor,signature,depth)
(voting credentials information), check the signature on anchor and verify that
vhash generates anchor in depth steps. (generated by VC)

3. Read in the voting results file containing the tuples (nonce,vote) and verify
that your own pair appears in the list. (generated by VC)

The operations employed are reading a flat file of data, checking an RSA signature
and generating a hash chain with a specified depth. The execution time of the
signature verification operation is 185µs and of the hash chain verification with
a depth of 1.000 is roughly 4ms, as we’ve already seen in Section 6.5. The only
execution time currently unknown is the file read-in operation. I used a test scenario,
in which a file with 100.000 lines having the form

VHASH,ANCHOR,SIGNATURE,DEPTH

is read line by line and the four elements are extracted to a python list. Next,
two comparison operations between VHASH and ANCHOR are used to approximate the
tests needed in the PoC implementation, where both the validity of the signature
and the equivalence of the generated and supplied anchor need to be checked. The
execution time of this whole routine is 500ms, resulting in an execution time of 5µs
per line. The following listing presents the summed up execution time per input line
for each of the verification actions presented above:

• action 1) — 5µs+ 185µs = 190µs (line read and signature verification)

• action 2) — 5µs + 4ms + 185µs ≈ 4, 2ms(line read, signature verification on
anchor, vhash to anchor generation)

• action 3) — 5µs (line read, verify if the own nonce and vote are found)

These times reflect the worst-case execution of the operation 2), as not all the votes
will use the complete length of the hash chain in the actual voting process.

Let’s recall the values of the last German parliamental elections, as used in the
Section 6.1.1, to get a realistic usage example. The number of participants was
44.000.000 and this is the number used to calculate the time needed for the ver-
ification procedure. All three files have 44 million lines, so the following listing
summarises the runtime of the actions 1) to 3) on a single CPU machine:

• action 1) — 190µs ∗ 44.000.000 ≈ 2, 33h

• action 2) — 4, 2ms ∗ 44.000.000 ≈ 51, 34h
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• action 3) — 5µs ∗ 44.000.000 ≈ 3, 34m

• altogether — ≈ 54, 11h

The procedure consists of many checks, which are line-independent and therefore
allows its parallelisation to minimise the execution time. Even the simple approach
of splitting the second list (the long running verification) in equivalent parts and
starting so many checker scripts, as the number of CPUs of the verification system,
scales good and would allow my dual core testing machine to verify the overall voting
results in approximately 27 hours.

6.6 Distribution and Scalability

The structure of my system allows the straightforward separation of the VR and VC
instances, as these do not share any data by design. Furthermore, the VR instance
can be deployed as separate VR instances, each responsible for only a disjunct part of
the voting register. Removing the disjunction requirement would lead to a necessity
of data synchronisation – not considering this would allow users to acquire multiple
voting credentials from different VR instances (cheating). With this requirement in
place, the large amount of computational power and data exchange overhead can be
eliminated.

Unfortunately there is currently no way to distribute the VC into separate instances
without the use of synchronisation. If this is done, there is no way to determine
the temporal order of incoming votes, which is required because of the collision
issues by the delegation, as described in Section 6.4.2. Nevertheless, only time
synchronisation of all the VC instances is required and absolutely no data has to be
exchanged between the different instances. After the closing of a voting procedure,
all possible collisions can be solved off-line.

The clock synchronisation with an external source can be done with the help of
different protocols (e.g. NTP10, PTP11, GPS12). To decide which one suits best,
the required accuracy has to be defined, which on the one hand depends on the
voting procedure execution time, on the other hand has involve considerations of
the network latency and architecture.

Fulfilling the requirements for distribution of both servers allows a straightforward
horizontal scaling13 of the voting infrastructure. Using the summarising results from
the previous section as a point of reference of the performance of a single VC instance,
we can easily calculate the number of instances to be added, for a given number of
participants.

10http://tools.ietf.org/html/rfc5905
11http://www.nist.gov/el/isd/ieee/ieee1588.cfm
12http://www.gps.gov/systems/gps/
13“To scale horizontally (or scale out) means to add more nodes to a system, such as adding a

new computer to a distributed software application. An example might be scaling out from one
Web server system to three.”[4]
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6.7 Comparison with other Implementations

In Chapter 3 common implementations of the LD concept were described. In the
following I will compare them with the design and implementation described in this
thesis. The features, both common and different, of these systems are summarised
in Table 6.1.

Let’s first concentrate on the LD aspects. All of the systems support delegated voting,
outvoting and publish their results online. Apart from Votorola, they additionally
allow multiple, topic and global voting delegations. A negative aspect of my work is,
that it doesn’t present any possibility of consolidated decision making, as no forums
or other discussion media are presented. No proposals, initiatives or drafts can be
used as a tool in the implementation, which is a standard for all the remaining
systems.

Looking at the voting procedure, none of the systems besides mine supports neither
receipts in any form nor real anonymous voting, which makes it impossible to defi-
nitely prove system manipulation. Albeit they provide anonymity from the voter’s
view, everyone with access to the database can find out, what a participant voted
for (no real secrecy and anonymity). In addition, no cryptographic security in form
of connection encryption or integrity protection is implemented in any of the other
systems by default. Adhocracy and LiquidFeedback tough allow the deployment of
TLS on the web server, where the software is running. This would at least complicate
MitM attacks. If the verification behaviour of voters is analysed, which is possible
because of the missing anonymity, selective vote manipulation by users generally
not verifying is possible. As my system features anonymity and high probability of
manipulation detection based on probability, such attacks are impossible.

Considering the features resulting from the system design, used programming lan-
guage and possible additional software, all the systems perform relatively well. Both
Adhocracy and Votorola use a modular process structure, allowing simple recon-
figuration of their internal workings. In contrast both LiquidFeedback and my im-
plementation have a fixed structure and event order, which has to be followed for
a voting procedure to complete successfully. Based on the design, Votorola and
my own implementation directly allow the voting infrastructure to be divided into
a large amount of autonomous systems (distribution), hence a more resilient and
high-performance infrastructure is to be expected. Nevertheless, my current imple-
mentation uses SQLite databases to store the results, which should cause a major
performance bottleneck.

To bring this chapter to a conclusion, my implementation facilitates a large num-
ber of features and focuses on the secrecy, anonymity and security of the voting
process. Although the overall design performs well, there are some bottlenecks in
the PoC code. These can be diminished by replacing the SQLite databases with a
performance oriented database system.

6.8 Legal Compliance

The system design as well as the implementation presented in this thesis fulfill the
requirements 1) to 10) specified in Section 4.1. Although the possibility of vote
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Adhocracy LiquidFeedback Votorola My System
LD concept:

multiple delegation yes yes no yes
topic delegation yes yes no yes
time delegation no yes no yes

global delegation yes yes no yes
outvoting option yes yes yes yes

discussion possibilities yes yes yes no
support drafts/initiatives yes yes yes no

Voting Procedure:
public results yes yes yes yes
voting receipt no no no yes

modification detection low low low very high
anonymous/secret ballot no no no yes
cryptographically secured no no no yes

System Features
programming language python lua java python

performance good medium good medium
modular structure yes no yes no
distributed setup no no yes yes

Table 6.1 Comparison between Adhocracy, LiquidFeedback, Votorola and the Sys-
tem presented in this Thesis Implementation

selling/coercion is not completely diminished by the improvements presented in Sec-
tion 4.4, the same problem is presented in the postal voting mechanism conforming
to German law regulations. Therefore it is to be assumed, that the system presented
in this thesis should satisfy the regulations in the German Constitution with respect
to voting.
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Conclusion

In this thesis presented an architecture and a proof-of-concept implementation of a
system, which mainly focuses on the anonymity and security of a liquid democracy
based voting mechanism. It can be used over an insecure network like the Internet,
issues credentials to the voters, allows vote delegation to one or more parties (liquid
democracy requirement), issues receipts for the votes and allows public verification
of the voting results (see Chapter 4, Section 4.1).

The security of the system is provided through the use of encryption/decryption
and signing/verification mechanisms based on RSA public-key cryptography. RSA
blinding functions are used to provide anonymity in the credentials acquirement
process from the Voting Register (VR) and anonymous proxy servers can be applied
to disguise the voter’s identity to the Voting Computer (VC). Cheating by VR or
VC is further countered by adding an anonymous message board and commitment
protocols to the system. This way it easily can be detected and proven by voters
verifying their votes, that one of the server instances tried to manipulate the voting
results.

To facilitate the vote delegation features – simple and multiple proxying, time and
topic based delegation and outvoting – I deployed hash chains and Merkle trees.
Both of these constructs are generated with the help of a cryptographic hash func-
tion, which is further used to link the user’s ballot with the receipt of the chrono-
logically previous ballot, so no retrospective manipulation in the ballot content or
order is possible. The system provides publicly available voting results, where ev-
ery participant is able to verify the own vote, meaning that the detection of voting
manipulation bases on statistical probability. As the evaluation shows, the system
is highly resilient against cheating. Even for a small percentage (around 0,1%) of
verifiers the probability of detection is very high (around 99%). The design further-
more allows distribution of the VR and VC instances, allowing a good horizontal
scalability of the system. Nevertheless, based on test cases and calculations from
Chapter 6, the system performs reasonably well even on a normal desktop system
not specifically designed for high performance.
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The comparison with related implementations showed, that my system is superior
to the remaining ones in behalf of security, anonymity, secrecy, verifiability and
cheating detection.

Despite the high security of the system, the design can’t completely neutralise the
vote selling and coercion threats, which result from the voting delegation feature
paired with the publicly available voting results. However, the system should be
conforming to the German constitutional regulations on voting procedures, as de-
scribed in Section 4.1.

7.1 Future Work

The system design focuses on security and anonymity of the voting process, though
still has weaknesses in respect to vote selling/coercion. The following list presents
possible future research direction, which could help solving these problems:

• Although a possible solution of the vote selling/coercion problem was presented
in Section 4.4, it is not feasible if the voting results are publicly available.
Using a third party to verify the validity reduces this problem, but requires
the voters to fully trust this entity. Therefore, to enhance the system design,
ways of mitigating this weakness/problem have to be examined.

• As there is no guarantee of security, formal methods for proving the security
of the used protocols should be examined.

• A performance oriented database system should be chosen to replace the
SQLite databases used in the proof-of-concept implementation and an interface
for it should be implemented.

• A delegation scheme should be developed, which minimises the risk of collisions
in the delegation process, so no priority problems arise on the VC side.

• A more realistic performance test with a real network setup and a large number
of participants should be performed. This way the server performance needed
to handle the loads resulting from a voting procedure can be determined.

• Tools for consolidated decision making should be incorporated in the design of
the system and implemented as a modular part of it. This surely would make
the system more attractive, as the comparison in Section 6.7 suggests.
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A
List of Abbreviations

• AP/APS - Anonymous Proxy/Anonymous Proxy Server

• BVerfG - Federal Constitutional Court (BundesVerfassungsGericht)

• BWG - Federal Electoral Law (BundesWahlGesetz)

• CPU - Central Processing Unit

• D - hash chain depth

• DH - Diffie-Hellman

• DHKE - DH Key Exchange

• DMA - Direct Memory Access

• DoS - Denial of Service

• e-voting - electronic voting

• HC - Hash Chain

• hS - HC starting element

• hA - HC anchor element

• hI - HC inner element

• ID - Identity Document (Identity Card)

• IO - Input/Output

• i-voting - internet voting

• ISO - International Organization for Standardization



70 A. List of Abbreviations

• LD - Liquid Democracy

• MAC - Message Authentication Code

• MitM - Man in the Middle

• N - number of HCs/leaves in a Merkle tree

• NTP - Network Time Protocol

• OSI - Open Systems Interconnection

• PoC - Proof of Concept

• PTP - Precision Time Protocol

• RAM - Random Access Memory

• RSA - Rivest Shamir Adleman

• SQL - Structured Query Language

• SSL - Secure Socket Protocol

• TLS - Transport Layer Security

• VC - Voting Computer

• VR - Voting Register

• UI - User Interface
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