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Abstract—Simulations, and in particular large scale parameter
studies, typically exhibit a considerable amount of redundancies.
These redundancies can be avoided by memoization, a technique
that stores and re-uses intermediate results. This requires a
Memoization Unit (MU) to be identified first and then trans-
formed. We have recently enabled the automation of the second
step to also be applicable to impure computations, allowing it to
become a valuable tool for the modeling and simulation domain.
However, the first step still needs to be performed manually.
Hence, the user needs to understand the model and the concept
of memoization well enough to specify which computations to
annotate for memoization.

In this paper, we describe our approach to automatically
identify memoization-worth computations. Input to this algo-
rithm is an unmodified parameter study. After identifying the
most promising memoization opportunities, we use the existing
automated memoization tool to create a memoized parameter
study, which can then be executed quickly.

Our evaluation shows that our automated approach is able to
identify those MUs that previously had to be annotated manually.
This identification takes less than 2 minutes for a case study that
without memoization takes several hours.

I. INTRODUCTION

Computer simulations, and especially large scale parameter
studies, are highly repetitive processes with a lot of redundant
computations: the same code is executed on the same input,
hence yielding the same result. Memoization allows to avoid
such redundant computations by caching previously computed
input-output pairs and applying the output directly if the same
input re-occurs. Our recent advances [17] made automated
memoization a valuable optimization technique for the model-
ing and simulation domain, reaping an optimization potential
orthogonal to parallelization. Previously, memoization had to
be applied manually in most common cases as automated
memoization was only available for pure functions1. The
lifting of this barrier now allows automated memoization to
be applied in the modeling and simulation domain. A fully
automatic memoization comprises two steps: 1) Promising
code blocks have to be identified. 2) The code blocks have
to be transformed into a memoized variant. In [17] we present
our solution to the second step, which relies on the user to

1As we defined in [17]: “A pure function accesses no objects except
compile-time constants, its parameters, and its local variables with automatic
storage duration. Its parameters and return type are of value type and it never
throws exceptions. It inspects no pointers and calls only pure functions.”

annotate a Memoization Unit (MU), i. e., a code block that
should be memoized. In other words, the first step has to
be performed manually, which is an open issue till today. In
this paper, we focus exactly on this open issue, and present
our approach to automatic identification of promising MUs,
eventually allowing a fully automatic memoization.

Our approach is designed for large scale parameter stud-
ies since these comprise the highest degree of redundancy.
Redundant computations can occur during the execution of
one configuration, but also across configurations. The latter
is particularly likely when a parameter is changed while
the others are kept constant, which must always be done
to investigate the impact of that parameter. We focus on
parameter studies following the principle of full factorial
design. This principle enables the user to make very precise
statements about the influence of each parameter and combina-
tions thereof, but often results in prohibitively long execution
times. As a result, researchers tend to explore only a smaller
subset, which poses the risk of false conclusions. On the
other hand, the exploration of such a subset could already add
enough entries to the Memoization Cache (MC) to execute the
remaining configurations significantly faster. Hence, we hope
that the availability of fully automatic memoization for full
factorial design parameter studies can increase the willingness
of researchers to apply this valuable design principle.

Our approach aims at identifying the most gainful MUs in
a given parameter study. Since the true optimum can only
be investigated by exactly measuring the performance of all
opportunities, it is practically infeasible to do so. Instead,
we design a heuristical approach that investigates the most
promising opportunities and predicts their runtime. Hence, the
major challenge we tackle is to design the heuristic in a way
that it finds a close-to-optimal memoization opportunity, but
at the same time performs this process quickly enough to
achieve speedup in the final reckoning. In our experiments,
we measure that time and compare the identified MU with the
best opportunity that we figured out manually.

The remainder of this paper is structured as follows: In
Sect. II we provide background information on the underlying
memoizer as well as parameter study designs. After that, we
analyze the problem in more detail (see Sect. III) before we
discuss our solution (see Sect. IV). We then evaluate the
overhead and performance in Sect. V. We discuss related work
(see Sect. VI) before we conclude the paper (see Sect. VII).978-1-5386-4028-0/17/$31.00 c©2017 IEEE



II. BACKGROUND

In this section we introduce the underlying memoization
approach, discuss common parameter study designs, and elab-
orate on the impact of memoization on the different principles.

A. Memoization

Memoization is a technique enabling the computer to “re-
member” previous computations. In other words, if the same
code fragment is executed with the same input, the result
can be applied immediately avoiding the re-computation. To
develop a technique to automatically identify memoization-
worth computations, we need a tool to eventually translate the
computations into a memoized equivalent in order to predict
the potential gain. Since many simulation models, includ-
ing those written for the well-known open-source simulation
frameworks ns-3 [7] and OMNeT++ [19], are implemented
in programming languages such as C++ where impure com-
putations are the prevalent paradigm, this memoizer must be
capable of memoizing impure computations. To the best of our
knowledge till today our recently developed memoizer [17] is
the only one fulfilling this essential constraint.

We build upon the proof-of-concept implementation
memoize, which uses the C++ frontend of the compiler
Clang2 and is publicly available3. It performs a source-to-
source translation to convert a source file into a memoized
version, which can be compiled into a binary by any C++14
compiler. To this end, the user must annotate a compound
statement to be memoized (called the Memoization Unit
(MU)). The tool then generates code that first performs only
operations necessary to compute the input of the computa-
tion. Second, a lookup in the Memoization Cache (MC) is
performed. If the input is not found, the original computation
is executed and meanwhile the output is captured, such that
input and output can be stored in the MC afterwards. On re-
occurrence of the same input, this input-output pair will be
found in the MC and the output is applied immediately. For
this paper, we only modified the interface of memoize, i. e.,
the specification of the MUs, for easier communication with
our identification tool, but left it otherwise unchanged.

B. Parameter Study Design

We base our approach to identify computations for memo-
ization on parameter studies, a domain in which we expect
many redundant computations. Jain [12] discusses methodolo-
gies for such designs and identifies simple design, fractional
design, and full factorial design as most frequently used.

In simple design, a base configuration is chosen and only
one parameter is changed at a time. This allows observing the
influence of each factor separately, but the influence of factor
combinations can not be discovered and interactions between
factors are hidden. Hence, false conclusions might be drawn
if factors interact. Simple design thus enables quick execution
at the price of potentially questionable results.

2http://clang.llvm.org/
3https://code.comsys.rwth-aachen.de/projects/memoize/

The more statistically sound principle is full factorial design,
which evaluates all possible combinations of parameters. This,
however, results in

śn
i“1 ki configurations for n parameters

and ki levels for parameter i, i. e., the number of configurations
is exponential in the number of parameters. While this allows
observing the influence of any combination of parameters, the
exponential number of configurations results in long execution
times, deterring many researchers from using it.

In fractional factorial design only a subset of all config-
urations is executed. This allows observing some parameter
interactions, but not all, making it a compromise in both time
consumption and statistical expressiveness.

We conclude that full factorial design generates the most
reliable results, but takes most time as well. Hence, it is
especially desirable to reduce the computation time of such
a design. In particular, memoization is beneficial here: The
execution of certain configurations is often skipped (by using
fractional or simple design instead) since it is expected that
no value is added by these configurations. If this is true, the
additional runs comprise in fact a lot of redundancies – which
perfectly aligns with the objective of memoization. However,
with memoization this need not be assumed beforehand, but
can be correctly evaluated by the memoized code at run-
time. Hence, executing a full factorial design in a memoized
manner might not take significantly longer than executing a
fractional factorial design where only redundant configurations
have been removed. However, the former guarantees that no
significant computations have been removed while the latter
yields false results if false assumptions have been made.

III. PROBLEM ANALYSIS

We aim for a tool to memoize a given parameter study.
The problem we need to solve receives a simulation model
and the configurations as input, and shall provide a memoized
simulation model as output. The resulting model shall be
memoized in a way as to yield the biggest possible benefit for
the given configurations. Hence, we need to predict the benefit
of different opportunities and choose the most promising.

To make such a prediction feasible, we need to make
assumptions on the given parameter study. We identified full
factorial design as most promising in Sect. II-B. Additionally,
its structured construction supports performance predictions by
analyzing only a small subset and extrapolating on the whole
study that is later executed in a memoized way. We expect
as input a parameter study given by the parameters and for
each parameter the values to investigate. We then assume that
all combinations shall be explored during the final execution
of the parameter study. It is still possible to execute only a
subset of the study (fractional factorial design), but the gain
predicted by our performance analysis might not be achieved.
Nevertheless, after applying memoization we would encourage
users to try performing the remaining runs of a full factorial
design as well, as chances are high that the results of the
computationally expensive parts of the executions are already
present in the MC, hence the additional time might be way
shorter than expected. To state the problem more precisely,



we introduce a simple formalism defining a simulation, a
parameter study, and the problem to solve.

a) Formal Problem Description: A simulation model is
essentially just a function with a set of parameters as input and
a set of results as output. With F being the set of all functions,
we define a simulation instance as a tuple containing every-
thing necessary to describe a certain simulative experiment:

Definition 1 (Simulation Instance). We define a simulation
instance s as s “ pf, cq with f P F and c P Dompfq. The
result of s is fpcq. We call c the configuration of s. We use
S to denote the set of all simulation instances, i. e., S :“
tpf, cq | f P F , c P Dompfqu.

We can define a parameter study as a tuple consisting of the
simulation model (a function in F) and a set of configurations.
Important to note is that the set of configurations need not be
ordered, allowing to execute the simulation instances in any
order. Consequently, we define the result of a parameter study
as the relation between an input and its corresponding output
rather than just a set of outputs.

Definition 2 (Parameter Study). We define a parameter study
p as p “ pf, Cq with f P F and C Ď Dompfq. The result of
p is tpc, rq | c P C, r “ fpcqu. The size of p is the number of
configurations |C|. By P we denote the set of all parameter
studies, i. e., P :“ tpf, Cq | f P F , C Ď Dompfqu.

We do not particularly consider experiments that only differ
in the Random Number Generator (RNG) seeds. However, in
fact our notation covers this by simply considering the seed
part of the configuration. A ten-times repeated experiment with
otherwise identical parameters would hence be ten configura-
tions only differing in the RNG seed parameter.

These definitions describe the functionality and results of
parameter studies, but ignore runtime complexities of particu-
lar implementations. For memoization speedup predictions we
need to extend our notation to include the time component of
programs that use memoization and programs that don’t.

A program is characterized by the function it computes and
the (average) time it takes (on a given hardware) to execute
the program on a particular input. Consequently, with T being
the time domain (i. e., the set of durations measured in wall
clock time) we define a program as follows:

Definition 3 (Program). A program q is a tuple q “ pf, tq
with f P F and t : Dompfq Ñ T . The function t maps each
potential input of f , i. e., each c P Dompfq, to the expected
execution time in T .

Memoization changes the runtime characteristics, which
then depend as well on the initial state of the MC. We hence
define a memoized program with the set M of possible MCs:

Definition 4 (Memoized Program). A memoized program q
is a tuple q “ pf, t,mq with t : M ˆ Dompfq Ñ T , f P F ,
and m : M ˆ Dompfq Ñ M. The function t maps each
potential input MC combined with each input of f , i. e., each
pM, cq PMˆDompfq, to the expected execution time in T .

The function m maps the initial MC state to its final state after
execution of the given configuration.

Note that a non-memoized program can hence also be
presented as a memoized one. The non-memoized program
ignores the MC, hence the output MC of m is always identical
to the corresponding input MC (@c P Dompfq@M P M :
mpM, cq “ M ) and t does not depend on its first parameter
(@c P Dompfq@M1 P M@M2 P M : tpM1, cq “ tpM2, cq).
We denote the set of memoized programs (which hence also
includes non-memoized ones) by Q. According to this notation
the MC generated by subsequent execution of n memoized
programs is described as mp. . .mpmpH, c0q, c1q, . . . cnq with
H being the empty MC. To facilitate reading we let this be
equivalent to the shorthand notation mpH, tc0, . . . , cnuq.

The runtime of a parameter study depends on the set of
configurations and the program used to compute the results. If
a memoized program is used, the runtime might additionally
depend on the order in which the configurations are executed
since the resulting MC of a configuration is input to the next
configuration. Hence, we denote the total runtime as a function
T : PˆQˆ< Ñ T with < being the set of strict total orders.
The runtime is then calculated as:

T pp “ pf, Cq, q “ pf, t,mq,ăq “
ÿ

cPC

tpc,mpH, tc1 | c1 ă cuqq

b) Problem Statement: Given is a parameter study p “
pf, Cq and a non-memoized program q0 “ pf, t0q. A (not
necessarily finite) set Q “ tq1, q2, ...u (qi “ pf, ti,miq) of
functionally equivalent memoized versions of q0 exists, which
can be generated by a tool for automated memoization with
annotated MUs. The goal is to minimize the total runtime of
p by choosing the best program from Q Y tq0u, i. e., select
a q P Q Y tq0u such that Eq1 P Q Y tq0u : T pp, q1,ăq ă
T pp, q,ăq. Note that this goal is rather a theoretical description
of the optimum that can in practice never be reached. In fact
it is neither feasible to select the optimal program from an
unknown, potentially infinite set nor to prove non-existence
of a better one. In this paper, we reduce the search space to
a number of programs that are created by letting the tool we
discussed in [17] memoize a block of the unmemoized, user
implemented source program. We then predict the runtime of
those opportunities and select the most promising one.

c) Challenges: Memoization yields the biggest benefit if
the MU is computationally complex and repeated frequently
with the same input. The identification of complex and fre-
quently re-used computations can be approached by static or
dynamic analysis: We argue that the former has very limited
opportunities to inspect those properties that depend on the
parameters of the parameter study as – even when provided
at compile time – computations basing on these parameters
quickly render the analysis infeasible. This impedes predicting
redundancies. Dynamic analysis is feasible, but we need to
ensure that the fraction of the parameter study we execute
during the analysis is small enough to achieve an overall gain.

With this constraint an exact calculation of the total runtime
is impossible. In particular, if different configurations exhibit
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Fig. 1. General approach: Profiling identifies potentially optimizable hotspots.
Different memoization opportunities are investigated and their performance
is predicted. The following selection potentially requests refinements of the
predictions. Selected optimizations of different hotspots are combined. Result
is an optimized parameter study, and, as a side product, a runtime estimation
as detailed as it was generated during the prediction.

largely deviating runtimes even before memoization is applied,
it would be necessary to run a large amount of configurations
for accurate runtime calculations. Hence, we need to predict
the runtime by a heuristic based on a smaller number of
configurations. To yield the best memoization decision, we
do not target a maximum absolute prediction accuracy. Nev-
ertheless, if program q1 is faster than q2, the heuristic should
predict a runtime of q1 that is shorter than the runtime of
q2. The challenge is thus to design a heuristic that 1) works
only on a particularly small subset of the parameter study, but
2) yields a runtime prediction that can be used to select the
most promising code block for memoization. Obviously, we
need to trade dynamic analysis runtime for prediction accuracy
and need to find a tradeoff that minimizes the total runtime of
analysis plus execution of the parameter study.

IV. MEMOIZATION UNIT SELECTION

In this section we present our approach to selecting code
blocks that are promising for memoization. We outline the
general approach before we introduce each step in more detail.

A. General Approach

The general approach is outlined in Fig. 1. Input is a pa-
rameter study, i. e., an implemented simulation model and the
configurations to be explored. We analyze the input for its most
computationally complex computations as optimizing these
hotspots carries the greatest potential. Around each hotspot we
choose multiple memoization opportunities and perform the
automated memoization by memoize (s. Sect. II-A), resulting
in several memoized alternatives. The core element of our
approach then predicts the performance of each opportunity.
To save time we allow this prediction to be incomplete, for
instance, by only providing a lower bound of the runtime
prediction. In a next step, we select the most promising oppor-
tunity. Should this be impossible due to the incompleteness of
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Fig. 2. Simple example: Code consisting of five statements (stmt1-stmt5)
in four blocks (A-D). Profiling data (fraction of runtime spent on each
statement) displayed on the left. The tree on the right shows structured and
aggregated profiling data inferred by our tool.

the prediction, the prediction is refined. After the selection the
best opportunities for each hotspot are combined, yielding the
most promising memoized parameter study. As a side product,
we retrieve a runtime estimation, which, however, is only as
accurate as necessary in the realm of the main goal. In the
following, we discuss each step in more detail.

B. Profiling

In the spirit of Amdahl’s Law [1] we need to profile
the input to determine which parts are most promising for
optimization. Statistical profiling is promising for our use case
since it is typically faster [2] and sufficiently accurate. We
integrate the commonly available profiler OProfile [4] in our
proof-of-concept implementation, but allow to use any profiler
whose output can be parsed in a way that it provides pairs of
code locations and their frequency of occurrence.

More importantly, we need to select a fraction of the
parameter study to profile. To this end, we have to assume a
certain level of homogeneity of the parameter study: If every
configuration results in different hotspots, no memoization
opportunity fits all of them. However, we still aim to minimize
the probability to select a corner case configurations (e. g., all
parameters set to zero) whose hotspots are not representative.
Since this might often be the first or last configuration,
deterministically choosing either of them is not advisable.
Instead, we select a configuration randomly to maximize the
probability not to choose a corner case. Additionally, if the
overall result is not satisfying because a corner case was
accidentally selected, this allows to run our tool again, which
will then likely select a different configuration.

Experience shows that for most simulation models it is
sufficient to profile only a small fraction of the program itself.
To speed up the selection process, we run the model for only
2 s by default. However, if a model maintains an extensive
initialization phase, this value can be adjusted to profile a
sufficient fraction of the actual execution.

The result of the profiling is the fraction of runtime con-
sumed by each statement in the program (see Fig. 2). The
fractions can be summed up to compute the percentage of
runtime spent in a compound statement up to the block
that constitutes the body of a non-inlined function. Since
non-inlined function calls can not be memoized [17], this



constitutes as well the biggest compound statement that can be
memoized. We rank the functions by the percentage of runtime
spent in their body and include the most expensive hotspots
until their accumulated runtime is greater than 50 %. For each
hotspot we then have the runtime spent in this block as well
as the runtimes for each sub-block.

C. Memoization

Input to the memoization step is a single hotspot (which
is a function body) annotated with the runtime of each
compound statement (cf. Fig. 2 (b)). In general, each node is a
memoization opportunity, i. e., each compound statement can
constitute an MU. However, we can already prune all com-
pound statements whose complexity is less than the complexity
of the most complex function that is not considered a hotspot,
since these blocks are less promising than that function. For a
threshold of 25 % in Fig. 2, C and its child would be pruned.

For each of the remaining blocks we provide the code along
with the information which compound statements are potential
MUs to memoize and retrieve a memoized variant for each
memoization opportunity. All these variants (as well as the
original program) are input to the next step.

D. Performance Prediction

Before the runtime of the parameter study can be predicted,
the influence of each parameter on the redundancy of the
potential MUs has to be investigated. When not changing any
parameter between two runs, the entire execution is identical.
When a parameter is changed, all computations independent
of this parameter (and any derived values), are repeated. When
two or more parameters are changed, those computations are
repeated that depend on neither of the parameters.

For the performance prediction, we decompose the runtime
of a configuration (s. Def. 4) into several components. For a
given (memoized) program q “ pf, t,mq and a configuration
c “ pv1, . . . , vkq P Dompfq, we decompose tpcq:

tpv1, . . . , vkq “
ÿ

IĎt1,...,ku

tIppviqiPIq

We call tI a partial runtime and consider it being the run-
time caused by performing computations whose input changes
if any of the parameters pviqiPI is changed, but there is no
subset J Ď I such that the same holds for J (in which
case it would be reflected by tJ ), e. g., the time spent in the
pure function called by foo(v4,v2) contributes to tt2,4u.
More precisely, tI reflects the amount of computations that the
given (memoized) program q needs to re-perform when any
of the parameters in I is changed, either because the modified
parameters change the input to the computations performed,
or because the MU has been chosen in a way not avoiding the
redundant computation. Consequently, tH reflects the time that
can be avoided even if all parameters are changed, tt1,...,ku
reflects the time that cannot be avoided even if all parameters
are kept constant. Since the memoization overhead can never
be avoided, it is nicely covered in tt1,...,ku, so it need not
be considered explicitly in the following steps. Similarly, a

non-memoized program would not avoid any computations,
resulting in t “ tt1,...,ku and tI “ 0 @I ‰ t1, . . . , ku.

We must note that this decomposition is an abstraction as
it suggests tI was independent of the computations reflected
by tJ (J ‰ I), which is not entirely true for reasons such
as caching or branch prediction. The decomposition is still
accurate enough for a reasonable runtime prediction.

Unfortunately, a large amount of parameters inevitably
results in a prohibitively large amount of partial runtimes,
namely the size of the power set. To solve this issue, we reduce
the parameter space that we need to explore:

a) Parameter Space Reduction: If a potential MU is
influenced by many parameters, the chance to find a lot of
redundant computations is low since the computations do not
re-occur if just any parameter is changed. Further exploring
such a memoization option is not promising. Well-suited
candidates for memoization, on the other hand, are those MUs
whose input is influenced only by a few parameters. Hence,
in a first step we need to determine the influential parameters.

To this end we execute two configurations: c1 “

pv1, . . . , vi, . . . , vkq and c2 “ pv1, . . . , v
1
i, . . . , vkq for random

parameters, but ensuring vi ‰ v1i. If a cache miss occurs during
execution of c2, or an entry generated by c1 is not re-used by
c2, we know that the MU input is influenced by parameter i.
We denote i as a relevant parameter. Otherwise parameter i did
not influence the input of the MU and we treat it as irrelevant.
We must note that we might erroneously treat a parameter
as irrelevant when it influences the MU computation only
under certain conditions. In this case we would overestimate
the potential of this MU, which is, however, the nature of a
heuristic that it cannot always be correct.

For a parameter study with k parameters in total, and kr

relevant parameters this step adds k ` 1 computations, but
reduces the number of partial runtimes to compute in the next
step from 2k to 2kr . We impose a fixed upper limit for kr

and deem the choice of the MU inappropriate if the limit is
exceeded. Our experiments showed that 3 is a good value for
this, limiting the number of partial runtimes to 8.

b) Estimation of Partial Runtimes: If a parameter i P I
is irrelevant, tI “ 0 since either no computations have to be
re-performed if i changes or the computations must also be
re-performed if a parameter j P J “ Iztiu changes. With
IR Ď t1, . . . , ku being the set of relevant parameters we can
express the reduced runtime decomposition as follows:

tpv1, . . . , vkq “
ÿ

IĎIR

tIppviqiPIq

We model the memoization overhead in tIR , now. The formula
consists of 2|IR| components, i. e., less or equal 8 for |IR| ď 3.
By executing pairs of configurations pc1, c2q, we can derive
concrete instances of this formula. The left hand side of the
formula is always the runtime of c2. Some of the summands
on the right hand side are 0 since memoization avoids the
corresponding computations (and the overhead is reflected in
tIR ). For instance, tt1u is 0 if parameter 1 is kept constant
from c1 to c2 and tt1u, tt3u, and tt1,3u are 0 if parameters



1 and 3 are kept constant. The only exception to this rule
is tIR , which is never set to 0, as there will always be
computations that cannot be avoided, namely the memoization
overhead and the computations outside the MU. 2|IR| pairs of
configurations generate 2|IR| equations with 2|IR| unknowns.
Choosing the configurations such that the set of changed
parameters is different for each equation yields all pair-wise
linearly independent equations, hence solving the equation
system computes the values of the unknowns tH, tt1u, ..., tIR .

c) Estimation of Total Runtime: To predict the total
runtime of the parameter study we recompose the partial
runtimes to deliver the runtime of each configuration. The
first configuration cannot re-use results computed in previous
configurations, hence its runtime is

ř

IĎIR
tIppviqiPIq. Setting

times of avoidable computation to 0 allows us to compute
a prediction for the execution of each configuration under a
certain order. In fact, the order influences the runtime of a
configuration, but not the overall runtime as swapping two
configurations just moves the effort between them. Hence,
summing up the predicted runtime of each configuration yields
a runtime prediction for the entire parameter study that is
memoized in the provided way.

d) Optimizations: The following issue has been ignored
so far: Executing certain configurations during the prediction
might take prohibitively long if the MU selection was poor.
Similarly, the unmemoized execution might take prohibitively
long as well (cf. the Fibonacci example in [17]).

Hence, we designed the dynamic analysis to allow stopping
executions. Since we have no baseline to compare to before-
hand, we use the available CPU cores and start multiple jobs at
the same time. Different memoization opportunities (randomly
chosen if the set to explore is greater than the number of CPU
cores) plus unmemoized code are launched concurrently in
the same configuration. After the fastest finished, we allow a
certain amount of extra time for the others to complete since
stopping immediately would be too restrictive due to possible
fluctuation in the runtime. Hence, for some opportunities we
might only retrieve a lower bound for the runtime.

If we need to cancel an execution during the parameter
space reduction step, we deem the parameter having uncertain
influence. We might be able to propagate the influence along
the syntax tree: Relevant parameters are relevant for the par-
ents, irrelevant parameters are irrelevant for the children. We
treat parameters that still have uncertain influence as relevant,
first. If this exceeds the threshold of 3 relevant parameters, we
proceed with the next step, but execute only 8 configurations.
Hence, for the runtimes depending on some of the parameters
with uncertain influence we choose a lower bound of 0. We
then determine a lower bound of the total runtime and provide
this to the selection process described in the next section.

If we need to cancel an execution during the estimation
of partial runtimes, we retrieve an inequality rather than an
equation. Treating such an inequality like an equation, allows
us to compute a lower bound for the runtime.

Finally, for every memoization opportunity, we retrieve
either a runtime prediction or a lower bound thereof.

E. Selection and Combination

From the runtime predictions and lower bounds we select
the numerically smallest value. If this is a runtime pre-
diction, the corresponding memoization opportunity is the
most promising one and is hence selected. If the value is
only a lower bound, control needs to be passed back to the
performance prediction step with more permissible runtime.
This results either in a numerically greater lower bound or
a precise result. We then repeat the selection step. We finally
retrieve a runtime prediction that is provided as an exact value
rather than a lower bound. However, in general we expect this
procedure to be only a backup strategy since typically the need
to cancel an execution due to a prohibitively long runtime
indicates an unlikely candidate.

Input to the final combination process are the MUs chosen
by the selection process for each hotspot and the corresponding
runtime prediction. Since the selected MUs are found in dif-
ferent hotspots, they do not overlap and can all be memoized.
The overall runtime estimation can be computed by subtracting
the time saved by each MU from the runtime prediction of
the original parameter study. We finally create a memoized
program where each of the selected MUs is memoized.

V. EVALUATION

The goal of our evaluation is two-fold: First, we aim to
provide general estimations on the accuracy of our predictions
and its computation time. Second, we determine whether
our tool is in practice able to choose the best memoization
option. For the first, we designed a synthetic benchmark
with varying number of parameters for which we can easily
determine the runtime characteristics manually to compare
it with the predictions (see Sect. V-B). For the second, we
use the benchmarks we discussed in [17] where we had
identified the most promising code blocks manually, such that
we can determine if the automatic identification introduced
in this paper comes to the same conclusion. We describe our
results on Fibonacci number computation in Sect. V-C and the
Orthogonal Frequency-Division Multiplexing (OFDM) fading
model in Sect. V-D. Prior to that we introduce our general
evaluation methodology in Sect. V-A.

A. Evaluation Methodology

For each benchmark, we create a simulation model for OM-
NeT++ 5.0. We describe a parameter study in the OMNeT++

initialization file as discussed in [18, Section 10.4 “Parameter
Studies”]. Hence, our tool can use OMNeT++ to retrieve all
necessary information about the parameter study to optimize.
For the memoization transformation we use version 20161220
of memoize and as a compiler we use Clang 3.9.

All experiments are performed on a compute server with 2
Intel Xeon E5-2643 v4 CPUs (2 ˆ 6 cores, hyper-threading
disabled) with 256 GB RAM. We repeat every experiment at
least 10 times and show means and 99 % confidence intervals
in every plot.
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Fig. 3. Synthetic benchmark: heuristic runtime and prediction accuracy.

B. Synthetic Benchmark

The main influence factors of the time and accuracy of our
heuristic are the number of parameters and the number of
relevant (s. Sect. IV-D) parameters. To investigate the scala-
bility of our approach, we hence create a benchmark allowing
us to vary both. Our simulation model consists only of a
single event handler that purposefully performs some useless
calculations and takes about 0.3 s. The code is designed in a
way that a memoized version performs at about the same order
of magnitude. We vary the number of parameters from 1 to 10,
i. e., the parameter studies consist of up to 1024 configurations.
We vary the number of relevant parameters from 1 to 3 and
perform experiments with all possible combinations.

Fig. 3 depicts the results. Fig. 3(a) shows the runtime of
our tool. We nicely observe the runtime increasing linearly in
the number of parameters although the size of the parameter
study increases exponentially. With varying number of relevant
parameters, we observe the expected exponential increase,
which confirms that this number need be small. Remember that
memoization itself can as well only be beneficial if there are
enough irrelevant parameters, such that redundancies actually
occur inside the MU. For a large amount of reasonable inputs
we can hence predict the runtime sufficiently fast.

Predicted and true runtimes are shown in Fig. 3(b) for
the original, in Fig. 3(c) for the memoized study. We clearly
observe the expected exponential runtime of the entire study.
Our heuristic always overestimates the runtimes. We attribute

this to the fact that for the prediction multiple CPU cores are
used while for computing the actual runtime we only use a
single core. This can hence be clocked higher and has unshared
access to L3 cache and memory bus. The increased cache
capacity especially helps the memoized version. Nevertheless,
we observe that the general course and the differences be-
tween the configurations is correctly reflected. Hence, relative
statements – as required – can be made accurately.

C. Fibonacci

The Fibonacci implementation discussed in [17] computes
the nth Fibonacci Number in a standalone program. This is
an interesting benchmark for this paper since it depends on
the input parameter whether the computation is memoization-
worth or not. To evaluate our approach we need to wrap the
computation into a simulation model and a parameter study.
Our model consists of a single module with a single event
handler that computes the sum of Fibonacci numbers up to
Fi. This i is the only parameter of the study, which consists
of n configurations with i “ 1..n. In our experiments, we
vary n from 2 to 1000 to identify how well our approach
works with differently sized parameter studies with different
complexities of the computations themselves. In total, we
create 68 parameter studies and measure different time values
and captured how our tool decided. There is only a single
hotspot with a single memoization opportunity to be identified.
Hence, the heuristic only decides whether memoization should
be applied or not. However, for small Fibonacci numbers the
computations are not complex enough to identify a hotspot. In
this case the heuristic correctly concludes that memoization is
not beneficial and emits the parameter study unmodified.

Fig. 4(a) compares predicted and measured runtimes of
both the memoized and non-memoized version, excluding
the OMNeT++ setup and teardown time. Up to about F25

no memoizable hotspot is identified, thus no predictions are
available. Although the plot suggests memoization should be
applied from F18 on, it should be noted that for such simple
computations the OMNeT++ overhead dominates the overall
runtime, such that the optimization would not be perceivable.

From F25 to about F50, predictions are computed but
are heavily fluctuating. This is caused by the nature of the
parameter study: The execution time of a configuration heavily
depends on the parameter. As discussed in Sect. III this renders
a precise estimation almost impossible. Nevertheless, in most
cases we correctly predict a higher runtime for the original
version than for the memoized one. From about F50 on the
likelihood of choosing a small Fibonacci number is small
enough, such that in most cases the heuristic had to cancel the
original implementation due to prohibitively long execution
times and emitted only lower bounds on the runtime.

The actual runtimes follow our previous observations in [17]
though the absolute runtime differs since we wrapped the com-
putation into a parameter study and performed the experiments
on different hardware. Our heuristic slightly overestimates
the runtime of the memoized parameter study, but in general
the prediction follows the true runtime adequately. All lower
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Fig. 4. Evaluation results of the Fibonacci model.

bounds for the predictions of the original implementation
are (correctly) below the measured runtime of the original
implementation. Additionally, they are sufficient to safely opt
for memoization, hence no refinement is requested.

Fig. 4(b) shows the fraction of cases in which our tool opted
for which alternative (original or memoization), based on the
30 repetitions we performed for each experiment. For small Fi-
bonacci numbers our heuristic correctly identifies the original
implementation as the better alternative. From F11 on, where
both alternatives perform almost equally, it selects the original
implementation in most cases. After that, the fraction of opts
for memoization increases quickly, which correlates with the
fact that now memoization becomes beneficial. However, even
for larger values in some cases the heuristic still opts for the
original implementation due to bad luck in the configuration
selection. In this case, just re-executing our tool can help as
the configurations are selected randomly.

We assess the runtime of our tool in relation to the execution
time of the model (s. Fig. 4(c)). For small Fibonacci numbers
our tool adds considerable overhead compared to the actual
execution time. This overhead increases up to 20 s, but stays
constant at this level. Hence, from F40 on we are able to
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Fig. 5. Evaluation results of the OFDM fading network simulation case study.

achieve overall improvement. Though our overhead is consid-
erable in the investigated experiments, it is always less than
20 s. We argue that manual annotation cannot be performed
within 20 s, hence we would outperform manual annotation if
the annotation time was added to the entire runtime.

D. OFDM Fading Model

After manual MU identification we can reduce the runtime
of an OFDM fading based parameter study by almost two
orders of magnitude (s. [17]). We confirm this on the hardware
described above (reducing the total runtime by a factor of 97
from 7.6 h to 4.7 min). Again, we evaluate whether we are able
to perform the previously manual identification automatically.

We observe that our tool reliably detects the fading compu-
tation function as the most prevalent hotspot in the parameter
study. This consists of 6 loops in total, out of which 4 are
nested into each other. Since the function body itself can be
memoized as well, this results in a total of 7 memoization op-
portunities. The 4 nested loops are of much greater complexity
than the 2 others. For this reason as discussed in Sect. IV-C our
tool prunes the 2 others, such that 5 opportunities remain to be
investigated further. In the latter, in fact, a trade-off between
input size and computational complexity could be expected,
hence such deeper exploration actually makes sense.

Fig. 5(a) depicts our predictions. For opportunity 1 (entire
function body) the heuristic computes a significant gain while
for the others it predicts a performance decrease. The runtime
is long enough to only generate a lower bound, which is safely



used to justify that memoization opportunity 1 is faster. We
confirmed that the outer-most loop (memoization opportunity
2) in fact generates a large amount of intermediate results that
are aggregated by one of the other loops later on. Additionally,
the outer-most loop relies on further, previously generated,
intermediate results. Hence, input and output of opportunities
2 to 5 is huge, resulting in prohibitive memoization overhead,
greater than the complexity of the original fading computation.

For the original implementation the prediction is pretty close
to the actual runtime. For the first memoization alternative
the prediction overestimates the runtime and we observe quite
a significant variance. In fact, not all configurations exhibit
similar runtimes in the original implementation, such that the
prediction varies with the configuration selected. However,
since for all alternatives the same configurations are selected,
this introduces inaccuracies in the absolute prediction, but not
in the difference between predictions. Since the heuristic needs
to be only good enough to generate results that are accurate
relative to each other, the predictions are appropriate.

Due to the huge expected runtime of the remaining memo-
ization alternatives we did not measure the exact runtime
required. However, we did confirm for single runs that in
fact the memoized version takes significantly longer than the
original, even if the MC already contains the results required.
Hence, the general conclusion that the runtime increases by
applying one of these opportunities is correct.

We can hence conclude that our tool – correctly – identifies
memoization alternative 1 as most promising.

Fig. 5(b) shows the performance achieved by the 3 options
available now: 1) no memoization, 2) manual annotation of
memoization opportunity 1 with automated memoization, and
3) automatic identification and memoization.

We observe the massive memoization gain already reported
in [17] for both memoization approaches. However, while
the manually annotated execution completes within less than
5 minutes, our approach takes an additional 114 s to identify
the best MU. We argue, though, that our approach is much
faster in identifying the MU than most users would be and
conclude that fully automatic memoization is feasible.

Nevertheless, we further analyze the runtime our tool needs
to improve our understanding of how the runtime is composed.
To this end, we decompose the runtime into the several steps
performed by our tool (see Fig. 5(c)). During the prediction,
several configurations have to be investigated. This takes
place in the steps Profiling, Parameter Space Reduction, and
Estimation of Partial Runtimes. Since we execute only a single
configuration partially for profiling, this step completes quite
quickly. Most time is spent in the following two steps. This is
expected since it is the most complex task to identify which
parameters influence the runtime and how.

The alternatives are memoized and compiled, which as
well takes a considerable amount of time. Finally, the plot
depicts the time consumed by our heuristic (solving linear
equation systems, etc.), which is relatively low. We conclude
that, should optimization be necessary, the execution during
the Estimation of Partial Runtimes would be the first target.

However, we argue that the total overhead is quite low,
compared to the gain achieved by avoiding the manual effort.

E. Parameterization

As discussed in Sect. IV, our approach allows to adjust a
small set of parameters. Since the models evaluated coped
fine with the default values, we didn’t change any of those
parameters. However, it is still important to note that the
performance will decrease if, for example, a model maintains
an extensive initialization phase, such that 2 s of profiling only
profile the setup. In this case, this parameter need be adjusted.
Similarly, it might be necessary to increase the maximum
number of relevant parameters if no suitable MU is found.

F. Conclusion

Our evaluation shows that although the absolute runtime es-
timations are not always accurate, comparing two estimations
still results in correct decisions. We are hence able to identify
the most gainful MUs automatically, which previously had to
be done manually. To this end, our heuristic needs less than
2 minutes in all experiments conducted. Hence, our heuristic is
able to perform educated memoization decisions in very short
time, eliminating the need to perform this effort manually.

VI. RELATED WORK

Since automated memoization was not practically feasible
until 2016, the urge for techniques to automatically identify
promising computations for such a tool was not provided as
well. To the best of our knowledge no approach has been
developed so far to tackle this issue. However, the central
component of our work is the runtime prediction of the param-
eter study. Software performance prediction has in fact been
studied thoroughly in the past and we discuss these efforts in
the following. Furthermore, there are alternative approaches
to avoid redundancies that do not need the identification step.
We outline these approaches as well.

a) Performance Prediction: In general, selecting the best
memoization opportunity is a problem of algorithm selection.
Algorithm selection has been first discussed by Rice in [15].
Kotthoff et al. [14] discuss a number of recent research
efforts to select the best algorithm from a given portfolio by
machine learning. In contrast to our situation, such portfolios
are already limited to a reasonable number of algorithms.
Hence, the input is comparable to the input of our performance
prediction step discussed in Sect. IV-D. Generic algorithm
selection solutions such as [3], [8], [9], [16] use different
machine learning techniques to predict the value of the cost
function (in our case the cost function would measure overall
runtime). While such an approach might be applicable here
as well, it would completely ignore the characteristics of
parameter studies. As Rice already stated in 1976, proper
algorithm selection “will always require exploitation of the
specific nature of the situation at hand” [15]. In this vein
we decided to tailor our performance prediction approach
specifically for parameter studies rather than using a machine
learning based approach off the shelf.



Other performance prediction techniques build upon simu-
lation themselves. In this context, the input simulation model
is considered just a piece of software as if it was not a
simulation model itself. Prior to the prediction the code of
the input software has to be transformed into a simulation
model, i. e., just like with any simulation the modeling has
to be done first. This model can then be executed to predict
the software’s performance on a given input. Note that in
our case |C| (number of configurations in the original study)
simulation runs had to performed. A modeling method that
needs no further manual effort is to compile the code and feed
it into a cycle-accurate simulator such as Manifold [20], which
allows to predict the performance. However, since cycle-
accurate simulation emulates a single CPU cycle by multiple
instructions, if only the runtime is of interest (like in our use
case), just directly executing the code would always be faster.

Other approaches to simulative performance prediction [6],
[13] perform static code analysis to automatically generate a
way more abstract model, allowing to expect a speedup in the
execution time. Nevertheless, this still requires the execution
of |C| simulation experiments, such that the runtime is still
exponential in the number of parameters. Hence, an approach
to reduce the parameter space and predict runtime based on
this like our approach would still be necessary, though a
combination might be an interesting option to explore.

b) Redundancy Avoidance: To avoid redundancies in
parameter studies another technique worth mentioning is Sim-
ulation Cloning [10], [11]. This does not need the identification
of promising computations as it starts off with only one
simulation and “clones” any affected ”virtual logical process”
once its state is influenced by any of the parameters that
are to be changed during the parameter study. Hence, only
redundancies up to the first branching point can be avoided.
Updateable Simulations [5] can be more effective in avoiding
redundancies, but require manual implementation of update
functions. In conclusion, automatic identification of promising
computations for memoization is necessary to realize redun-
dancy avoidance after the first branching point automatically.

Orthogonally to our work the memoizer itself can be opti-
mized as well (e. g., by reducing overhead or increasing the
applicability in multi-threaded contexts). This would of course
result in improved performance. Hence, it would potentially
change the results of our decision making process, but we
argue that our methodology can still be applied in principle
since the memoization tool itself is interchangeable.

VII. CONCLUSION

This paper introduces our approach to automatically iden-
tify computations well-suited for memoization. Motivated by
Amdahl’s Law [1] we first identify the most complex compu-
tations in the model. We then explore different memoization
opportunities for those computations and heuristically select
the most promising ones. We build upon our previously
developed automated memoization tool [17] to transform the
original implementation into a memoized one. Our evaluation
shows that we are able to find the same MUs automatically that

we previously had to identify manually. While manual iden-
tification is time-consuming and requires domain knowledge,
our tool can do so automatically within less than 2 minutes.

In future efforts the time to run the final, memoized parame-
ter study, can be reduced: During execution of certain runs we
build up MCs, which we discard afterwards. By keeping the
cache entries the memoized execution could benefit from the
first computation on. Additionally, once automated memoiza-
tion has been adapted for safe use in multi-threaded contexts,
our performance predictions should take into account that the
memoized parameter study can be executed in parallel as well.

To conclude, in this paper we demonstrate that automated
memoization can practically be used without the need to
manually identify the promising calculations beforehand.
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