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Abstract—The growing demand for mobile content has in-
creased the burden on cellular network providers. To this end,
mobile content offloading approaches aim to offer a relief of
overloaded cellular network infrastructures via local content
exchanges between mobile devices. A core assumption of proposed
approaches is the voluntary, honest, and altruistic participation
of devices or their owners. This dependency offers malicious
participants an avenue of mounting denial-of-service attacks
by lying about the content they have or by providing forged
content, thereby negating the principal advantages of mobile
offloading. Furthermore, without mutual authentication between
the participants, there are no means of identification and thereby
no chance to report or to stop abuse.
In this paper, we thus propose MIRCO, an approach that adds
integrity protection to the offloaded content, authentication for
participants, and a commitment to the exchange of content
between devices. We embed the aforementioned techniques into
the offloading process and implement and evaluate our approach
using Android smartphones with regard to time and energy
overhead. Our results show that MIRCO only adds negligible
overhead to content exchanges, thus enabling a feasible and
accountable content offloading approach.

I. INTRODUCTION

Mobile broadband usage has experienced a massive
growth [1] which increases the burden for the cellular operators,
forcing them to adapt their networks to still provide adequate
service for the users. Solutions include adding more resources
in the form of cellular base stations [2] or adding additional
caches at the edge of the network [3], in order to reduce the load
in the provider’s backbone. While the first solution implicates
a significant amount of costs and maintenance effort, the latter
still suffers from the need to send the requested content to each
individual user [3], [4]. Therefore, alternative solutions such
as mobile content offloading have been introduced. Mobile
content offloading approaches offer the possibility to pre-cache
popular content [4], [5] on mobile devices and additionally
leverage opportunistic Device-to-Device (D2D) communication
for further data distribution [6] on a local scale.

While mobile offloading thereby offers a relief of overloaded
cellular network infrastructures via content exchanges between
mobile devices [4], [5], [7]–[11], a core assumption is the
voluntary, honest, and altruistic participation of devices or their
owners, respectively. This is because, once content has been
offloaded from the Internet, subsequent D2D communication
offers no control, as originally offered by the original content
provider, over the authenticity and integrity of content. Hence,
devices that partake in content offloading need to rely on
providing devices to honestly announce their available content
and to actually provide the eventually requested content.

This dependency then offers malicious devices an avenue of
mounting denial-of-service attacks by lying about the content
they have or by providing fake or harmful content, thereby
negating the principal advantages of mobile offloading as well
as wasting communication and energy resources in the process.

Within this scope, multiple solutions facilitate actual of-
floading of content from the Internet [4], [5], [9], expression
of content interests [12], and local connectivity and content
exchanges between devices [7], [8], [13]. In contrast, ensuring
content authenticity and integrity, as well as correct behavior by
participant remains an open problem. This is because applying
traditional means of content protection in mobile offloading, i.e.,
end-to-end content encryption and certificate-based authentica-
tion of the provider at request time, is infeasible as no end-to-
end connection between provider and requester exists. Similarly,
group encryption of content to all participants in an offloading
scheme does not hinder malicious participants from altering
and/or lying about content. Moreover, without authentication
between participants, identification of misbehaving participants
and ultimately the ability to exclude them is impossible. We
argue that these functionalities are central to the adoption and
acceptance of offloading approaches in real-world applications.

In this paper, we present MIRCO, an approach to maintain
integrity and reputation in content offloading. We therefore
enhance the general design of current content offloading
approaches by 1) a trusted signing proxy that attaches a
cryptographic signature to content that is offloaded from the
Internet to the providing mobile device, 2) authentication of
participating devices and cryptographic commitment to the
content they agree to exchange, 3) verification of received
content authenticity by way of the aforementioned trusted
signature, and 4) a reputation system that chronicles the
correctness of device behavior and content exchanges. We
design MIRCO such that it seamlessly embeds itself in the
design of current architectures [9]–[11], [13] and fosters the
fundamentally collaborative nature of mobile offloading in
letting participants report malicious behavior by both requesting
and providing devices.

The rest of this paper is structured as follows. In Section II,
we motivate the requirements for MIRCO by presenting current
approaches and building blocks for content offloading. In
Section III, we present our design of maintaining content
integrity and reputation through user authentication. Moreover,
we demonstrate how this integrates into common offloading
processes. We implement MIRCO on Android smartphones
and evaluate its performance with regard to time and energy
consumption in Section IV and conclude in Section V.



II. RELATED WORK

MIRCO enhances common approaches and building blocks
that enable mobile content offloading, like the initial content
distribution or the local search for content and its exchange.
We motivate the requirements for our design based on the
characteristics of existing approaches and possible limitations.

A. Initial Caching of Content

For network operators, an important task in mobile offload-
ing is the identification of content that relieves their networks
the most. Attributes of such content are i) the popularity,
based on the requests, and the ii) tolerance to delay, i.e.,
non-interactive. Either, content is classified as popular on the
device locally based on individual user request [5] or such a
classification is performed at the cellular provider on a larger
scale [3], [4], [14]. In addition, an actual content provider could
also share statistics about requested and delivered content.
Nevertheless, as long as content is self-contained and non-
interactive it may be cached by participating devices.

Approaches that build upon global content classification
can pack popular content [4] into bundles and send these to
the mobile stations on a regular basis, e.g., via a cell multicast
or store them on caches located at the edges of the network.
Using a local, i.e., user specific, classification of popular content,
approaches like IMP [5] try to optimize the download of this
content, by taking battery lifetime and connection type, e.g.,
Wi-Fi or cellular, into account. In this individual case, such
content may also include emails. Systems that also target the
further offloading of popular content are presented in [9]–[11],
[15]. To this end, the authors propose to offload popular non-
interactive content to either an initial set of mobile client devices
or to all devices currently available in a cell, thus serving as
helpers for further distribution. In [15], the authors propose a
restriction to a trusted set of distributers, and forbid the further
distribution by others.

Using a trusted set of initial distributers might mitigate the
possibility to spread forged content, but may limit the overall
availability of content. When each participant is allowed to
distribute content, there is the need to check the authenticity
and integrity of content. To allow for such checks, a trusted
entity has to add additional information to content, e.g., such as
authentication signatures as proposed in [16]. Moreover, clients
need some form of authentication or reputation, e.g., as used in
DTN approaches [15], among themselves to check, if they are
communicating with a legit participant and to report possible
misbehavior.

B. Locating and Obtaining Content

Locating and receiving content without the assistance
of a third party has been covered in approaches targeting
mobile opportunistic and Delay Tolerant Networks (DTNs).
Approaches presented in this area either focus on optimizing
content querying in previously established ad-hoc networks [12],
or on combining the search for content on a local scale with
the establishment of content centric networks on demand [13].

Approaches like DataSpotting [8] and ICON [7] add a
specific entity located at the cellular provider that is responsible
for locating and matching content. Clients report their location,

their content interests, and the content they provide to this entity.
If there is a match between two clients and if they are within
D2D communication range, this entity triggers the respective
clients via the cellular network to establish a local connection,
e.g., via Wi-Fi, allowing them to exchange the content. As all
control traffic is sent via the cellular connection, the cellular
provider can identify clients.

However, neither the local approaches nor the approaches
assisted by additional entities are either capable of checking if
a client still is or was in possession of the requested content,
or keeping track if the initiated exchange is successful.

In [17], requesting clients simultaneously contact a Central
Dissemination Manager (CDM) via their cellular connection
and try to obtain content through opportunistic contacts. If the
local lookup is not successful within a certain timeout, the
content is delivered via the CDM. In case of a successful local
lookup, the requesting client acknowledges the exchange to the
CDM. Moreover, the requesting node saves the content for a
so called sharing timeout. The combination of this timeout and
the acknowledgment of content exchanges allows the CDM to
keep track of the content availability in the network. Again,
there is no mechanism that checks the authenticity and integrity
of the exchanged content automatically. Without such a check,
the records kept at the CDM might get distorted.

We address the shortcomings in terms of integrity protection
and reputation within the presented related work and show how
we overcome these in MIRCO in the following section.

III. MIRCO DESIGN

The overall goal of MIRCO is to maintain integrity and
reputation in content offloading. To this end, we integrate
the necessary support in the typical steps of mobile content
offloading (see Section II), namely the initial distribution of
content (cf. Figure 1) and subsequently the content exchange
between mobile devices (cf. Figure 2).
For the initial content distribution (Figure 1), client (A) requests
the desired content (IDX) via her cellular connection (1).
Instead of directly requesting content from the content provider
(CP), the content is requested over a secure connection via an
additional trusted entity, the signing proxy (P). On behalf of the
requesting client, this signing proxy then obtains the content
(ItemX) at the content provider (2-3). P extends the content
with a content description (CDX) that will be used to match
content to requests on a local scale. After the resulting bundle
is signed ([. . .]P), P sends it to the client (4). By extending
the bundle with a signature, clients that obtain this content
via local Device-to-Device (D2D) communication can directly
check the content validity.

The local distribution of content to other clients (Figure 2)
represents the second stage within common offloading ap-
proaches. A requesting client (B) sends the actual content
request, a locally generated unique transaction ID (TID), and
her authentication credentials (CertB) in a signed message
([. . .]B) via a previously established D2D connection (1). To
confirm this request, the providing client (A) sends a signed
reply ([. . .]A) containing her authentication credentials (CertA)
together with the previously received TID, the matching Content
Description (CDX) as well as the signature of the request
(2). We call this reply a commitment to this transaction. The
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Fig. 1. After mutual authentication using certificates, the registered user A
requests content at the signing proxy P (1). On behalf of A, P obtains the
content from the content provider CP (2-3). After P has added the content
description CDX and has signed ([. . .]P) this bundle, it is sent to A (4).

providing client A signs the content bundle along with the TID
and sends them to B (3). Because this content bundle is signed
by P, the integrity of the content can be checked automatically.
As there could be a multitude of different signing proxies, the
certificate (CertP) of the respective signing proxy is included
in this message. Finally, both clients issue a receipt for the
successful transaction and thereby cryptographically commit
to this exchange (4-5).

In the following, we focus on the necessary prerequisites that
enable MIRCO. Moreover, we provide a detailed description
of the aforementioned steps of the offloading process. Finally,
we show how MIRCO enables reputation by reporting content
exchanges between clients and how we can monitor and detect
the misbehavior of malicious clients.

A. Assumptions & Prerequisites

The entities involved in the mobile content offloading
scenario we envision in this paper are the content provider, an
additional trusted entity in form of a signing proxy, and the
mobile clients, as depicted in Figure 1. While we do not demand
any changes to the content provider, we require additional,
previously established, credentials for the authentication of the
other entities as well as content signatures. The latter could
either be computed on demand or proactively by the signing
proxy. To allow clients and infrastructure elements, e.g., the
signing proxy, to mutually authenticate in MIRCO, certificates
are deployed. Therefore, we use a Public Key Infrastructure
(PKI) containing two Certificate Authorities (CA), where each
CA takes the role of issuing certificates to the aforementioned
entities, respectively. For the certificates and keying material,
we follow the NIST recommendations [18] and use Elliptic
Curve Cryptography (ECC)1 with a key length of 256 bit and
SHA-256 as basis for the digital signatures. We choose two
CAs to allow clients to easily distinguish between the two
groups of entities. To enable a reputation system, clients need
to register to be identified within the system. Thus, we equip
clients with a certificate as well as the respective certificate
chains during a registration process.

B. Obtaining Content via the Signing Proxy

Before requesting the actual content, a requesting client A
and the signing proxy P perform mutual authentication using
the previously established credentials by establishing a TLS
connection (cf. Figure 1). Client A then requests (1) the content,
we envision using an identifier (IDX) that directly addresses
content or that can be matched against a set of tags used to
describe content.

1used curve is NIST P-256
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Fig. 2. Using local D2D communication, B sends the request containing the
content ID (IDX), a unique transaction ID (TID) and her certificate as signed
([. . .]B) message to A (1). The reply contains A’s certificate together with
the chosen TID, the content description (CDX) as well as the signature of the
request and is signed ([. . .] A) by A (2). Now, A sends the requested content
bundle to B (3). Finally, both devices acknowledge the transaction by issuing
receipts, which are signed by the respective clients (4-5).

When P can handle the client’s request, it requests (2) the
actual content according to IDX on behalf of A at the content
provider CP. After P has finished the content download (3), it
creates a content bundle that also encloses the content descrip-
tion CDX that matches IDX. Fields contained in the description
could be the origin or type, declaring if this is a web page or
multimedia file, or a category, that may include multiple tags de-
scribing the topic, e.g., news, sports, or entertainment.
This allows clients in the system to indicate and search
for requested content semantically. As proposed in [19],
the client could query for web://news/cnn/business
or media://youtube/top5, or even more abstract,
web://news/sports. The bundle is signed by P as a whole
and then sent to client A (4). The content description offers two
major benefits for our system. On the one hand, a client that
requests content via the local D2D network might thus query
more extensively, i.e., a client may express interest in content in
a less specific fashion. On the other hand, it enables the client to
check offloaded replies to her request in an automated fashion
by matching content description CDX within the response.
Although this initial signing process adds a certain overhead
compared to a regular download, it allows clients to directly
verify the validity of content. This limits the distribution of
forged content and the possibly resulting waste of time for
honest clients, which we discuss in the following.

C. Client-to-Client Content Exchange

As client A now is in possession of content and a respective
signature, it becomes a providing client and other clients
now have the chance to request this bundle using local D2D
communication. We assume the presence of a mechanism to
allow for the spontaneous creation of a local Wi-Fi network.
Among the existing techniques, clients could integrate the
content request in a network request [13] or periodically switch
between a listen (provider) and discover (requester) state [20].

In the following, we describe the necessary steps for a
complete D2D content transaction. The requesting client B
addresses the desired content by an identifier as described
in Section III-B, depicted as IDX in Figure 2. Moreover, B
has to choose a unique transaction ID (TID) that is utilized
to identify the whole transaction afterward. To this end, we
use a 16 Byte (pseudo)-random Universally Unique Identifier
(UUID) [21]. Furthermore, B adds her own certificate CertB
and finally signs the whole request (1). Upon reception, A first



checks the validity of CertB with the certificate chain. If B is
indeed showing a correct certificate, A checks the integrity of
the request. On success, A performs a local content lookup,
otherwise, A terminates the local connection. If the requested
IDX matches to a description CDX of a content, A replies with
the same TID, the matched content descriptor CDX, the signature
of the request, and her certificate CertA (2). We incorporate the
request’s signature to mitigate the effect cooperative malicious
clients may have on the system, which we discuss in detail in
Section III-E. Please note that this message is also signed. As
the request and the reply contain the transaction ID TID and
are signed by the respective parties, we call this a commitment
to this transaction. If the received content description indeed
matches the requested content identifier, B now awaits the
content, as the providing client A has at this point committed
herself to this transaction.

Subsequently, A sends the content bundle, i.e., the requested
content and its description signed by P, as well as the TID to
B (3). When B has completely received this message, she
immediately checks the integrity and if the content was truly
issued by P. Moreover, she checks A’s signature to verify the
commitment to this transaction as well as if the description
matches the one contained in the reply. If these checks turn out
satisfactory, B issues a receipt to A in order to acknowledge
the success of this transaction (4). Afterwards, A replies with
her own receipt (5). Both receipts contain TID and are signed
by the respective client. As a final step, both clients store the
request, the reply, and both receipts for reporting which we
discuss in the following.

D. Reporting Transactions

Up to now, we have shown how content is acquired and
distributed in MIRCO. While this allows partaking clients to
directly check the content’s validity, we still need a mechanism
to identify both altruistic and misbehaving clients. Therefore,
we introduce a reporting system for transactions. To report a
particular transaction, the clients have to send the respective
request, the reply, as well as both receipts to the reporting
system. It is not necessary, that this happens immediately after
the transaction. Clients may wait until they again have a better
connection available, e.g., LTE or Wi-Fi. The reporting entity
itself could be co-located with the server or be realized as a
logical single service for scalability reasons.

In case of a full transaction, i.e., all messages are present,
the reporting system simply checks the validity of these with
the help of the respective public keys. Notably, it is sufficient
if only one of the clients sends the messages to the provider
as these contain all necessary information and are signed by
the respective clients. If these checks turn out positive, i.e., the
request, reply, and receipts can be matched successfully, the
reporting system stores these to record successful transactions.

However, if the content has been received by client B (cf.
Figure 2) and B has already checked the validity, it might
happen that the receipt issued by B does not reach A. This may
be caused by connection problems or a client moving out of
the D2D communication range. Following the protocol, A will
not send her receipt to B. However, the transaction can still
be reported as a success. Eventually, B notifies the reporting
system about this transaction, by sending her request, the reply,

TABLE I. EXEMPLARY INFORMATION STORED IN THE REPORTING
SYSTEM FOR VARIOUS CLIENTS.

User ∅ Requests/d ∅ Transactions/d Success Rating
Alice 25 80 0.87 AAA
Bob 17 42 0.56 A
Mallory 12 79 0.09 D

and only her receipt. Because B acknowledges this transaction
by showing her receipt to P, we count this transaction as valid,
in case that all necessary checks are correct. In contrast, it is
not sufficient if A only sends her copy of the request and her
reply. In that case, P either has to wait for B to send her receipt
or to explicitly request the receipt from B. Thus, a providing
device, in this case A, cannot report a transaction as successful
without the confirmation of the requesting device.

We envision the reporting system to be accessible by
registered users and make the status of transactions transparent.
The data available at the reporting system could contain
information as depicted in Table I. An envisioned reporting
system could store the average number of requests to the signing
proxy as well as the average number of transactions between
devices on a per day basis. Moreover, the success rate of the
latter can be calculated based on the reporting, resulting in
a per user rating. In the next section, we will focus on how
MIRCO monitors and detects potentially misbehaving clients
and which actions are taken.

E. Monitoring and Detecting Abuse

The altruistic and correct behavior of clients is a crucial
ingredient for mobile content offloading. In the following, we
sketch different situations where clients are misbehaving and
thereby try to harm mobile content offloading and discuss how
we handle these situations in MIRCO.

Assume the following situation: after the request/response
exchange (cf. Figure 2) client A sends content to B that is
correctly signed by P and A but does not match the requested
content. After the download is finished, B compares the content
description and will recognize the mismatch. In this case, B
reports this transaction as incorrect by sending the request, the
reply as well as TID, CDx, both signatures from the content
header, and the hash of the content itself to the reporting
system. Since A committed herself to this transaction, this will
be marked as a failed transaction caused by A. If A adapts the
content description but sends mismatching content to B, the
check of the signature issued by P will fail. As in the previous
situation, if A has signed the messages correctly, B will send the
respective messages and header fields to the reporting system.

Furthermore, misbehaving clients could simply not send
specific messages and thereby harm the system. For example,
after the request and the reply have been sent, client A refuses
to send the content or sends random bytes. In that case, client B
has the chance to inform the reporting system about this incident.
However, B can only prove that she has communicated with A,
i.e., by showing the request and the reply, but cannot prove that
A has not sent the content. The reporting system will record
this, but not directly take actions against A, as this situation
could also been caused by connectivity problems. Therefore, in
MIRCO we recommend to leverage majority voting using the
reporting system. If such an incident is reported frequently, the



system will ultimately inform A about the incident and could
mark A as harmful.

To limit the possibility for a set of clients to work together
to incorrectly force the reporting system to exclude a particular
client, they have to at least prove that they communicated with
this client. Therefore, we include the signature of the request
in the reply (cf. Figure 2) to prevent clients to replay a copy
of a request-reply pair to the reporting system, which would
be possible if we only rely on the transaction ID.

If a client is judged as harmful to the system, i.e., the rating
falls below a certain threshold, there are different possibilities to
sentence her, e.g., a time-penalty or a complete banishment from
the system. To achieve both types, we suggest either to limit the
validity lifetime of the issued client certificates, e.g., by simply
setting the Not Before and the Not After fields accordingly, or
to use Online Certificate Status Protocol (OCSP) stapling [22].
Hence, clients in MIRCO need to refresh the validity of their
certificate on a regular basis. To achieve this, the client CA
renews the respective fields of the client certificate and resigns it.
Thus, communicating clients can directly check if the opposing
certificate is still valid. Before the lifetime expires, the client
needs to contact the respective CA to refresh her certificate.
If the reporting system has marked this client as misbehaving,
the CA can either refuse to refresh the certificate’s validity for
a certain amount of time or completely exclude her from the
system.

Additionally, the individual user rating, as presented in
Table I, could also be incorporated in this refreshment process.
Integrating the actual user rating into the certificate would allow
other clients to choose whether they want to communicate with
a client that is not above a certain rating or to limit the content
size they would be willing to download from such a client.

IV. EVALUATION

To evaluate the feasibility and applicability of MIRCO, we
implement the aforementioned clients and the signing proxy.
Our evaluation covers the time for the initial content distribution
between the client and the signing proxy (Section III-B), as
well as the time needed for the content exchange between
two devices (Section III-C). Furthermore, we show that our
design only adds a minimal overhead on top of typical content
offloading approaches, thus verifying our design decisions
while protecting participants from misuse and possible attacks.
To classify the impact on mobile clients with regard to
energy usage, we measure the power consumption for various
communication modes, i.e., 2G, 3G, LTE, and Wi-Fi, when
using mobile offloading.

We implement the clients on two Nexus 5 devices running
Android 5.1.1. As cryptography library, we use Spongy Castle2,
that extends the Android Bouncy Castle library with the support
for Elliptic Curve Cryptography. The Nexus 5 is equipped with
a 2.26 GHz CPU, a Broadcom BCM4339 5G Wi-Fi Chip and a
Qualcomm WTR1605L cellular transceiver. One of the devices
is endowed with an LTE-capable SIM card of a major European
cellular provider. The signing proxy functionality is realized
on a Ubuntu Desktop 14.04 machine with an Intel i7 2.93 GHz
CPU and 4GB RAM. We base our server implementation on

2https://rtyley.github.io/spongycastle/
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(c) Time measurements for a LTE connection.

Fig. 3. Time measurements for the respective steps of requesting and receiving
content at the signing proxy in different connection modes during working hours
and the weekend. Values shown are the average and the standard deviation.
Please note the logarithmic scale.

Twisted3 and add the additional functionality, i.e., elliptic curve
cryptography and signature handling, via the M2Crypto4 toolkit
for Python.

A. Timing

In the first evaluation scenario, we connect to the cellular
network in different modes, i.e., 2G, 3G, and LTE. Subsequently,
the device requests content of varying sizes (128 KB to 25 MB),
representing content such as single pictures, whole websites, or
videos, at the signing proxy. This request process follows the
steps depicted in Figure 1. In our evaluation setup, the requested
content is located directly at the signing proxy and we thereby
omit the initial download at the actual content provider thus
reflecting a well established cache. This process is measured in
the parking lot of our institute building located just outside the
city center in a suburban like area. We conduct 30 complete
runs for each connection mode and for a set of content sizes
respectively. As cellular network performance may vary with
the number of participants, we repeat the experiments during
working hours and on the weekend to assess the implications
for mobile content offloading.

The goal of this evaluation is twofold, first, we want to
show that the overhead introduced by the envisioned content
distribution in MIRCO is negligible in comparison to the
download time, second, this evaluation serves as a baseline for

3https://twistedmatrix.com
4https://pypi.python.org/pypi/M2Crypto



request
+ reply

cred.
check

check
d2d sign.

check
prov. info

receipts check
receipt

100

101

102

103

A
ve

ra
g

e
T

im
e

[m
s]

(a) Time results for MIRCO specific message exchanges and
computations, resulting in a total of 287 ms.

128KB 256KB 512KB 1MB 5MB 10MB 25MB
101

102

103

104

A
ve

ra
g

e
T

im
e

[m
s]

(b) Time for the actual content download using Wi-Fi.

Fig. 4. Time measurements for the respective steps of a content exchange
using a D2D connection realized via Wi-Fi. Values shown are the average and
the standard deviation. Please note the logarithmic scale.

regular cellular downloads to which we eventually compare the
D2D offloading approach. To this end, we measure the time it
takes to create a connected socket, i.e., including the mutual
authentication between the client and the signing proxy, the
time from the content request to the start of reception, as well
as the time for the whole content download. The request to
the signing proxy contains a content identifier, which we set to
50 B for this evaluation. Together with the content, the signing
proxy prefixes a content header containing the cryptographic
signature of 80 B as well as a content description set to 80 B.
Please note that additional messages fields in the request and
the server’s response, e.g., type, length, typically consume less
than 20 B. Figures 3(a) - 3(c) show the average and standard
deviation of the time requirement of each step.

As expected, the presence of more people and thereby
devices, during the week has a greater influence on a 2G
(EDGE) connection than on a 3G or LTE connection. The
time for the content downloads of 128 KB and 256 KB in the
2G network increases from 7 s on the weekend to 55 s during
working hours and from 14 s to 100 s respectively. In addition,
the time for the connection setup increases from 1 s on the
weekend to 3 s during the week and the time until the download
starts (start recv.), i.e., sending a content request and waiting
for the first bytes of the reply to arrive, takes 300 ms on the
weekend and increases to 1.4 s when the network becomes
populated during the week.

The download times for the 3G connection range from
640 ms to 16 s (128 KB to 10 MB) during the week and from
320 ms to 9 s during the weekend respectively. In both cases, i.e.,
the week and the weekend, the connection setup time is around
400 ms and time until the start of the download around 100 ms.
In comparison, the LTE connection shortens the download time
down to 230 ms for 128 KB and down to 12 s for an even bigger
25 MB content during the week. On the weekend the same
content takes only 175 ms and 9 s to download respectively,
thereby also showing that LTE suffers the least from crowded
networks. The setup times and the time until the download

starts are around 310 ms and 60 ms respectively, thus showing
an even smaller roundtrip time. In summary, we can observe
that for all modes, the initial connection setup is either always
or quickly dominated by the download time.

We put such emphasis on these times, as they again motivate
the use of mobile content offloading itself. 3G and LTE already
offer a high performance, however if their service is disrupted,
either due to an overload or to no coverage, the alternative
2G offers nearly no performance at all. Thus, a relief through
a local high throughput link will improve the overall system
performance as we will show in the following.

The second evaluation scenario comprises time measure-
ments of the content exchange between two devices using
MIRCO, following the scheme presented in Figure 2. Most
strikingly, this also demonstrates the implications of abuse in
mobile content offloading. Without integrity protection and
mutual authentication as offered by MIRCO, malicious entities
may introduce significant time overhead to honest participants
by lying about the presence of content. For the evaluation of
this scenario, we place the two Android devices at a distance of
15 m outside of our institute and let the device that possesses the
content open an 802.11n Wi-Fi hotspot, announcing a rate of
73 Mbps. Subsequently, we let another device request content
of varying size. As in the previous evaluation, we conduct
30 runs for each of these sizes. Figures 4(a) - 4(b) show the
result for the additional steps of the D2D content exchange
introduced by MIRCO and the time for the actual content
download respectively.

In MIRCO, a client connects to a communication partner,
requests content and obtains the first part of the reply in around
108 ms (cf. Figure 4(a) request + reply). To verify the content
owner’s response, again including certificate and signature, the
requester needs roughly 60 ms (cred. check) to perform the
same operations as the content distributor before. When the
requesting device has received the content, it checks the received
transmission signature with the previously validated certificate
in about 11 ms (check d2d sign). Afterwards, it validates the
included certificate of the signing proxy against the respective
certificate chain and ultimately checks the content’s signature
using this certificate, which in total takes around 27 ms (check
prov. info). Moreover, both devices issue a receipt to each other
which takes another 65 ms (receipts) on average. Eventually, the
requesting device checks the receipt from the communication
partner within 16 ms (check receipt).

In our evaluation, the request message has a payload of
756 B. Besides control fields, it contains the 16 B transaction
ID, an 80 B signature, the identifier we set to 50 B and the
requesting clients certificate of size 600 B. The reply to this
request has a size of 867 B, containing similar information as the
request (cf. Figure 2). Instead of the identifier, we incorporate
a fixed content description of size 80 B for this evaluation. In
addition, the reply contains the signature of the request. The
content header sums up to 881 B, again containing fields like
the content description and the transaction ID. Furthermore, it
incorporates the signing proxy’s certificate and the respective
signature. Finally, both receipts each have a size of 102 B.
Given the fixed values for the content request and the content
description, that might vary in reality, this sums up to a total
of only 2708 B additional payload that is sent beside the actual
content.



The total time overhead of the additional messages is
comparable to the time of establishing a TLS channel and
getting the first bytes. In the previous evaluation it took 374 ms
to establish a channel over the LTE network on the weekend,
however, with the additional authenticity and mutual receipt
exchange that MIRCO employs, we are on par with a total of
287 ms. Ultimately, the size of the content will dominate the
transmission time, Figure 4(b) shows the times for the actual
content download. The times for these transfers range from
33 ms to 7.3 s (128 KB to 25 MB). Thus, in all tested setups,
a local Wi-Fi channel outperforms the cellular networks even
though LTE closes the gap, thereby showing the feasibility of
mobile content offloading itself. However, without the features
offered by MIRCO, a local D2D exchange is still vulnerable to
malicious entities providing forged content, thereby rendering
these advantages useless.

Still, a D2D channel needs to be bootstrapped beforehand,
referring to the results shown in [13], discovery of commu-
nication partners and the establishment of a D2D network
with respect to 802.11 security requirements takes less than
4.5 s on commodity smartphones. Within this time, an LTE
connection in our test setup already downloaded around 4 MB.
Nevertheless, when reconsidering that mobile content offloading
tries to overcome the lack of a fast cellular connection or no
connection at all, we still benefit even with such a delay. For
example, a slow 2G connection only connected its socket and
starts receiving the first bytes within this time, allowing MIRCO
to overtake 2G within fractions of a second.

These results show that adding the ability to monitor and
detect abuse of D2D connections only introduces a compara-
tively small amount of traffic as well as time overhead. Thus,
our implementation of MIRCO demonstrates the feasibility and
real-life applicability of incorporating integrity protection for
content and authentication of participants.

B. Power Consumption

Complementary to our evaluation of time, we also conduct
measurements for the power consumption of the smartphone
in various connection setups. On the one hand, we want
to put the energy demands of a local D2D connection into
perspective to cellular data exchange. On the other hand,
we want to investigate the burden, i.e., energy consumption,
honest participants are willing to take and that malicious
participants may force on others. Therefore, we replace the
battery of one smartphone with PowerGraph5, a measurement
tool developed at our institute to measure the current drain of
a connected device. Internally, PowerGraph senses the current
over a measurement shunt that is serially connected to the
smartphone, while simultaneously acting as a power supply
to deliver 3.8 V operation voltage. We set the smartphone to
different modes, i.e., type of cellular connection, download a
sufficiently dimensioned file and sample the signal with a rate
of over 7 kHz for a duration of 10 min, leading to over 4 M
samples per run. These measurements were also conducted
outside our institute. Due to the number of samples obtained
per run and to construct valid confidence intervals, we apply
the batch means method [23].

5http://www.comsys.rwth-aachen.de/short/powergraph
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Fig. 5. Measurement results for the power consumption of a Nexus 5 in
different setups.

Figure 5(a) depicts the results obtained in our measurements.
Values shown are the averages of the respective runs. As a
baseline, we set the device to Airplane mode, set the display
illumination to the lowest possible level and no other apps
besides MIRCO are running. In this mode, the device consumes
119 mA. For all other measurements, we additionally switch
on the respective interface and connect it to the network.
Downloading a file over a cellular connection from our
signing proxy yields a power consumption of 245 mA for 2G,
312 mA for 3G, and finally 428 mA for a connection via LTE.
Afterwards, we set the smartphone back to Airplane mode but
activate the Wi-Fi interface to connect to the mobile hotspot
operated by the other smartphone. Again, the device starts
downloading, which results in 423 mA. Moreover, we measure
the power consumption of opening a hotspot and sending a
file, producing a power consumption of 549 mA.

Finally, we connect the smartphone to the cellular network
and to the mobile hotspot. The device does not send data
via the cellular connection but downloads content from the
other smartphone via its Wi-Fi interface. We argue that this
reflects the actual usage, as we believe that smartphone users
do not explicitly deactivate their cellular interface when not
needed. The results show that the power consumption is mainly
dominated by the Wi-Fi interface and that the idling cellular
interface does not increase the power consumption significantly.
Furthermore, these results indicate the impact a malicious user
could have on other clients by forcing them to download or
send content unnecessarily, with respect to energy consumption.

In the next step, we incorporate the power consumption
measurements into our timing evaluation. Therefore, we extract
the fastest observed goodput rate for all connection modes
during the week and the weekend and calculate the duration
it would take to transfer 1 MB of payload. We combine this
duration with the power consumption in each mode respectively
and obtain the results presented in Figure 5(b). Please note that



for the D2D transfer rates using Wi-Fi, the rates during the
week and the weekend are stable and therefore not separated
here. Thus, also from an energy point of view, the absence
or unavailability of 3G and LTE show the benefits of mobile
content offloading in comparison to 2G as it performs at least
one order of magnitude worse than using a local D2D link.
Moreover, the local link is also more energy efficient than
3G and performs similarly to LTE. In typical mobile content
offloading systems, malicious participants could still fool others
into downloading and wasting energy, however by design,
MIRCO excludes these participants based on reputation.

Our results underline the importance of detecting abuse in
mobile content offloading. Specifically, such detection serves
to stop (or even prevent by discouragement) the misuse and
waste of communication and energy resources. The severity of
this misuse and therefore the potential savings when excluding
misbehaving clients, is for example illustrated by the amount of
energy necessary for the local exchange of content via Wi-Fi,
as shown in Figure 5(a) (Wi-Fi rx and tx). Here, MIRCO offers
a tool to detect and report misuse and subsequently identify and
exclude the respective clients in order to sustain the cooperative
nature of mobile offloading.

V. CONCLUSION

In this paper, we address the missing support for content
authenticity and participation reputation in mobile content
offloading. We propose MIRCO, adding descriptive information
and cryptographic signatures to the initial local caching of
content on mobile devices via a signing proxy. Participating
devices are then able to verify the authenticity of content in
further offloading interactions. Moreover, MIRCO introduces
client authentication and a cryptographic commitment to D2D
content exchanges, allowing to report the success or failure to a
public reporting system that traces the reputation of individual
clients. The detection of abuse can then be countered with the
revocation of client credentials and, in effect, the exclusion of
the respective client from future offloading interaction.

Our implementation on commodity Android smartphones
shows the real-world applicability of MIRCO. In comparison
with cellular communication, MIRCO introduces only negligi-
ble time overhead within the D2D content exchange and benefits
from the energy efficiency of local D2D communication. Future
work targets a real-life deployment of MIRCO. Moreover, we
plan on extending the reporting system in order to preserve
user privacy with respect to content linkability.
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