
Automated Memoization for Parameter Studies
Implemented in Impure Languages

Mirko Stoffers, Daniel Schemmel, Oscar Soria Dustmann, Klaus Wehrle
Communication and Distributed Systems, RWTH Aachen University

{stoffers; schemmel; soriadustmann; wehrle}@comsys.rwth-aachen.de

ABSTRACT
In computer simulations many processes are highly repet-
itive. These repetitions are amplified further when a pa-
rameter study is conducted where the same model is re-
peatedly executed with varying parameters, especially when
performing multiple runs to increase statistical confidence.
Inevitably, such repetitions result in the execution of iden-
tical computations, with identical code, identical input, and
hence identical output. Performing computations redun-
dantly wastes resources and the execution time of a parame-
ter study could be reduced if the redundancies were avoided.

To this end, the idea of memoization was proposed decades
ago. However, until today memoization is either performed
manually or automated memoization approaches are used
that can only handle pure functions. This means that only
the function parameters and the return value may be in-
put and output of the function whereas side effects are not
allowed. In order to expand the scope of automated memo-
ization to a larger class of programs, we propose an ap-
proach able to reliably detect the full input and output of
a function, including reading and writing objects through
arbitrarily indirect pointers with some preconditions. We
show the feasibility of our approach and derive simple per-
formance approximations enabling rough predictions of the
expected benefit. By means of a simple case study per-
forming an OFDM network simulation, we demonstrate the
practical suitability of our approach, speeding up the execu-
tion of the whole parameter study by a factor of 75, while
only doubling memory consumption.

CCS Concepts
•Computing methodologiesÑMassively parallel and
high-performance simulations; •Software and its en-
gineering Ñ Preprocessors;

Keywords
Automatic Memoization; Accelerating Parameter Studies;
Impure Languages

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGSIM-PADS ’16, May 15 - 18, 2016, Banff, AB, Canada
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3742-7/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2901378.2901386

1. INTRODUCTION
Computer simulations are programs with highly repeti-

tive computations. While a simulation is running, the same
event handlers are executed repeatedly, often on the same
input as before. In order to achieve sufficient statistical con-
fidence, simulation experiments are repeated with the same
parameters, but different random number streams. This in-
evitably results in performing a certain subset of compu-
tations again. Finally, to compare different configurations,
certain parameters are varied while others are kept constant.
This again causes a large set of computations to be repeat-
edly performed on the same input, necessarily resulting in
the same output. From this observation we conclude that in
a simulation parameter study a large fraction of the compu-
tations performed are in fact redundant. The opportunity
to speed up the execution of computer software in general
by avoiding such redundant computations has already been
described by Michie in 1968 [16]. Michie developed the idea
of so called memo functions (now known as memoized func-
tions), which allow re-using previously computed results.

In order to apply this technique, two steps have to be
performed: 1. The code blocks have to be identified, which
are executed redundantly and comprise computations with a
complexity greater than the memoization overhead. 2. Those
code blocks have to be transformed into a variant that stores
input and output of a computation and is able to directly
reproduce the correct output if the same input re-occurs. In
current practice, both steps are often applied manually.

While it would naturally be desirable to automate both
steps, in this paper we focus on the second step. This is
especially motivated by the observation that model develop-
ers are often domain experts in the simulated field, but not
necessarily programming experts as well. We argue that the
knowledge of the developed simulation model allows them to
identify redundant computations. However, applying memo-
ization manually requires to fully understand the underlying
concepts. The developer has to carefully identify all side ef-
fects of a function and then create the code that detects
whether the input has been seen before, applies the results,
or computes and stores them. Once realized for a specific
problem, this code can, however, not be reused for a different
problem, requiring a repetition of much of this labor-intense
and error-prone effort. Hence, we target an environment
where the developer only needs to perform the first step
and annotate the promising code blocks, saving the effort of
manually applying the memoization.

We discuss previously developed techniques to tackle this
second step (called automated memoization) in more detail

http://dx.doi.org/10.1145/2901378.2901386

in Sect. 5. We conclude that, unfortunately, all of them
are designed for pure functions1, whose availability is of-
ten supported by properties of the target programming lan-
guage, especially prevalent amongst functional programming
languages. However, most simulation models are not writ-
ten in functional programming languages and computations
heavily rely on the features that allow writing impure code.
Hence, techniques restricted to pure functions can not be
applied to a large set of simulation models.

We conclude that till today there is no approach to au-
tomated memoization for impure functions. We argue that
such a technique could significantly improve performance
of complex software with redundant operations, as common
in simulation parameter studies, without requiring much ef-
fort or advanced programming skills from the developer. We
propose an approach to automated memoization, which does
not rely on the purity of the code to memoize. Our imple-
mentation operates on C++ [9], which is used to implement
models for the popular open source simulation frameworks
ns-3 [5] and OMNeT++ [22], and provides many features
that pose challenges for memoization (such as pointers),
hence we expect that our approach can be easily adapted to
other languages with a less challenging feature set. We do
not require that the computation to be memoized is pure,
and in fact we allow using arbitrarily indirect pointers to
read objects or cause side effects. However, it is another re-
sult of this work that it is necessary to pose certain restric-
tions on pointer usage, for example, to avoid undecidable
problems like static aliasing analysis [12] (see Sect. 3.6).

To apply the automated memoization, we parse the pro-
vided C++ code using Clang2, identify all input and output,
and finally generate new C++ code with a memoized ver-
sion of the original code. This can then be compiled by
any C++14 compiler. On execution of our memoized code
a lookup in a dictionary (the Memoization Cache, MC) is
performed. On success the result is applied to the actual
output, otherwise the result is computed as in the original
code, intercepted, and stored in the MC. Hence, our ap-
proach works on pure and impure computations.

The remainder of this paper is structured as follows. We
first analyze the problem and the resulting challenges more
thoroughly (Sect. 2). After that, we introduce the design of
our approach in detail and discuss its capabilities and lim-
itations (Sect. 3). We demonstrate the practical feasibility
by presenting evaluation results (Sect. 4). We then discuss
related work (Sect. 5) before we conclude the paper (Sect. 6).

2. PROBLEM ANALYSIS
The major challenge of memoization is the correct iden-

tification of input and output. While this is an easy task
for pure functions, impure functions can traverse the object
graph arbitrarily and access any element. We need to deter-
mine which values are actually input or output of the com-
putation and which are just used to find the finally relevant
object in memory, but whose own value has no semantical
meaning to the computation (e. g., a pointer that is being
dereferenced to access another object).

1A pure function accesses no objects except compile-time
constants, its parameters, and its local variables with auto-
matic storage duration. Its parameters and return type are
of value type and it never throws exceptions. It inspects no
pointers and calls only pure functions.
2http://clang.llvm.org/

In this section, we first investigate adequate levels of gran-
ularity for automated memoization. We then discuss the
language constructs which can conceivably be memoized,
analyze the features of C++, and derive the implications
on automated memoization for a representative subset.

2.1 Memoization Granularity
All existing approaches to automated memoization apply

the optimization on a function level, i. e., a function is either
memoized as a whole, or not at all. As these approaches rely
on the input being solely the function parameters and the
output being exactly the return value, a function level gran-
ularity is the only viable approach. However, as we allow
side effects, we need to analyze the actual implementation
anyway and the restriction to functions is no longer useful.

For this reason, we allow the memoization of (almost) ar-
bitrary C++ compound-statements, better known as blocks.
Blocks are the most general construct that has a concept of
local variables with automatic storage duration and encap-
sulates them from the outer environment. Any statement
that can be wrapped in curly braces to form a block with-
out changing the semantics of the program can also be a
memoization target. To this end, memoizing a function is
performed by memoizing the block that constitutes its body.
Similarly, a complete event handler could be memoized since
an event handler is typically a function as well.

In general, the unit to be memoized should be a logical
unit of the program’s functionality. If two computations
were memoized as a single unit, it is highly unlikely that the
results can be reused as the input of both computations must
have occurred before in that combination. On the other
hand, if the memoization unit ends before a computation is
complete, several intermediate results have to be retrieved
rather than the final result. In simulations an event handler
can be a good memoization target if it performs a single
computation. However, a specific computation performed
inside the event handler can as well be a more promising
memoization target. The remainder of this analysis assumes
that a C++ compound statement (block) shall be memoized,
referred to as the Memoization Unit (MU).

2.2 Variable Scope
Our first observation is that any object that is both cre-

ated and destroyed inside the MU can obviously be neither
input nor output. From this observation we deduce that it is
helpful to distinguish variables by their scope and lifetime.

C++ allows a multitude of different scopes, from file-level
variables, over class members to variables with block scope.
However, for a variable which is not local to the MU or has a
storage duration other than automatic (e. g., static) we ob-
serve: If it is read inside the MU without a prior write oper-
ation, its value is input of the computation. If it is written
inside the MU, the effects are visible after completion of the
MU, hence the variable must be considered output. Only if
a variable v that is accessed inside the MU is also defined in-
side with automatic storage duration, the computation can
neither depend on v nor can a result be stored in v.

We conclude: If a variable is local to the MU and has
automatic storage duration, it is neither input nor output.
In all other cases, read and write operations to that variable
have to be analyzed and the variable has to be considered
potential input and/or output. In the following, we use the
terms interior for the first and exterior for the second case.

http://clang.llvm.org/

2.3 Pointers
For detecting input and output of a function, the most

challenging feature of C++ concerns pointers as it is often-
times impossible to statically predict which object a given
pointer will point to at runtime. We identify the following
important operations that can be performed on pointers:

‚ Pointers can be copied (e. g., p=... or ...=p).
‚ A pointer can be dereferenced to alter the object it

points to (e. g., *p=...).
‚ A pointer can be dereferenced to read the object it

points to (e. g., ...=*p).
‚ Instead of accessing the object the pointer points to,

the address can also be used to access neighboring ob-
jects (e. g., *(p-4) or p[3]).

‚ Any object, including those of pointer type, can have
its address taken (e. g., &p).

‚ Other notable operations on pointers are comparisons
and conversions (e. g., !p or p!=nullptr).

‚ If the object a pointer points to is a pointer itself, the
definition is recursive (e. g., *p[0]=****(***q+4)).

To evaluate a computation’s actual input and output, we
need to investigate the semantics of these operations. The
most useful operations on pointers are those ending up deref-
erencing them to access another object. Consider *p=42.
A simplistic approach would identify two memory accesses:
First, the pointer object is read. Then 42 is stored to the
target object. Hence, the pointer’s value would be identified
as input, inhibiting memoization in many common cases.

We can circumvent this problem by respecting the seman-
tics of this operation, which is to modify the object located
at the address p points to. Hence, the actual value of p
(i. e., the address) is irrelevant. A smart approach to auto-
mated memoization has to store the path an object is ac-
cessed through and only the object itself should be consid-
ered input or output. For *p=42 it is hence necessary to
store that the object pointed to by p is assigned 42.

We define such a path as an (n` 1)-tuple where n is the
number of dereferenced pointers along that path. The first
component of this tuple is the pointer name, followed by
the difference between the current pointer value of the path
component and the address of the object that is actually ac-
cessed. Hence, *p is simply represented by the tuple (“p”,0).
We represent expressions like a.b as (“a”,“b”) which allows
us to follow the C++ standard in representing a->b and
(*a).b as the path (“a”,0,“b”) while easily retaining type
information even in the case of unions.

This also allows representing arbitrarily complex pointer
expressions like (p+4)[3]=q[8][-5][3]: The object at
(“q”,8,-5,3) is read and the object at (“p”,4,3) is altered.

Similarly, we represent taking of addresses by adding the
special value & to this notation to indicate the addressof op-
eration. Hence, e. g., (&a)[3] is represented by (“a”,&,3).

As these semantics imply that the actual value of a pointer
is unimportant, we only allow conversions to bool (implicit,
explicit, or by comparison to null pointer constant), which
we represent by adding the special value bool to the path.
For example, the expression p?*p:0 performs a read of
(“p”,bool) potentially followed by a read of (“p”,0).

With respect to pointer comparisons two major cases have
to be distinguished. Equality comparisons just test if the
pointers point to the same object irrespective of the actual
address. Ordered comparisons on the other hand are only

specified in C++ if both pointers point to subobjects within
the same superobject, e. g., elements of the same array. This
means that, again, the actual pointer value is unimportant,
as in fact the offsets within the superobject are being com-
pared. All comparisons are encoded in our path notation as
the components of the path to the left hand pointer, followed
by a special symbol representing the comparison type, and
finally the components of the path to the right hand pointer,
e. g., p<q would be encoded as (“p”,ă,“q”).

Remark: We use this path notation not only as a the-
oretical concept but as well in the implementation of our
approach. Hence, we need a value for the name of an ob-
ject. For convenience, we simply use a string representing
the name of the object throughout this paper. However,
as 1. even when using fully qualified names this does not
allow variables in sibling scopes or anonymous namespaces,
and 2. string processing is inefficient, our transformation de-
terministically assigns each variable it encounters a unique,
numerical ID. If, e. g., the symbol p is assigned the ID 42,
the object p[3] is described as (42,3). We would like to
stress the importance that this assignment be deterministic
and independent of the surrounding context, to ensure that
the One Definition Rule is not accidentally violated.

2.4 References, Arrays, and Containers
Similarly to pointers, reference types can be used in C++

to alias objects. However, references are not more expressive
than pointers, i. e., everything that can be expressed by a
reference could be expressed by a pointer as well. Hence, we
can treat references as pointers with a different syntax.

Indexing C-style arrays needs no special handling, as a[1]
is equivalent by definition to *(a+1). Hence, array-to-
pointer conversion actually applies the indexing to a pointer.

Dealing with containers from the C++ standard library
requires additional consideration. As the definition of a tem-
plate such as std::array has to be available at compile
time, it seems, at first glance, easy to consider class tem-
plates to be equivalent to user code. However, the C++

standard allows implementations significant leeway with re-
spect to how these containers are actually implemented. One
example of non-obvious optimizations is the use of SCARY
iterators [20] to reduce the generated code size. Similarly,
std::vector could conceivably be specialized for pointer-
to-object types to always use the same non-generic imple-
mentation that is only available as a pre-compiled library
with a C interface. We believe that in future efforts many of
those operations can be serialized by making their semantics
known during the memoization procedure. However, this is
not important to demonstrate the general feasibility of au-
tomated memoization for impure functions.

2.5 Function Calls
If a function is called inside the MU, we need to differ-

entiate two cases: If the function implementation is known
to the compiler, it can be included into the analysis. How-
ever, this is not provided in general, e. g., for pre-compiled
libraries. Such functions might or might not have side effects
and might or might not depend on additional input. As this
cannot be determined for functions whose implementation is
unknown, we enable the user to annotate function signatures
or calls as transparent. To this end, we define a transparent
function as a function whose effects depend only on the pa-
rameters and are only of the following kinds: If a parameter

of pointer or reference to a non-const object type is pro-
vided (e. g., const int *p), the value of the object may
be changed during execution of the function (e. g., *p=42).
The function may return an object or throw an exception.
Other effects may occur if the user declares them negligible,
e. g., logging or allocating temporary dynamic storage. As
input we treat the parameter’s values, or, for arguments of
pointer or reference type, the object they point to.

For non-transparent functions whose implementation is
known we need to differentiate whether the call is recursive.
Non-recursive calls can just be handled like inline code. For
recursive calls a fixpoint iteration is necessary to determine
the full input and output. Since iterative programming is
by far more commonly used in C++, we focus however on
iterative functions and leave the fixpoint analysis of non-
transparent, recursive function calls for future work.

Investigating the different methods to define and call func-
tions in C++, we observe that all of them boil down to the
simple base case. Member functions are just functions with
an additional argument. For function pointers and virtual
functions, either the pointer / call has to be annotated or
the compiler needs to be able to statically determine which
function is called and which code is executed. Lambda func-
tions and function templates are just different ways to create
functions. For implicit function calls (constructors, destruc-
tors, user defined conversions, and operators) the compiler
can determine which function is executed and handle the im-
plicit call just like an explicit call to that function. Hence,
all kinds of functions can be treated as described above.

2.6 Unstructured Control Flow
C++ provides keywords that allow entering and leaving

the MU not only at the beginning or end. Early exits
(return, break, continue, throw, goto) have to be con-
sidered by the automated memoization as follows: Reads af-
ter the exit must not be considered input. While computing
the results it has to be ensured that the output is stored in
the MC prior to the early exit. When a result is retrieved
from the MC, we need to ensure that the MU is left exactly
the same way the original execution would leave the MU,
including the correct argument to return or throw. This
can be achieved by storing the kind of exit and potentially
its argument as part of the output of the function.

Entering the MU at a point other than the beginning can
only be achieved by jumping to a label in the MU. Though
this can be allowed by extra care, we do not consider it
in this paper as goto is not recommended anyway [1, 11]
and memoizing a block that contains a label from a switch
statement outside the MU is similarly discouraged.

As early termination (which, as opposed to early exits
leaves not only the MU, but terminates the process) can oc-
cur in hard to predict ways (e. g., an exception falls through
a noexcept function), we relax semantical correctness and
allow that the output may not be fully actualized yet, which
we deem an acceptable trade-off in the event of termination.
Note, that memoization in this case is useless anyway, as
the termination does not allow the same computation to re-
occur during the execution of the program.

Finally, we deny the hardly used feature of non-local jumps
(i. e., using setjmp and longjmp) inside the MU, since
we introduce additional objects with non-trivial destructors,
which would cause undefined behavior [9, 18.10§4] for many
usages that would have been correct before memoization.

2.7 CV-Qualifiers
Our analysis of the cv-qualifiers const and volatile

revealed: Pointer-to-const-parameters (see Sect. 2.5) al-
low us to deny their target to be output of a transparent
function. Besides that, we do not rely on this qualifier as
const-casts and the mutable keyword provide means to cir-
cumvent constness. The qualifier volatile guarantees that
each implied memory access is actually performed in order.
We argue that requesting to memoize a block containing
volatile memory accesses is a fundamental contradiction.

2.8 Multi-Threading
Multi-threading is an optimization technique orthogonal

to memoization. Our implementation assumes that only one
thread is inside any MU at a time. Hence, we can demon-
strate the feasibility on single-threaded programs. Future
efforts clearly need to make the implementation thread-safe
and investigate the impact on parallel programs.

3. AUTOMATED MEMOIZATION
In this section, we describe the design of our approach

striving to provide automated memoization for pure or im-
pure C++ code blocks using pointers in different ways, which
can hence be used to avoid redundant computations in sim-
ulations. We specify the goals before we sketch the general
approach and discuss the most important aspects in detail.

3.1 Design Goals
To maximize the benefit of our approach to automated

memoization, we define the following three design goals:

Semantic Equivalence. Our approach converts an exist-
ing C++ code block into a memoized version of itself. It
is the highest and most important goal that this transfor-
mation is sound, i. e., it does not change the results of the
program. To this end, we define the transformed program
to be semantically equivalent to the original if and only if it
has the same semantics as defined by the C++ standard [9]
except for: 1. a changed execution time and computational
complexity, and 2. allocation and modification of additional
memory (most notably the MC). Hence, we design our ap-
proach in a way that the perceivable effects and side effects
of the original code and the memoized version are the same.

Maximize Memoizable Code. As discussed in Sect. 2, not
every C++ statement can be memoized. For example, we
cannot elude volatile reads without completely subvert-
ing the semantics of volatile qualification. Hence, we
allow our approach to abort memoization if it would conflict
with semantic equivalence, instead of issuing false results.
However, we strive to maximize the number of supported
C++ features. Our approach does support the basic C++

elements such as assignments, arithmetic operations, con-
ditionals, loops, etc., as well as the challenging feature of
input and output detection in the presence of pointer arith-
metic. A detailed discussion of the actual capabilities and
limitations follows in Sect. 3.6.

Optimize Efficiency. To maximize the benefit of the ap-
proach, its overhead should be as low as possible, such that
its benefit can be reaped for computations of low computa-
tional complexity as well. To this end, the approach needs

Compute
Input

Vector (IV)

Try
Memoization
Cache (MC)

Memoization
Cache (MC)

Compute
and Serialize

Store Result
(IV-OV-pair)

Deserialize
Output

Vector (OV)

Input

Output

Input VectorFound?
Not

Fou
nd

Re
su
lt

Result

Found

Figure 1: General memoization scheme.

to minimize the data it considers input or output, i. e., over-
estimation should be avoided where possible. Additionally,
the implementation can save overhead in three dimensions:
1. Each time a memoized code block is executed, the in-
put has to be collected and the MC has to be queried for it.
Minimizing this overhead improves performance of every ex-
ecution of the memoized code. 2. When the result is found in
the MC, it needs to be written to the corresponding output
locations. Performing this as fast as possible maximizes the
gain from using a cached result. 3. When the result is not
found, it needs to be computed and stored in the cache. Not
introducing too much overhead here is especially important
for computations whose results can not be reused later on.

To demonstrate the feasibility of automated memoization
we implemented it by code-to-code translation. A more effi-
cient implementation could be realized by working at a lower
level, though the implementation effort is much higher and
we would not gain any additional scientific insights.

3.2 General Approach
Our approach to automated memoization works as fol-

lows. The developer annotates the MUs by adding the C++

attribute [[clang::memoize]]. This is the only man-
ual action required; after handing the code to our tool,
the memoization is performed automatically. A code-to-
code translation rewrites each MU in a memoized way. Our
proof-of-concept implementation utilizes a modified Clang
to generate an abstract syntax tree as a basis for the memo-
ization. This eases the implementation and allows debug-
ging and verification of the generated, human-readable C++

code. For an efficient, product-level implementation we rec-
ommend integration into an actual optimizing compiler to
further increase performance. However, this engineering ef-
fort is outside the scope of this paper. The transformed ver-
sion performs the memoization as illustrated in Fig. 1. Fig. 2
lists the code of a recursive Fibonacci implementation using
pointers to illustrate how memoization works with pointers.
The transformed code is listed in Fig. 3, only slightly mod-
ified from the autogenerated code to fit in the paper: We
renamed variables, applied indentation, changed line breaks,
and removed parts not directly relevant to the memoization.

The automatic transformation identifies all read opera-
tions to exterior variables (cf. Sect. 2.2) and creates code
that only reads these variables and serializes the input into
the Input Vector (IV). In the example, the only input is the
object in points to, i. e., (“in”,0). The IV is used as the key

1 void fib[[clang::transparent]](uint64_t* in) {
2 // the anchor is already hardcoded
3 // and does not need to be memoized
4 if(*in <= 1) return;
5 [[clang::memoize]] {
6 // we can dereference or index pointers:
7 auto in_minus_one = *in - 1;
8 auto in_minus_two = in[0] - 2;
9 fib(&in_minus_one);

10 fib(&in_minus_two);
11 *in = in_minus_one + in_minus_two;
12 }
13 }

Figure 2: Recursive Fibonacci computation with
pointer usage to illustrate automated memoization.
The transformed code is listed in Fig. 3.

to search the entry in the MC. If it is not found, we execute
a version of the original code that is slightly modified, such
that output is not only written to its location in memory,
but also serialized to the Output Vector (OV). In the exam-
ple, the only output is (“in”,0) as well. The IV-OV-pair is
then stored in the MC. On later execution of the same MU
with the same input, the IV will be found in the MC, and the
corresponding OV returned. Our memoized version of the
code then skips the (expensive) computation, and directly
deserializes the OV to the corresponding memory locations.

To this end, the values in the IV and OV are simply bitwise
copies of the original values, regardless of their semantics.
Hence, our approach needs no special handling for floating
point numbers, but just performs bitwise comparisons.

To improve the performance of our transformation we re-
quire that interior or exterior objects be only accessed via
paths originating from variables of the same category. Addi-
tionally, our implementation does not perform the memoiza-
tion when the same object is accessed via multiple different
paths. In the following we describe the procedure and the
rationale for these decisions in more detail.

3.3 Input Vector Computation
We need to extract all read operations on exterior ob-

jects from the original code and create code that does as
little as possible besides reading those values and storing
them in the IV. It is of special importance to ensure that
no writes to exterior objects are performed at this stage, as
they might interfere with later stages. The straightforward
approach would be to search the code for all reads of ex-
terior objects. However, if a conditional occurs inside the
code, we would not only overestimate the input, but also
potentially crash the transformed program by dereferencing
a null pointer that was originally protected by an if-clause.

Our algorithm uses two basic ideas to tackle the IV com-
putation. First, instead of synthesizing completely new code
to compute the IV, we slice the original code in such a way
as to compute the IV without causing any other side effects
and then remove as much of the code as possible. Second,
we intercept not only reads but also writes which we can
then store in a Temporary Cache (TC) instead of writing to
the exterior object. Of course this means that we need to
test the TC for every read as well to prevent stale reads.

The transformation begins by adding interceptions for all
accesses of exterior objects. While such reads and writes can

1 #include <clang/memoize>
2 void fib[[]](::std::uint64_t *in) {
3 // the anchor is already hardcoded and does not need to be memoized
4 if (*in <= 1) return;
5 /* transformed code begins here */ {
6 try {
7 auto __policy = ::std::clang::memoize::policy();
8 static auto __dict = __policy.dict();
9 auto __reader = __policy.reader();

10 /* Read Key */ [&] {
11 auto in_minus_one = __reader.read<1>(in, 0) - 1;
12 auto in_minus_two = __reader.read<1>(in, 0) - 2;
13 }();
14 auto __iter = __dict.find(__reader.key);
15 if (__iter != __dict.end()) {
16 /* Check External Aliasing */
17 for (auto const& __result : __iter->second.map) {
18 switch (__result.first.baseid()) {
19 case 1: __reader.alias(in, __result.first); break;
20 }
21 }
22 /* Apply Result */
23 for (auto const& __result : __iter->second.map) {
24 switch (__result.first.baseid()) {
25 case 1: __result.second.write_to(in, __result.first); break;
26 }
27 }
28 } else {
29 auto __results = __policy.results();
30 auto __finalizer = ::std::clang::memoize::bits::at_scope_exit([&] {
31 if(!__results.aliased()) __dict.emplace(::std::move(__reader.key), ::std::move(__results));
32 });
33 /* Compute Result */ {
34 auto in_minus_one = *in - 1;
35 auto in_minus_two = in[0] - 2;
36 fib(&in_minus_one);
37 fib(&in_minus_two);
38 __results.write<1>(__reader, in, 0) = in_minus_one + in_minus_two;
39 }
40 }
41 } catch (::std::clang::memoize::alias_exception const&) {
42 auto in_minus_one = *in - 1;
43 auto in_minus_two = in[0] - 2;
44 fib(&in_minus_one);
45 fib(&in_minus_two);
46 *in = in_minus_one + in_minus_two;
47 }
48 } /* transformed code ends here */
49 }

Figure 3: Memoized version of the code in Fig. 2. This code has been automatically generated by our tool
and then slightly edited for increased human readability and to fit in the paper format.

be caused in a multitude of ways (e. g., direct assignment,
logical or arithmetic operation, passing arguments to func-
tions), they can be reduced to the three basic cases of reads,
writes, and reads followed by writes. For example, a += b
performs a read on b, and both a read and a write on a.

To generate the IV, we simply store all reads on external
objects that have not been read or written previously. Each
value read is appended to the end of the IV to preserve the
order. We can ignore repeated reads, as they cannot add
any new information and we can ignore reads that follow
writes to the same location, as the value that has been writ-
ten is determined solely by reads that have been performed
previously and thus been added to the IV already.

In the next section, we explain how our adapted dead code
elimination allows the IV computation to be performed more
efficiently while also explaining the need for a reliable alias

detection. To explain how the TC creates an overlay address
space and perform alias detection at the same time, we then
further discuss its design and implementation.

Adapted Dead Code Elimination.
It is essential to avoid complex operations during IV read-

ing. To this end, we use a transformation derived from
standard dead code elimination, which we extend for this
purpose. As opposed to simpler analyses this allows us to
deal efficiently with complex IV calculations. One interest-
ing class of cases in which this is especially important is that
of reading zero-terminated arrays, as the last part of the IV
may be read only very close to the end of the computation.

To this end, we apply a very broad definition of dead code
in the attempt to create a program slice that is narrowly de-

fined by its purpose to generate the IV. The basic premise
of the proposed technique is to consider everything expend-
able but reads from exterior objects that have not been read
from or written to before. Most importantly, this also in-
cludes writes to external objects that are never read after-
wards. By applying common dead code elimination tech-
niques, operations which are no longer necessary are succes-
sively removed. For example, if a value x is stored in an
exterior variable, which is never read afterwards, we remove
the write and subsequently all the code that computes x up
to (but excluding) the point were its input was read.

The effectiveness of this analysis depends on our ability
to distinguish internal from external objects, which is prob-
lematic when considering not only scalar variables, but also
pointers. Determining whether an object that is the result
of a pointer expression is interior or exterior (as defined in
Sect. 2.2) is not trivial. If the base pointer is interior, in
most cases the final object will be interior as well. However,
after creating a pointer locally, it might still be assigned the
address of an exterior object. A similar problem occurs if an
exterior pointer is assigned the address of an interior object.

In general, static code analysis does not allow to reliably
deduce which object a pointer will point to in a given ex-
pression, as the decision whether it will point to an inter-
nal or an external object may depend on a runtime branch.
A dynamic check could be performed, e. g., by determining
whether the pointer points into the stack segment holding
the local variables of the MU. However, the C++ standard
does not guarantee the correctness of such an approach, in-
stead it depends on the implementation of the compiler that
later on translates the memoized version into executable
code. Furthermore – and arguably more importantly – the
runtime checks would introduce considerable overhead.

To be able to apply an efficient, standard-compliant so-
lution, we restrict the usage of pointers inside an MU: An
interior pointer must not store an address to an exterior ob-
ject and vice versa. We discuss the impact of this decision
in Sect. 3.6. Note that this property can easily be checked
statically. This constraint allows us to determine whether
an object reached by (X, ...) references an interior or exte-
rior object just by checking whether the symbol X itself is
interior. Hence, we determine the input of an execution of
the code block as a set I “ tpX, ...q|Xread^Xnot interioru
and the output as O “ tpX, ...q|Xwritten^Xnot interioru.

However, another requirement exists to ensure correct-
ness: Since, in general, the same object may be reached via
multiple different paths (as specified in Sect. 2.3), we had
to assume that any write may change the result of any sub-
sequent read, which would significantly inhibit the power
of the dead code analysis. Instead, we perform the dead
code elimination and read the IV as if aliasing would never
happen. Although this tradeoff increases the potency of the
dead code elimination, it also requires us to add another
analysis that will ensure that no errors are introduced acci-
dentally when attempting to memoize code that does indeed
encounter aliased objects as discussed in the following.

In summary, our adapted dead code elimination leaves
only the code to establish the IV as well as code that calcu-
lates what to include in the IV. It requires that objects are
only ever accessed through a single path, a property that
cannot be established at compile time. The TC discussed
in the next section provides a way to detect aliasing and
gracefully degrade to unmemoized execution in that case.

(“p”,0)

(“x”,2)

(“q”,1,0)

(a) No alias.

(“p”,0)

(“x”,2)

(“q”,1,0)

(b) Overlap with the previous object.

Figure 4: Alias detection: inserting (“x”,2).

The Temporary Cache.
At the most basic level, the Temporary Cache (TC) is a

dictionary that maps memory addresses3 to paths, object
values, and the length of objects. If a read or write causes
a memory access that is not already in the TC, an entry is
immediately inserted into the TC, which allows to satisfy all
subsequent reads and writes. By using the TC to establish
an overlay address space, all writes can be effectively pre-
vented from being outwardly visible, while still being easily
located when written objects are subsequently read again.

While, at first glance, the TC also seems to run into prob-
lems with aliasing, it is designed this way exactly to detect
different paths leading to the same exterior object. Any pos-
sible alias falls into one of three categories: 1. The simplest
case is that in which the alias is an exact match, as a sim-
ple lookup in the TC identifies the alias by comparing the
stored path with the current one. 2. The current memory
access begins in the range of a previously accessed object
without matching exactly. To identify that case, it is only
necessary to find the entry immediately preceding the target
address, and check its end against the start of the current
one. 3. The current memory access ends in the range of a
previously accessed object without matching exactly. That
is the case when the start address of the entry following the
target address falls before the end address of the current
memory access. A visualization of how the TC is used to
detect aliases can be seen in Fig. 4, where the cross at the
left hand of each element represents the base address and the
line shows its size. Additionally, the TC contains a simple
flag that tracks whether any alias has been found.

3.4 Performing Memoization
After computing the IV we need to determine whether

the same input has occurred before. This operation is as
trivial as searching for the IV in a hash map. On a hit, the
MC returns the corresponding OV. Before actually applying
the result, we need to finalize the aliasing check, which so
far may miss locations that are only written (via two differ-
ent paths). To this end we iterate over the OV and check
the paths and locations found by tracing the path of each
element to the actual memory location against the TC.

If the check shows that no aliases are encountered, the
deserialization of the OV is performed by iterating over the
OV again and storing the value in the object at that address.
This effectively applies all side effects of the computation
without having to execute the (complex) computation itself.

3We assume a flat memory model and that reinterpreting
data pointers to ::std::uintptr_t values has the obvi-
ous implementation, which is valid for the x86 64 platform
and all our target compilers.

Should the IV have not been found in the MC, the OV is
computed, which will also perform the original computation.
The next section explains how this computation will lead to
the correct result in both presence and absence of aliases.

3.5 Output Vector Computation
Computing the OV is considerably simpler than comput-

ing the IV, as all that needs to be done is to keep track
of all writes being performed. Writes are tracked by stor-
ing tuples of paths and object values, which can then later
be deserialized by following the paths from their respective
roots. Memory writes are not completely intercepted during
computation of the OV, but rather stored in their originally
intended locations as well. The advantage of using paths
versus storing the address is, amongst others, that it also
works with dynamic variables whose actual address changes
depending on the depth of the current function stack.

Since the computation of the IV is designed to eschew
as many writes as possible, its alias detection cannot be
complete. All missing alias checks are performed during the
OV computation, which must necessarily perform all writes.
Therefore, the combined alias detection is complete. Should
no alias be detected, the OV is stored in the MC to be
retrieved during future computations. It is not necessary to
immediately deserialize the OV, as the output will already
have been stored as a side effect of the OV computation. For
the same reason, no further action is necessary if an alias
has been detected at this stage, instead the memoization
degrades gracefully, i. e., no entry is created in the MC.

3.6 Discussion
While our approach is the first viable development in au-

tomated memoization for decades (see Sect. 5), it still has
rather relevant limitations. The scope of our work is to an-
swer the research question whether automated memoization
can be applied in the presence of non-trivial pointer expres-
sions4, i. e., those going beyond what is correctly memoized
by treating pointers as ordinary numbers. We focus on au-
tomating the memoization process, not automatically decid-
ing where memoization is applied for the biggest benefit.

With our approach many cases of trivial and non-trivial
pointer usages can in fact be used inside the MU, with the
only exceptions being those listed below:
‚ The lifetime of objects is coupled to the scope of the

MU, i. e., objects created outside must not be destroyed
inside and objects created inside must not persist the
scope of the MU5. In other words, the effects of cre-
ating or deleting objects cannot be stored in the OV,
which only stores modifications of existing objects. The
former can be added to our implementation, by allow-
ing the OV to hold a representation of those effects
and applying them – i. e., creating or deleting the cor-
responding objects – during OV deserialization.

‚ Addresses of exterior objects must not be stored in in-
terior objects and addresses of interior objects must
not be stored in exterior objects. We argue that the

4And references, treated very similarly, see Sect. 2.4.
5Function-level static variables are not created during the
first execution of the MU, but only initialized then. To en-
sure that this is performed correctly, they receive additional
treatment – basically a simple flag – to ensure that they are
initialized only once and the initialization expression only
contributes to the IV once in the program execution.

former can easily be rewritten by not creating an inte-
rior copy of the pointer, but using the exterior variable,
potentially with an interior index, instead. The latter
form of pointer usage is never necessary as it does not
provide any benefit if the pointer’s lifetime is greater
than the lifetime of the object it points to. Hence, an
interior pointer could be used instead. A violation of
either rule is easily discovered at compile time by also
disallowing such assignments in unreachable code.

‚ As a result of this work, we found that aliasing is a se-
vere problem to automated memoization. Assume two
pointers p and q point to the same object o, and the
object is modified via p before it is read via q. In this
case the initial value of o is not read and hence not
relevant to the computation. If, however, in the next
execution of the MU, p and q point to different objects,
the initial value of the object q points to is in fact read.
Hence, the memoized code had to handle the two cases
differently. Since aliasing cannot be generally checked
at compile time [12], an implementation cannot be able
to generate code for each possible case. To this end,
we conclude that automated memoization with fully
unrestricted pointer usage is infeasible as the runtime
overhead associated with a dynamic approach would
be overwhelming. We decided to perform a much sim-
pler dynamic aliasing analysis (see Sect. 3.3), which
detects aliases, but needs to abort the memoization in
such a case. This enables applicability of memoization
if no aliasing occurs, ensures correct results in either
case by gracefully degrading to unmemoized execution,
and can issue a warning to enable the developer to po-
tentially resolve the aliasing by using only one pointer
to access each object inside the MU.

Additionally, an obvious limitation is that we cannot an-
alyze code that is not available to the memoizer (e. g., pre-
compiled libraries). Hence, if function calls appear in the
MU, the memoizer requires additional information. If the
requirements for inlining the function call are fulfilled, the
analysis can continue inside the function implementation. If,
however, it cannot be statically determined which function is
called (e. g., due to an untraceable function pointer), the im-
plementation is not available to the memoizer (e. g., precom-
piled), or the number of function calls cannot be predicted
(e. g., recursion), the user has to provide a transparency an-
notation or the transformation needs to be aborted with a
warning. This poses an additional requirement to the user
over the actual intent to only request for a single annotation
to memoize a block. However, this cannot be avoided as un-
known code cannot be analyzed. We argue that especially
for libraries commonly used to perform expensive compu-
tations (e. g., mathematical functions), this could already
be performed by the library maintainer. As an additional
bonus, a manual annotation allows us to annotate functions
as transparent that are not pure in the strictest sense6.

Finally, certain features like multi-threading, which are
not in the scope of answering the research question stated
above, are not in scope of this work.

6For example, we did encounter functions using variables
with static storage duration as scratch space, instead of
variables with automatic storage duration. Annotating that
function as transparent is in line with our definition, as the
changes to that scratch pad are irrelevant side effects – they
are overwritten every time the function is called.

21 23 25 27 29 211 213 215

Output Array Size (bytes)

102

103

104

105

106

107

108
ti

m
e
 p

e
r

it
e
ra

ti
o
n
 (

n
s)

Original

Memoized: Total

Memoized: Read Input Vector

Memoized: Lookup

Memoized: Compute Output Vector

(a) NI “ 1 (varying OV size), 1. iteration of outer loop.

21 23 25 27 29 211 213 215

Output Array Size (bytes)

102

103

104

105

106

107

108

ti
m

e
 p

e
r

it
e
ra

ti
o
n
 (

n
s)

Original

Memoized: Total

Memoized: Read Input Vector

Memoized: Lookup

Memoized: Apply Output Vector

(b) NI “ 1 (varying OV size), 2. iteration of outer loop.

21 23 25 27 29 211 213 215

Input Array Size (bytes)

102

103

104

105

106

107

108

ti
m

e
 p

e
r

it
e
ra

ti
o
n
 (

n
s)

Original

Memoized: Total

Memoized: Read Input Vector

Memoized: Lookup

Memoized: Compute Output Vector

(c) NO “ 1 (varying IV size), 1. iteration of outer loop.

21 23 25 27 29 211 213 215

Input Array Size (bytes)

102

103

104

105

106

107

108

ti
m

e
 p

e
r

it
e
ra

ti
o
n
 (

n
s)

Original

Memoized: Total

Memoized: Read Input Vector

Memoized: Lookup

Memoized: Apply Output Vector

(d) NO “ 1 (varying IV size), 2. iteration of outer loop.

21 23 25 27 29 211 213 215

Input and Output Array Size (bytes)

102

103

104

105

106

107

108

ti
m

e
 p

e
r

it
e
ra

ti
o
n
 (

n
s)

Original

Memoized: Total

Memoized: Read Input Vector

Memoized: Lookup

Memoized: Compute Output Vector

(e) NI “ NO (IV, OV varying), 1. iteration of outer loop.

21 23 25 27 29 211 213 215

Input and Output Array Size (bytes)

102

103

104

105

106

107

108

ti
m

e
 p

e
r

it
e
ra

ti
o
n
 (

n
s)

Original

Memoized: Total

Memoized: Read Input Vector

Memoized: Lookup

Memoized: Apply Output Vector

(f) NI “ NO (IV, OV varying), 2. iteration of outer loop.

Figure 5: Overhead evaluation: synthetic benchmark where memoization cannot gain benefit. Used to
measure the overhead.

In summary, we found that pointers do not generally pre-
vent automated memoization. If the above mentioned re-
strictions are met, a large and useful subset of pointer ex-
pressions can in fact be memoized in an automated fashion.
We observed that especially complex computations whose
memoization seems promising often use pointers to access
(jagged multi-dimensional) arrays. Our approach of identi-
fying objects via paths in fact allows this usage of pointers
and enables us to determine the actual input and output of
the MU. Hence, we conclude that we are able to apply au-
tomated memoization to programs using pointers in a mul-
titude of ways, while certain restrictions have to be fulfilled
to avoid undecidable problems.

4. EVALUATION
We evaluate our approach by first performing overhead

measurements to derive simple formulae to give a basic esti-

mate when our approach is beneficial. These approximations
can assist model developers in selecting appropriate regions
for memoization and can as well be used in future research
on automatic identification of such regions. Second, we im-
plement the well-known Fibonacci-computation in a recur-
sive implementation gratuitously using pointers to show the
feasibility of our approach on recursive and pointer-based
code. Finally, a case study performing a parameter study of
an OFDM (orthogonal frequency-division multiplexing) net-
work simulated by OMNeT++ [22] demonstrates the prac-
tical applicability of our approach in the simulation context.

All measurements are performed on a Xeon E5 compute
server with 32 GB of RAM. Each experiment is repeated at
least 5 times, all plots depict the means and 99 % confidence
intervals. The latter are hard to perceive in many cases due
to the low variance of the results.

As the optimization only makes sense if the quickly com-
puted results are as well correct, we validated the output.

In each experiment we compared the computational results
of the memoized version against the results of the original
implementation. The results were identical in every case.
Hence, we conclude that for every experiment performed in
this chapter the transformation was performed correctly and
maintained the semantics of the original program.

4.1 Overhead Evaluation
We measure the overhead by means of a simple synthetic

benchmark: An array of NI 8-bit numbers is read, the num-
bers are aggregated to a 64 bit variable, which is then xor-
folded to yield an 8-bit result. An array of NO 8-bit numbers
is filled with numbers calculated by adding the array index of
the respective element to the above mentioned result. Since
the computational effort is almost negligible, the memoiza-
tion cannot speed up the computation, instead allowing the
memoization overhead to be observed. Varying NI and NO

directly varies the size of the IV and OV, which are the
primary influence factors for the memoization costs.

The surrounding evaluation program consists of two nested
loops. The inner loop is repeated 250 times, each time with
a different input. The outer loop is executed twice, such that
the inner loop is executed again for each of the 250 inputs
used in the first iteration. Hence, the memoized code adds
250 items to the MC in the first outer loop iteration while
none of the lookups is successful. In the second iteration,
each result is retrieved from the MC. In the original code,
both iterations behave exactly identical.

We performed experiments while growing only NI, only
NO, and growing both simultaneously. Fig. 5 depicts the
average runtime per inner loop iteration for each of the two
outer loop iterations. The runtime of the memoized version
is decomposed into the components of the memoization (IV
computation and MC lookup for both iterations, OV compu-
tation or application for the 1. or 2. iteration, respectively).

We observe that the MC lookup only contributes very
little to the total runtime (note the logarithmic scale). For
the first iteration we observe that for large output arrays the
overall runtime is almost equivalent to the runtime of the OV
computation whose cost primarily depends on NO (at about
150 ns ¨NO). For smaller output arrays additionally the IV
reading becomes relevant, which costs about 300 ns ¨NI. As
a very rough approximation we conclude that the memoiza-
tion overhead ranges about TF “ 150 ns ¨ NO ` 300 ns ¨ NI

if the lookup is not successful. However, this simple ap-
proximation ignores, for example, the effect that increasing
the input size as well influences the OV computation due to
non-uniform memory access and growing data structures.

Similarly, we analyze the second iteration of the outer
loop: The costs of computing the IV are the same as above,
as the computation has to be performed in both cases, i. e.,
we observe overhead of about 300 ns¨NI. For the application
of the OV we observe about 15 ns ¨ NO. We conclude that
we can approximate the overhead for a successful lookup
by TS “ 15 ns ¨NO ` 300 ns ¨NI. Furthermore, we observed
(without figure) memory overhead linear in both NI and NO.

From these approximations we derive that our approach
to automated memoization pays off if sufficient memory is
available to hold the MC and p ¨ TS ` p1 ´ pq ¨ pTF ` TCq ă

TC with the computational costs of the original MU of TC

and the fraction p of calls that can be served from the MC.
Obviously, the bigger p and TC the bigger the gain.

101 102 103 104 105 106 107 108

requested Fibonnaci number N

102

103

104

105

106

107

108

109

1010

1011

1012

1013

ti
m

e
 t

o
 c

o
m

p
u
te

 f
ib

(N
)

(n
s)

Original

Memoized

Figure 6: Performance of recursive Fibonacci com-
putation using pointers.

4.2 Recursive Fibonacci with Pointers
To demonstrate the potential benefit of memoization and

the versatility of our approach, we implemented a näıve
recursive function (see Fig. 2) that gets an integer n and
computes the nth Fibonacci Number (Fn

..“ Fn´1 ` Fn´2,
F0

..“ 0 and F1
..“ 1), or more precisely the bits of Fn that

fit into an integer, i. e., Fn mod 264. To demonstrate the vi-
ability of our approach for impure code, the function takes
a pointer to an integer that contains the actual input and
stores the result in that same object. However, the function
is transparent (see Sect. 2.5) and annotated accordingly to
allow the memoization of this recursive function. It must
be noted that, should the IV generation not be optimized
well enough (cf. Sect. 3.3), this function would perform the
whole computation before any memoization takes place.

Fig. 6 clearly shows the expected exponential runtime of
the unmemoized algorithm (computing the nth Fibonacci
Number recursively with this algorithm takes Θ pϕn

q time,
with ϕ « 1.618 being the golden ratio), and that the mem-
oized version also performs as expected by only requiring
linear time up to F6¨107 . For F8¨107 the compute server’s
memory doesn’t suffice to store the MC and we observe a
slowdown caused by swapping. The overhead of the memo-
ization is also clearly visible for small n, where the unmem-
oized code is significantly faster. Since the axes are both
scaled logarithmically, it is easy to overestimate the actual
difference for small n – the memoized code runs in only a
few microseconds. Starting at n « 18, the unmemoized
code requires more time than the memoized code. This also
means that a small table assist of 17 values would cause the
memoized code to always outperform the unmemoized code.

4.3 Case Study: Network Simulation
To demonstrate the feasibility of our approach in a prac-

tical use case, we apply it to a parameter study of wireless
network simulation. The simulation model is implemented
for the open source simulation framework OMNeT++ [22]
in C++. In the simulation model, a set of wireless nodes is
placed on a 1 by 1 km area. A number of those nodes trans-
mits frames in a fixed pattern. A channel model based on
the Friis path loss model [3] and a complex OFDM fading
model [23] calculates the received signal strength. In the pa-
rameter study the total number of wireless nodes is varied in
14 steps from 1 to 50, the fraction of transmitting nodes in
9 steps from 1 % to 100 %, and the time between two trans-
missions in 5 steps from 1µs to 10 ms. Each experiment is

original memoized

103

104

105

to
ta

l
ru

n
ti

m
e
 (

s)
9.9 hours

7.6 minutes

original memoized
0

5

10

15

20

m
e
m

o
ry

:
p
e
e
k

re
si

d
e
n
t

se
t

(M
B

)

10.0 MB

19.0 MB

Figure 7: Case study: simulation parameter study.

repeated 10 times with different random number generator
seeds, hence the total parameter study consists of 6300 runs.

We identified the fading computation as a good candi-
date for memoization as it is a complex operation, its input
is small and repeated frequently. This fading computation
heavily uses pointers to iterate over multi-dimensional ar-
rays. Existing approaches to automated memoization would
treat these pointers by their address, hence compute false re-
sults. However, as for the other experiments we compared
the computational results to those of the original implemen-
tation and observed exactly the same results. As this fading
computation seemed most promising, we only tagged this
block for memoization. We executed the parameter study
in the original as well as the memoized version, both with
OMNeT++ 5.0b3 on the above described hardware.

The results of our experiments are depicted in Fig. 7. In
the original implementation, each run took about 5-6 s, re-
sulting in a total runtime of about 10 hours. In the memo-
ized version, we observed a similar runtime for the first run,
where no computations could be omitted. However, from
the second run on, we observed significant speedups, certain
runs were completed in as little as 5 ms. Completing the to-
tal parameter study then took less than 8 minutes, hence our
automated memoization yielded a speedup of about 75ˆ.

The MC, on the other hand, doubled the memory con-
sumption of the program. We feel confident asserting that
a penalty of less than 10 MB will be happily accepted by a
user who now only has to wait minutes instead of hours.

5. RELATED WORK
Memoization was first introduced by Michie [15, 16] and

implemented in a framework by Popplestone [19] in 1967.
Though the framework provides an interface and assists the
user, the challenging parts have to be realized completely
manually. In particular, the user needs to implement a func-
tion deciding whether two inputs are equal, i. e., the user has
to determine the input. Mostow and Cohen [17] provide an
in-depth analysis of the memoization idea and the resulting
challenges like side effects. They propose to display a list of
side effects to the user and ask for permission to memoize,
ignoring the side effects. This might be possible in certain
cases, however, recognizing and applying side effects cor-
rectly makes our approach by far more generally applicable.

Several approaches realizing automated memoization have
been implemented, for example those by Norvig [18], Hall
et al. [4, 13, 14], and Hinze [6]. These approaches use
Haskell and Lisp, but also C++ as the basis of their imple-
mentation. In the functional language Haskell every function
is by definition pure, hence input and output is given by the
function definition. Though Lisp supports imperative pro-

gramming with functions modifying global state, i. e., induc-
ing side effects, the approaches explicitly restrict themselves
to pure functions. This also holds for the C++ implemen-
tation [14], which effectively adopts the Lisp approach from
[13] to C++. Hence, input may only be provided in func-
tion parameters, only the return value may be output, and
pointers are just handled like integers, i. e., pointers to the
same address are treated equally even if the value at that
address has changed, which inevitably introduces errors if
the pointed to object is actually input. Similarly, in logic
programming languages the concept of tabling is used to
memoize results of previously evaluated (by definition pure)
rules [24]. To the best of our knowledge no generic approach
to automated memoization without restriction to pure func-
tions has been proposed to date.

Tsumura et al. [10, 21] propose to integrate memoization
functionality directly into the processor hardware. While
this is probably the most promising approach to speed up
any software independent of the programming language and
paradigm, the proposed hardware is not available to most
users, i. e., software implementations are essential for wide
applicability. To this end, we provide an approach imple-
mented in software and able to cope with impure code in
impure languages to speed up simulations in practice.

To avoid unnecessary computations in simulation param-
eter studies simulation cloning [7, 8] and updateable simu-
lations [2] should be mentioned. Both techniques share the
motivation of our approach. However, simulation cloning
clones any affected “virtual logical process” of the simula-
tion as soon as the state of that process deviates. Hence,
later occurring re-computations, which base only on parts
of the state of that process, can not be avoided. Updateable
simulations can avoid a large set of re-computations. How-
ever, the major limitation of that approach is the require-
ment to implement update functions realizing the necessary
functionality to compute the differences between two runs.
Like manual memoization this is a labor-intense, error-prone
effort that needs to be carried out by the model developer.

6. CONCLUSION
In order to avoid redundant re-computations of interme-

diate results in simulation parameter studies by means of
memoization, two major steps have to be approached. First,
promising code blocks have to be identified whose effort can
be saved using memoization. Second, the code blocks have
to be rewritten in a way that the results are cached and can
be retrieved from that cache instead of re-computation.

In this paper, we focus on automating the second step of
this procedure and describe our approach for impure lan-
guages, realized in a proof-of-concept implementation for
C++. While up to now every existing technique requires a
function to be pure in order to be able to apply automated
memoization, our approach detects the full input and out-
put even if accessed via pointers, and hence eliminates this
restriction. However, as discussed in Sect. 3.6, certain re-
strictions like absence of local aliasing are still required to
be enforced as to avoid undecidable problems.

Once a developer has identified a suitable code block for
memoization, the block can be annotated using a single at-
tribute. Our tool then parses the code and generates a
memoized version after detecting the full input and output.
Hence, the approach is viable for both pure and impure com-
putations even when using pointers in several ways.

Our evaluation shows the practical feasibility of the ap-
proach. In general, the approach is promising if the mem-
oized computation is complex enough and executed several
times on the same input. In Sect. 4.1 we derive simple ap-
proximations to estimate under which conditions the ap-
proach is promising. In a simulation parameter study we
observed a 75ˆ speedup while only increasing memory con-
sumption by 9 MB. We conclude that automated memoiza-
tion can significantly help reducing the time developers have
to wait for their results with minimal manual effort.

Future efforts should address the automatic identification
of promising computations, such that annotation by the user
is no longer required. Additionally, instead of always adding
an entry to the MC, selection strategies could be devel-
oped to reduce overhead and memory consumption if the
result of a computation can be expected to not being reused
later. Hence, the execution could switch between memo-
ized and unmemoized versions of the code. Furthermore,
our approach needs to cope with multi-threaded software,
allowing multiple threads to concurrently and cooperatively
utilize a common MC. This allows to combine the power of
both PDES and memoization to benefit from both. Finally,
the performance of the proof-of-concept implementation can
be improved to reduce the overhead and make memoization
promising for computations of less complexity. Nevertheless,
our approach already demonstrates the feasibility of auto-
mated memoization for impure languages as used by many
simulation tools and yields promising speedups.

Acknowledgments
The research leading to these results has received funding
from the German Research Foundation (DFG) under Agree-
ment n. 625799 (MemoSim) and from the European Re-
search Council under the EU’s Horizon2020 Framework Pro-
gramme / ERC Grant Agreement n. 647295 (SYMBIOSYS).

7. REFERENCES
[1] E. W. Dijkstra. Go To Statement Considered Harmful.

Communications of the ACM, 11(3):147–148, 1968.

[2] S. Ferenci, R. Fujimoto, M. Ammar, K. Perumalla,
and G. Riley. Updateable Simulation of
Communication Networks. In Proc. of the 16th
Workshop on Parallel and Distributed Simul., pages
107–114, 2002.

[3] H. T. Friis. A Note on a Simple Transmission
Formula. Proc. of the Institute of Radio Engineers,
34(5):254–256, 1946.

[4] M. Hall and J. Mayfield. Improving the Performance
of AI Software: Payoffs and Pitfalls in Using
Automatic Memoization. In Proc. of the 6th Intl.
Symposium on Artificial Intelligence, 1993.

[5] T. R. Henderson, S. Roy, S. Floyd, and G. F. Riley.
ns-3 Project Goals. In Proc. of the 1st Workshop on
ns-2: the IP network simulator, 2006.

[6] R. Hinze. Memo Functions, Polytypically! In Proc. of
the 2nd Workshop on Generic Programming, pages
17–32, 2000.

[7] M. Hybinette and R. Fujimoto. Cloning: A Novel
Method for Interactive Parallel Simulation. In Proc. of
the 29th Winter Simul. Conf., pages 444–451, 1997.

[8] M. Hybinette and R. M. Fujimoto. Cloning Parallel
Simulations. ACM Transaction on Modeling and

Computer Simul., 11(4):378–407, 2001.

[9] ISO. ISO/IEC 14882:2014 Information technology —
Programming languages — C++. International
Organization for Standardization, Geneva,
Switzerland, Dec. 2014.

[10] K. Kamimura, R. Oda, T. Yamada, T. Tsumura,
H. Matsuo, and Y. Nakashima. A Speed-up Technique
for an Auto-Memoization Processor by Reusing
Partial Results of Instruction Regions. In Proc. of the
3rd Intl. Conf. on Networking and Computing, pages
49–57, 2012.

[11] D. E. Knuth. Structured Programming with go to
Statements. ACM Comp. Surveys, 6(4):261–301, 1974.

[12] W. Landi. Undecidability of Static Analysis. ACM
Letters on Programming Languages and Systems,
1(4):323–337, 1992.

[13] J. Mayfield, T. Finin, and M. Hall. Using Automatic
Memoization as a Software Engineering Tool in
Real-World AI Systems. In Proc. of the 11th Conf. on
Artificial Intelligence for Applications, pages 87–93,
1995.

[14] P. McNamee and M. Hall. Developing a Tool for
Memoizing Functions in C++. ACM SIGPLAN
Notices, 33(8):17–22, 1998.

[15] D. Michie. Memo functions: a language feature with
“rote-learning” properties. Technical report, Edinburgh
University, Dept. of Machine Intelligence and
Perception, 1967.

[16] D. Michie. Memo Functions and Machine Learning.
Nature, 218(5136):19–22, 1968.

[17] J. Mostow and D. Cohen. Automating Program
Speedup by Deciding What to Cache. In Proc. of the
9th Intl. Joint Conf. on Artificial Intelligence, pages
165–172, 1985.

[18] P. Norvig. Techniques for Automatic Memoization
with Applications to Context-Free Parsing.
Computational Linguistics, 17(1):91–98, 1991.

[19] R. Popplestone. Memo functions and the POP-2
language. Technical report, Edinburgh University,
Dept. of Machine Intelligence and Perception, 1967.

[20] D. Tsafrir, R. Wisniewski, D. Bacon, and
B. Stroustrup. Minimizing Dependencies within
Generic Classes for Faster and Smaller Programs.
ACM SIGPLAN Notices, 44(10):425–444, 2009.

[21] T. Tsumura, I. Suzuki, Y. Ikeuchi, H. Matsuo,
H. Nakashima, and Y. Nakashima. Design and
Evaluation of an Auto-Memoization Processor. In
Proc. of the 25th Intl. Multi-Conf. on Parallel and
Distributed Computing and Networks, pages 230–235,
2007.

[22] A. Varga. The OMNeT++ Discrete Event Simulation
System. In Proc. of the 15th European Simul.
Multiconference, 2001.

[23] C. Wang, M. Pätzold, and Q. Yao. Stochastic
Modeling and Simulation of Frequency-Correlated
Wideband Fading Channels. IEEE Transaction on
Vehicular Technology, 56(3):1050–1063, 2007.

[24] N.-F. Zhou and T. Sato. Efficient Fixpoint
Computation in Linear Tabling. In Proc. of the 5th
ACM SIGPLAN Intl. Conf. on Principles and Practice
of Declarative Programming, pages 275–283, 2003.

	Introduction
	Problem Analysis
	Memoization Granularity
	Variable Scope
	Pointers
	References, Arrays, and Containers
	Function Calls
	Unstructured Control Flow
	CV-Qualifiers
	Multi-Threading

	Automated Memoization
	Design Goals
	General Approach
	Input Vector Computation
	Performing Memoization
	Output Vector Computation
	Discussion

	Evaluation
	Overhead Evaluation
	Recursive Fibonacci with Pointers
	Case Study: Network Simulation

	Related Work
	Conclusion
	References

