Collaborative On-demand Wi-Fi Sharing

Hanno Wirtz, Torsten Zimmermann, Martin Serror, Klaus Wehrle
Chair of Communication and Distributed Systems, RWTH Aachen University
{wirtz, zimmermann, serror, wehrle}@comsys.rwth-aachen.de

Abstract—While users can ubiquitously access the Internet
via their Wi-Fi network or their mobile carrier network, access
to foreign private Wi-Fi networks is mostly prohibited. This is
because private APs have no means of authenticating foreign
mobile users prior to granting access to their network, entailing
severe security and liability risks. However, such Wi-Fi roaming
would make the vast network resources of private users available
on a collaborative basis. We propose Collaborative On-demand
Wi-Fi Sharing (COWS), offering 802.1x-equivalent authentication
of foreign users at private APs without the need for elaborate,
hierarchical authentication infrastructures. COWS embeds au-
thentication credentials into 802.11 association requests, enabling
APs to establish 802.11 AP networks exclusively on-demand and
after an authentication of the mobile user at her home network
provider. Our evaluation using Android smartphones and various
authentication provider instances shows the real-life applicability
of COWS, enabling lightweight, collaborative Wi-Fi roaming at
the APs of private users.

I. INTRODUCTION

While users comprehensively enjoy broadband Internet
access at home and via the mobile network carrier in their
country, high-speed access to the Internet remains scarce and
expensive while roaming, i.e., in foreign countries. The same
holds true for locations where neither the home Wi-Fi network
nor the mobile network is available. This lack of network
access stands in stark contrast to the global proliferation of
private Wi-Fi Access Points (APs) that, in principle, offer
comprehensive wireless network coverage for mobile users.
However, access to foreign Wi-Fi networks, i.e., Wi-Fi roaming,
is typically prohibited for security and liability reasons [9], [17].

This is because granting network access to a foreign
user, without any form of authentication, entails unforeseeable
security issues resulting from the user’s action in the network.
Especially, the legal liability for all Internet traffic originating
from the private network lies with the owner, i.e., the user
granting access is responsible for all malicious or illegal actions
taken by the foreign user, e.g., attacks on other network entities
or the exchange of illegal content.

While roaming agreements exist between mobile network
providers, at additional costs, no widespread approach exists
for Wi-Fi roaming. The Hotspot 2.0 [4] task group at the
Wi-Fi Alliance addresses this fact along with the usability of
current commercial Wi-Fi hotspots. Similar, the eduroam [7]
initiative affords a designated Wi-Fi network at participating
educational organizations. Both solutions (cf. Fig. 1, left) build
on contractual agreements between large-scale commercial
hotspot providers or organizations, respectively, and leverage
802.1x [1] authentication of mobile users that follows the
provider or organization hierarchy to alleviate the aforemen-
tioned security and liability issues. In the requirement of long-

Community

-
-
-

Organization

Fig. 1. Organizational Wi-Fi roaming (left) require infrastructures for
hierarchical 802.1x authentication at the RADIUS servers (FR, HR) of the
foreign and home organization ((FO, HO). Commercial or collaborative Wi-Fi
sharing communities (middle) only make members’ APs available. COWS
comprehensively discovers roaming networks and offers 802.1x-equivalent
authentication at private APs by embedding user credentials in 802.11 PREQs.
Internet traffic is tunneled through the user’s home provider (HP).

lasting agreements and a hierarchically managed backbone
network, both solutions are unsuitable for Wi-Fi roaming at
private APs, leaving their comparatively larger potential unused.

Collaborative approaches (cf. Fig. 1, middle) target this
potential by exploiting the coverage provided by private APs.
As a commercial solution, FON [5] establishes a designated
Wi-Fi network via proprietary AP, in order to achieve centrally
authenticated network access overlaid over the respective private
networks. In contrast, community approaches grant access to a
dedicated network at the APs of members unconditionally [6] or
authenticate users decentralized within the community [9], [12],
[13], [17]. Still, collaborative approaches only offer network
access to members of a single community at other members’
APs, limiting network availability to the (typically limited) size
of the community and accidental encounters of suitable APs.

We thus propose Collaborative On-demand Wi-Fi Sharing
(COWS) (cf. Fig. 1, right), embedding 802.1x-like authenti-
cation of mobile users at private APs, without the need for
a managed network hierarchy, within the on-demand request
and instantiation of a personalized 802.11 network. Specifically,
users in COWS opportunistically broadcast, in a standard 802.11
PREQ, a request for a personal, authenticated, and secure Wi-Fi
network. The request contains the provider information as
well as credentials to authenticate the mobile user at its home
network provider', enabling overhearing APs to authenticate
the user at the provider prior to instantiating the Wi-Fi network.
Upon authentication, the provider securely communicates the
network parameters, i.e., the network SSID and WPA2 PSK,
back to the AP, enabling it to instantiate a secure, personal
network to which the user can associate. Within this network,
all payload traffic is then routed via an encrypted tunnel to
the home network provider, removing any legal liability from

Mobile network or residential broadband provider.

the AP operator. Traffic provided for a foreign user can be
accounted for at both the AP and the provider, rendering a
variety of incentive or micro payment schemes possible.

COWS thereby mitigates the infrastructure and contractual
requirements of existing roaming or Wi-Fi sharing approaches
(Section II). By embedding network requests in the legacy
802.11 association mechanism and adapting the 802.11 AP
functionality to authenticate users at the provider, COWS en-
ables flexible and on-demand network instantiation. Especially,
COWS comprehensively protects authentication credentials to
mitigate misuse and attacks on the provider or AP (Section III).
Our implementation for Android smartphones and the Linux
hostapd? 802.11 AP daemon demonstrates the applicability
and performance of our design (Section IV), affording legacy-
compliant, collaborative Wi-Fi roaming via personal and secure,
on-demand 802.11 network instantiation (Section V).

II. RELATED WORK

COWS departs from commercial or organizational Wi-Fi
roaming approaches in favor of private Wi-Fi sharing. We hence
embed our design in the state of the art of both directions.
Furthermore, we point out an SDN-based solution for managed
provider networks instead of private networks.

A. Wi-Fi Roaming

802.1x [1] constitutes the basis for current Wi-Fi roaming
approaches, such as the eduroam [7] initiative. Organizations
thereby contribute their managed wireless network infrastructure
and forward the authentication details of roaming users along
a hierarchy of RADIUS authentication servers to the host
organization of the mobile user. After authentication, the visited
organization grants port-based, WPA2-secured network access.
Such approaches build on long-lasting agreements between the
underlying national research networks as well as the provision
of a hierarchical authentication infrastructure. In addition, the
requirement of being a member of a participating organization,
e.g., a student or a faculty member, and the infrastructure
requirement prevent the application to personal Wi-Fi roaming.

eduroam thereby serves all users in a single, dedicated
wireless network at participating APs. In case multiple com-
mercial network providers want to offer Wi-Fi roaming for
their users, this setting might be too rigid and undifferentiated.
Enabling the provision of distinct networks with predefined
payment and access settings, the Hotspot 2.0 initiative [4]
extends hierarchical 802.1x [1] authentication with 802.11u [2]
network selection. While participating APs, i.e., hotspots, still
permanently operate and announce one or multiple networks,
mobile clients can discover their appropriate network prior to
an association. Again, spanning a hierarchical infrastructure
over arbitrary private APs as well as the permanent operation
of foreign networks renders such an approach infeasible.

B. Wi-Fi Sharing

Recognizing the potential that private APs offer, Wi-Fi
community networks and Wi-Fi sharing strive to make foreign
networks accessible to mobile users. In a commercial Wi-Fi

Zhttp://w1.fi/hostapd/

community realization, FON [5] offers a dedicated network at
community members at the cost of an additional, proprietary
Wi-Fi AP that is inserted in the user’s network. All FON
members may access this network and traffic is then handled
by the FON backend infrastructure. Users are thus bound to a
single Wi-Fi sharing provider and need to trust this third-party
provider with authentication, traffic security, and accounting.

Approaches may furthermore build on distributed 802.1x
authentication of mobile users in a backend, e.g., SWISH [12]
and Wireless Roaming via Tunnels (WRT) [13]. Based on
the proposed key establishment protocols, traffic is securely
tunneled to the home network of the user and forwarded to the
intended Internet address. Both approaches assume the existence
of a home organization, equivalent to the host organization in
the eduroam initiative, and authentication infrastructure.

Alternatively, traffic can be tunneled directly to the actual
home AP or router of the mobile user, e.g., in PISA [9] and the
design presented in [17]. In this, the certifiable membership to
a (city-wide) Wi-Fi sharing community serves as the authentica-
tion means of users. Instead of tunneling traffic to a dedicated
network element at the home network, both approaches target
commodity AP devices. This requires a dedicated protocol on
both the mobile device and the home network AP, e.g., the Host
Identity Protocol (HIP) [14] in PISA [9], for authentication,
tunnel management, and bidirectional traffic security.

We target similar scenarios and propose a roaming structure
that is equivalent to the aforementioned approaches. Our design
strives to improve on the following two shortcomings. First,
all presented approaches require the operation of a single,
permanent network that announces and supports the roaming
service, wasting resources if no user wants to use the service.
Second, users are bound to a single community (provider) and
must grant foreign users access to their network prior to [12],
[13] or without explicit authentication [6], [9], [17].

Conversely, we strive for flexible Wi-Fi roaming that is
instantiated on-demand, exclusively driven by the indication of
demand for a roaming network by mobile users. We place
all control over the provision of the roaming service, i.e.,
whether a Wi-Fi network is instantiated and whether a foreign
user is granted access, at the AP and, in extension, its owner.
Our design can incorporate arbitrary sharing community or
provider memberships and flexibly and spontaneously accommo-
dates arbitrary roaming (and thereby incentive) configurations.
Furthermore, COWS only requires a lightweight software
adaptation of the AP and is fully compatible to the capabilities
of unmodified smartphones, ensuring real-life applicability.

C. Orchestration of Wireless Networks

Functionally related to our design, Odin [18] proposes a
Software-Defined Networking (SDN)-based solution to the
instantiation (or orchestration) of wireless AP networks in
managed provider scenarios, e.g., at universities or companies.
In Odin, mobile users access 802.11 APs that are attached to
an SDN-enabled backend network in which control over the
instantiation and configuration of wireless networks resides
at a central controller of Odin and OpenFlow. APs then run
both an OpenFlow and an Odin client, supporting mobility
management, load balancing, and channel reconfiguration.

PREQ: [P\, ENCyeo(U)p, Hi)l
(1)

(=

(4) (3)
[SSID, WPA2 PSK]

[MAC, ENCy(Upp, H))]
(2)

PRES/BEACON : [SSID]

Fig. 2. COWS design overview. Mobile clients indicate their authentication
credentials within an 802.11 network request (1). Via a secure HTTPS
connection, the AP authenticates the client at her/his home network provider
(2) and, based on the retrieved configuration (3), instantiates an 802.11 network
(4). All client payload traffic (5) is then routed in a secure tunnel over the
home network provider (dashed line).

Analogous to Odin, we address Bring-Your-Own-Device
(BYOD) settings due to the unmanageable diversity of user de-
vices. Also, COWS instantiates multiple, custom AP networks,
similar to the concept of Light Virtual APs (LVAPs) belonging to
network slices, as a means of incorporating diverse roaming and
mobility configurations. However, COWS realizes on-demand
network instantiation in unmanaged private setups, in contrast
to the managed provider setting in Odin. This requires the
provision of user authentication credentials and provider details
by the user contrary to the trusted scenario in Odin.

III. COWS DESIGN

Fig. 2 illustrates a high-level overview of our design. COWS
builds on instantiating Wi-Fi sharing networks for authenticated
clients, mitigating the liability risks of granting access to a
standing network for unauthenticated clients. We briefly explain
the concept and detail each step in the respective sections.

A mobile client (C) transports both a request for a personal
Wi-Fi roaming network and his authentication credentials in
the space-constrained 32 Byte SSID field of an 802.11 Probe
Request (PREQ) (step 1 in Fig. 2) and broadcasts this PREQ
within the 802.11 association process. A COWS-capable Access
Point (AP) that overhears this request forwards the credentials,
via a HTTPS connection over the Internet, to the user’s indicated
home network provider (step 2, Section III-B). The provider (P)
validates the user credentials and calculates the 802.11 network
configuration, i.e., the network SSID and WPA2 PSK key, and
indicates the validity of the request to the AP by sending the
configuration (step 3, Section III-C). Using this configuration,
the AP instantiates an on-demand, secure 802.11 AP network
to which the client associates (step 4, Section III-D). The client
then securely tunnels all traffic through the home network
provider to relieve the AP operator from all liabilities (step 5).

We discuss incentive and accounting models for collabora-
tion as well as argue its applicability to current network scenar-
ios (Section III-E). Last, we detail the security characteristics
of COWS regarding possible attacks or misuse (Section III-F).

A. Assumptions & Prerequisites

While we assume the AP operator to share his Internet
connection with a mobile user in COWS, we refrain from the
assumption of reciprocal trust or authentication between the
two parties. As such, the AP operator needs to authenticate
the user at an accountable third party, in this case the user’s
home network provider. In turn, the client does not want to
disclose his identity and authentication credentials to the AP

operator. Last, the AP operator and client share an interest
in not handling Internet traffic of the client directly at the
AP because of the operator’s legal liability and the client’s
lack of trust regarding traffic confidentiality and handling. We
thus sketch the prerequisites for COWS with regard to client
authentication, confidentiality, and traffic security within.

Initially, the client registers for the roaming service at her/his
home network provider and generates a public/private key pair
specifically for COWS. We envision this to occur “offline”, i.e.,
while the client is attached to his home network. In this step, the
client and the provider also establish a shared symmetric key
for the encryption and decryption of authentication credentials.
We choose a symmetric encryption scheme to meet the space
constraints in the SSID field of a standard 802.11 PREQ. The
client constructs these credentials in the form of an n-step hash
chain of which the client shares the anchor element H,, with
the provider. By proving the possession of prior authentication
tokens of the hash chain (H,_1, H,—2, ...) in subsequent
interaction, the client can authenticate itself at the provider, i.e.,
by proving the input H,_; to generate a result H(H;_,) = H;
of a computationally irreversible hash operation H () [11], [15].
Currently, we use 128 Bit CityHash? tokens due to the space
constraints of the 32 Byte SSID field in 8§02.11 PREQs. Because
COWS never sends tokens unencrypted, H() also does not
necessarily have to be a cryptographic hash function.

For identification, we assume a unique user ID U;p,
assigned by the provider, for the human owner of each mobile
client. In turn, we identify providers by the unique combination
Prp of their publicly assigned Mobile Country Code (MCC)
and Mobile Network Code (MNC)*, e.g., 310004 for Verizon
in the USA and 26201 X for T-Mobile in Germany. While other
identifiers are possible, we choose this structure to match the
aforementioned SSID space constraints as well as to prevent
fake or malicious “providers” from entering the system by
relying on the public MCC/MNC assignment.

B. Network Request

Clients in COWS request a personal Wi-Fi sharing network
while simultaneously enabling overhearing APS to authenticate
the client in 802.1x fashion at the client’s home network
provider. We realize this functionality in a single step, as
illustrated in Fig. 2 (step 1), within the client-side broadcast of
an 802.11 PREQ as part of the 802.11 association process. We
thus reuse the function of 802.11 PREQ frames, i.e., requesting
a Wi-Fi network, but transport within the 32 Byte SSID field a
COWS prefix, a provider ID P;rp, and the user authentication
credentials (cf. Fig. 3). The credentials thereby are the unique
user ID Uyp, as assigned by the provider, and the next unused
element in the hash chain H;. Overloading network requests
this way on unmodified devices is possible for applications by
triggering a scan for a specific Wi-Fi network, i.e., SSID.

Using the provider ID P;p, the AP is able to forward the
request to the home network provider via a lookup that resolves
Prp to an IP address. Because of the very limited number of
commercial home network providers, this lookup can occur via

3https://code.google.com/p/cityhash/
“http://en.wikipedia.org/wiki/Mobile_country_code

PEX| P, |ASCII85 H; Up
3 4 5 8 12
0 32
Fig. 3. Current 32 Byte SSID partitioning in PREQs: 3 Byte COWS prefix

(PFX), 4 Byte provider ID (Prp), 8 Byte authentication token (Hyp), and
12 Byte user ID (Urp) (both AES-encrypted). Ascii85 encoding (ASCII8S)
for legacy device and OS support inflates 20 Byte user credentials to 25 Byte.

a local table on the AP or acquired via DNS. In forwarding the
request, the AP attaches the MAC address of the client device.

The client protects the user ID U;p and the authentica-
tion token H; by encrypting them using the symmetric key
established off-line with the provider (cf. Section III-A). We
choose symmetric encryption due to the space constraints of
the 32 Byte SSID. In our implementation, we use the Advanced
Encryption Standard (AES) in Counter mode (CTR), with the
index i of the current authentication token H; combined with
a zeroed counter serving as the Initialization Vector (IV) for
encryption on the client. We use a zeroed counter as the client
encrypts only a single block instead of a data stream.

The encryption of authentication credentials serves multiple
purposes. First, broadcast 802.11 PREQs are observable by all
wireless devices in transmission range. Encrypting credentials
thus prevents capture and misuse, e.g., for replay attacks by
malicious APs. Second, we do not assume a trust relation
between the client and AP operator, as we explicitly want
to enable roaming outside of the small possible set of such
trust relations. Third, the AP functionality in COWS does not
require knowledge of the user’s identity. We discuss the security
considerations and implications of replaying, attacks, and lost
frames in detail in Section III-F.

In COWS, we reuse concepts of our prior work [19], in
which we embedded semantic content identifiers in 802.11
broadcast frames to match content requester and provider.
Notably, while we strive for 802.1x-equivalent authentication
in COWS, our original design in [19] does not address this
issue. In this paper, we address a comprehensively different
communication scenario and propose a novel combined on-
demand authentication and network request scheme.

C. Authentication at the Provider

Upon receiving a roaming request from an AP, the provider
uses the MAC address to look up the index i 41 of the current,
i.e., last used/seen, hash chain element H,; ;. Expecting a new
request, the provider calculates the AES IV using the next
index 7 plus a nulled counter to decrypt the encrypted user ID
Urp and authentication token H; using the shared symmetric
key. By validating the freshness of the included authentication
token, i.e., calculating if H(H;) = H;11, the provider ensures
the authenticity and timeliness of the request. If the check fails,
the provider assumes that the request has been tampered with or
is of malicious nature. If multiple identical requests arrive, e.g.,
from spatially close APs overhearing the request, the provider
will only serve the first.

Note that the client MAC address is used only for iden-
tification and does thus not need to be the actual hardware
address of the 802.11 card. Instead, the client and the provider

can establish a method of deterministically calculating MAC
address sequences, similar to hash tokens, or cryptographic
addresses [8]. This way, a client can not be tracked or de-
anonymized based on observed broadcasts.

However, requests and authentication tokens within them
might get lost, either on the wireless link between a client and
a potential AP or if no COWS AP is in transmission range. In
case the request contains a valid MAC address, the provider
can iterate through possible hash chain indices, calculate the
respective IVs, and try to decrypt the authentication credentials.
This fail-over mechanism is limited by the length of the hash
chain and offers a natural, adjustable “cut off” point, i.e., the
point where a client is required to first contact the home
network provider in order to validate her/his integrity. We
discuss the (attack) scenarios that make this fail-over mechanism
necessary in Section III-F and quantify the performance penalty
of increasing numbers of missing requests in Section IV-D.

In case of a positive check, the provider serves the request
by calculating the 802.11 SSID and WPA2 PSK, i.e., the Wi-Fi
network configuration, and securely, e.g., via HTTPS, sends
this configuration to the AP (step 3 in Fig. 2). Because no com-
munication channel between the client and the provider exists
yet, we enable both to calculate the configuration autonomously
based on the current authentication token H,;. Specifically, the
client and the provider calculate S; = sha256 (H;)>. We
thereby irreversibly compute a 256 Bit string from H; and
derive the SSID from the first 128 Bit substring of S; and the
WPA?2 PSK from the second 128 Bit substring of S;. Again, we
encode both substrings in Ascii85 and use them as the network
SSID and input to the PBKDF2 function specified in 802.11
for the actual WPA2 PSK generation, respectively.

In this, the client and the provider generate a one-time
network configuration that is different for each network instan-
tiation. Furthermore, the authentication token H; is not revealed
to the third-party AP to ensure the integrity of the hash chain
against any kind of capture attack by malicious APs.

D. Network Instantiation, Association, and Usage

The reception of a network configuration by the provider
signals a positive check of the roaming request and triggers the
instantiation of the indicated Wi-Fi network at the AP (step 4
in Fig. 2). We refer to our previous work [19] for a detailed
discussion of the actual Wi-Fi network instantiation process. If
no or a negative reply occurs, the AP does not instantiate a
network. The client observes the availability of the network, i.e.,
the calculated SSID, either via the beacon frames sent by the
AP or an active 802.11 scan. Subsequently, the client associates
to the network using the calculated WPA2 PSK network key.

We make use of the widely supported technique of wireless
network virtualization [3] at the AP to support concurrent
network instantiation for multiple clients. Furthermore, this
ensures the availability of the Wi-Fi network used by the
original owner of the AP. Additionally, while not addressed in
this paper, traffic shaping techniques become possible for each
virtualized wireless network, affording fine-grained control as
well as protection of the owner’s network performance.

S Any secure cryptographic hash function might be used.

Isolation and protection of client payload traffic then
occurs on two levels (step 5 in Fig. 2). First, the client
establishes a secure tunnel to the provider by encrypting all
traffic with a symmetric key derived via standard public key
cryptography. Second, the AP configures a strict routing rule
for the instantiated network that forwards all traffic to the home
network provider, e.g., using iptables. The AP thus forces
potentially malicious Internet traffic to originate from the home
network provider, thereby avoiding any legal liability [9], [17].
In turn, the client ensures the confidentiality and integrity of
her/his traffic by handling it via the trusted network provider.

E. Control and Incentives for Collaboration

COWS enables collaborative Wi-Fi sharing at private APs.
We build on the observation that typical residential Internet
uplinks are accounted on a flat rate basis and forwarding foreign
users’ Internet traffic to their home provider does neither incur
costs for the AP owner nor for the mobile user. However, it
is important to offer incentives for collaboration as well as
control over the system in the case of malicious or free-riding
users. To this end, COWS inherently supports accounting of
client traffic at both the AP and the provider as well as the
possibility to compare the respective measurements to prevent
entities from cheating.

Accounting “receipts”, that are cryptographically signed by
the AP and provider, could then be collected and managed by
a service that facilitates a variety of micro payments [16]. For
example, in a simple “tit-for-tat” scheme, the AP owner would
gain roaming credits to be used at other users’ APs in the system.
Alternatively, network access could be repaid via Bitcoins or
credits in crowdsourcing platforms, e.g., Amazon Mechanical
Turk. Please note that arbitrary accounting and micro payment
schemes are possible on fop of COWS. However, we do not
cover such add-on services in this work since (as of now) we
lack the necessary user base to validate them.

F. Security Considerations

The security aspects of COWS revolve around the loss or
replay of requests and the authentication credentials within
them. Attackers could hence strive to trigger of aggravate
such losses. We differentiate between two types of attackers:
1) Passive attackers that overhear and possibly replay requests,
and 2) active, malicious APs that mount a Denial of Service
(DoS) attack against the client or provider by either dropping
requests or flooding the provider with fake requests.

COWS offers protection against passive attackers by encrypt-
ing user ID and authentication token using a shared key and ever-
changing I'V. Furthermore, while capturing and replaying a fresh
request, e.g., by jamming the client, triggers the instantiation
of a network, the attacker is unable to calculate the WPA2
network key as he is not in possession of the required token
H,; and cannot calculate it from the encrypted request. While
the AP could make the network accessible to malicious clients,
the establishment of an encrypted tunnel would fail as neither
the AP nor the client in question is registered at the provider
and all unencrypted traffic would be dropped.

A malicious AP may furthermore drop all requests that
it observes, thus denying service to benign clients. This is

equivalent to the AP not participating in COWS in the first
place, the only damage is the loss of the authentication token(s)
contained in the request(s). The client can still gain network
access at other APs, the overall system remains functional.

An active attacker may, either as a client or AP, inject fake
requests into the system. If such an attacker uses a MAC address
that is not registered at the respective provider, the request will
get dropped. Using an overheard MAC or guessing a registered
MAC address results in the provider trying to decrypt the
request. As attackers are neither in possession of the symmetric
key nor of the correct IV, decrypting the cipher text will not
yield a correct request. However, since authentication tokens,
i.e., steps in the hash chain, may get lost, the chain index at the
client may be lower than at the provider, leading to the provider
using the wrong IV. In fact, this is the expected scenario in
COWS, as clients opportunistically probe the environment for
roaming networks and never use an authentication token twice.
Trying to recover the correct chain index, the provider would
thus try to decrypt the request by iterating through the hash
chain indices.

The number of calculations is thereby determined by the
length of the hash chain. This length thus presents a trade-off
between the maximum number of requests, and the amount of
work the provider is willing to invest. We evaluate the actual
computation cost of this trade-off in Section IV-D and show
that the use of symmetric cryptography enables hash chains
of substantial length without overloading the provider. Note
that the provider only adjusts the chain index in the case of a
positive decryption, sending a random request does not deplete
the hash chain of the respective user.

IV. EVALUATION

We prototypically implement the described client, AP, and
provider functionality in order to evaluate the feasibility and ap-
plicability of COWS. Our evaluation comprises the connection
establishment time between the client and the provider (Sec-
tion IV-A), the impact of concurrent client connection requests
(Section IV-B), the scalability of provider-side functionality
with regard to local processing and management of concurrent
TLS connections (Section IV-C), and the security functionality
(Section IV-D). We implement the client functionality on Galaxy
Nexus and Nexus S smartphones running Android 4.1.2. The
Galaxy Nexus has a 1.2 GHz CPU and a Broadcom BCM4330
802.11n chipset, while the Nexus S contains a 1 GHz CPU and
a Broadcom BCM4329 802.11n chipset.

We realize the AP functionality on a Lenovo S10-3 Ideapad
with a 1.5 GHz CPU and an Atheros AR9285 802.11n card.
Our Linux-based implementation makes use of the hostapd
user space daemon to realize and manage an 802.11n AP.

In order to realistically evaluate the communication setting
in COWS, we use provider machines in our local network and
on remote Amazon Web Services (AWS) r2.micro® instances.
The local provider runs on a Ubuntu Desktop 14.04 machine
with an Intel i7 2.93 GHz CPU and 4 GB RAM. Provider
instances provided by AWS have a 2.5 GHz vCPU and 1 GB
RAM and run Ubuntu Server 14.04. A multi-threaded Python
application handles (concurrent) client requests at the provider.

Shttp://aws.amazon.com/ec2/instance-types/

A. Timing

As a measure for the real-life applicability, we first evaluate
the time overhead of requesting and instantiating a Wi-Fi
network in COWS as observed at the client, AP, and provider.
We furthermore measure the time requirement of establishing
an OpenVPN’ connection as the most heavyweight variant of
establishing a secure tunnel from the client to the provider.

In our evaluation scenario, the client and AP are located at
our institute in Aachen, Germany and we vary the geographic
placement of the provider to analyze the impact of distance
between the AP and provider in the authentication step. We
thus first place the provider on a machine in our local network,
resulting in an average round-trip time (RTT) of 0.4 ms between
AP and provider. Increasing the distance, we realize the provider
on an AWS instance located in Frankfurt, Germany, with an
average RTT of Sms, and on an instance located in Oregon on
the US west coast, with an average RTT of 165 ms. The local
network scenario thereby serves as a baseline against which
we measure the possible realizations of COWS from a provider
point of view, namely managing mobile users per-country or
globally at a single site.

We construct our evaluation according to the sequence of
steps depicted in Figure 2 and conduct 30 complete runs in
each setup. Fig. 4(a) — 4(c) then show the average and standard
deviation of the time requirement of each step in Figure 2 as
observed at the client, the AP, and the provider, respectively.
Please note that we only include the VPN connection results
(Fig. 4(a), step (5)) for completeness; since we make use of
OpenVPN, this functionality resides outside of our design.

In COWS, a client requests a roaming network and can
observe its instantiation, i.e., steps (1) and (4) in Fig. 2, in less
than 1.4 s (Fig. 4(a), step (1)) and then connects to the network
(Fig. 4(a), step (4)) in less than 2.8 s, regardless of the location
of the provider. Indeed, requesting and connecting to an on-
demand, secure roaming network in COWS (incl. DHCP) only
requires marginally more time than connecting to a permanent
Wi-Fi network without authentication at the provider in the
same evaluation setup.

The time measured at the client (Fig. 4(a), step (1)) includes
the time requirements of all steps at the AP and provider, i.e.,
steps (2)—(4) in Fig. 2. Fig. 4(b) and 4(c) show the respective
time requirements for these steps. As expected, forwarding the
client request and waiting for the provider response (Fig. 4(b),
step (2)) thereby depends on the placement of the provider
instance, i.e., the RTT. Local operations, i.e., authenticating the
client and calculating the network configuration (Fig. 4(c), step
(3)) as well as instantiating the network at the AP (Fig. 4(b),
step (4)) are independent of the provider location. Notably, the
client-side time overhead of scanning for and connecting to the
network (Fig. 4(a), step (4)) largely masks RTT differences.

Furthermore, processing the request on the AP (Fig. 4(b))
and at the provider (Fig. 4(c)) does not impose significant
computation or time overhead. Note that every request in this
evaluation is valid, i.e., the hash chain index used in the request
was identical to the one the provider expected and used for

@l local @@ Frankfurt 3 US Westl

15

: t
BT

(4) Wi-Fi Conn. (5) VPN Conn.
Established Established

Average Time [s]

0 [Eler— ;

(1) Request + (4) Wi-Fi
Confirmation Setup

(a) Time overhead of functionality at the client.

800

600

400

200

0 [o | [i |

(2) Prov. Request + (4) AP Setup (4) AP ready
Confirmation

Average Time [ms]

(b) Time overhead of functionality at the AP. Legend as in (a).

0.4
n
.E. 0.3
(]
£
= 0.2
(]
o
u x
g 01
>
<

0.0 L—_oompssl™)

(3) Client (3) AES (3) Hash (3) Reply
Lookup Decrypt Checks to AP

(c) Time overhead of functionality at the provider. Legend as in (a).

Fig. 4. Time overhead of COWS functionality at the client, AP, and provider
for local, in-country, and intercontinental placement of the home provider.

decryption. No time overhead thus incurred due to recovering
the correct index. We address this issue in Section IV-D.

Last, establishing a secure tunnel after connecting to the
network (Fig. 4(a), step (5)) induces a dominating communi-
cation and time overhead. We prototypically used OpenVPN
in certificate mode as a proof-of-concept realization as it is
widely accepted and offers a working Android implementation
that does not require root access, supporting our goal of
a BYOD setup. The results present a worst-case evaluation
as we chose the most communication- and computation-
heavy key establishment mode as well as a rather bulky
VPN implementation. In future work, we will investigate the
reduction of this overhead via slimmer VPN implementations
in pre-shared key mode, e.g., tinc®, and the applicability
of protocol solutions, e.g., HIP [14], to BYOD scenarios.
Depending on the communication overhead of establishing the
secure tunnel, COWS benefits from a lower distance between
AP and provider, e.g., via per-country provider instances.

7https://code.google.com/p/ics-openvpn/

8hittp://www.tinc-vpn.org/

B. Multiple Concurrent Requests and Network Instantiations
at a Single Wi-Fi AP

COWS explicitly supports the concurrent instantiation and
operation of multiple Wi-Fi networks in order to preserve the
incumbent network of the AP owner as well as to make the
AP available to multiple clients in isolated networks. We thus
evaluate the feasibility and time characteristics of multiple
concurrent requests and network instantiations. In this, the
ath9k 802.11 driver limits the number of concurrent AP
networks on a single physical 802.11 card to four, we hence
perform this evaluation with three distinct client devices in
addition to an assumed network of the AP owner.

Equivalent to the previous evaluation, we measure the time
requirement for distinct functional steps at each client, the
AP, and the provider to assess the impact of simultaneous
connections. We only consider a local provider as we focus
on the interaction between client and AP and we use one
Galaxy Nexus and two Nexus S devices as client devices. In
order to illustrate the effect per device, we measure the time
overhead at each client device and associate the time overhead
incurred at the AP and the provider to the respective client
device. Fig. 5(a)-5(c) then show the average time overhead and
standard deviation of 30 requests and network instantiations at
the clients, the AP, and the provider.

We observe that multiple simultaneous requests introduce
contention on the wireless link, as the time overhead of
requesting and observing the Wi-Fi network instantiation
(Fig. 5(a), step (1)) requires between 1.1s (Nexus S1) and
2.3 s (Galaxy Nexus) compared to 1.4s for a single client.
This is to be expected since the AP multiplexes the available
virtualized Wi-Fi networks in the time domain, as can be seen
in the successive confirmation of the network instantiation
(Fig. 5(a), step (4)). Due to the dominating time overhead of
establishing a Wi-Fi association to each instantiated network,
the overall time requirement of each client is only slightly
higher than in the single-client scenario. In total, concurrently
requesting and associating to a network requires on average
between 3.9s (Nexus S1) and 5.5s (Galaxy Nexus), compared
to 3.8 s (Galaxy Nexus) for a single client.

In contrast, we observe only a marginal increase of less
than 15 ms in the average overall time overhead of a network
request and instantiation at the AP in comparison to the local
single-client evaluation (Fig. 5(b)). This is due to the small
computational and entirely local AP process once a client
request or the provider response has been received.

At the provider, we observe a negligible increase of less
than 0.1 ms in processing time (Fig. 5(c)) in the presence of
concurrent requests. This is because, even for a consumer-
grade desktop machine, COWS only imposes lightweight
computational tasks on the provider, such as AES decryption
of a single block and computation of a single hash operation.
Again, this evaluation assumes a correct request, i.e., the hash
chain index used by the client in the encryption is identical to
the one used at the provider for decryption. As such, only a
single AES and hash operation is performed. We address the
impact of asynchronous hash chain indices in the next section.

From these results, we derive 1) the feasibility of operating
COWS concurrently to the standing Wi-Fi network of the owner,

|- Galaxy Nexus [NexusS1 [NexusS?2
20 —
0
) 15
£
'_
o 10 T
o
©
o -
S 5 —
<
o . 11
(1) Request + (4) Wi-Fi (4) Wi-Fi Conn. (5) VPN Conn.
Confirmation Setup Established Established
(a) Time overhead of functionality at each client.
120
= —
£ 100
o 80
£
= 60
>
o 40
—_
q>) 20
< —t
0

(2) Prov. Request +
Confirmation

(4) AP Setup (4) AP ready

(b) Time overhead for each client at the AP. Legend as in (a).

0.4
)
.E. 0.3 ¥
()
£
= 0.2
()
()]
o
o 01
>
<
0.0 LT
(3) Client (3) AES (3) Hash (3) Reply
Lookup Decrypt Checks to AP

(c) Time overhead for each client at the provider. Legend as in (a).

Fig. 5. Time overhead of COWS functionality for multiple concurrent COWS
instantiations at each client and at the AP and provider for each client.

and 2) the possibility of accommodating multiple roaming
clients, with different accounting and incentive configurations,
at a single AP. COWS thus mitigates the restrictions of only
supporting a single Wi-Fi sharing community as well as
permanently operating a community or provider network.

C. Scalability of Provider-side Functionality

In the previous section, we evaluated the feasibility of AP-
side support for concurrent roaming clients. Additionally, in a
real-world deployment, our design envisions a single provider
instance serving numerous APs that each accommodate multiple
roaming clients, i.e., their requests for roaming networks. We
hence evaluate the provider-side functionality in COWS with
regard to the scalability of local processing of authentication
requests as well as the time overhead of serving multiple clients
at an increasing number of APs.

To this end, we measure the time overhead of both provider
functionality aspects, i.e., the purely local processing of requests
(cf. Fig. 6(a)) and concurrent handling of multiple TLS
connections by APs carrying multiple client requests. We split
the evaluation this way in order to clearly distinguish the

impact of either aspect on the actual functionality in COWS,
i.e., the processing of authentication requests. For comparison,
we evaluate the same steps as in the previous two evaluation
sections, i.e., the queuing of the request (including user lookup),
the AES-based decryption, and the verification of the hash
token (cf. Fig. 4(c) and Fig. 5(c)). We exclude responses to the
originating AP as we focus only on the scalability of provider-
side processing.

Fig. 6(a) then shows the average and standard deviation of
the local processing time for a single authentication request in
the presence of an increasing number of queued requests. In this,
we approximate a scenario in which a provider instance is asked
to process a large number of genuine authentication requests
simultaneously. For a naive, single-threaded provider instance
(dark blue bars), a request spends the majority of time overhead
in the queue and increasing load, i.e., number of requests,
induces longer waiting times. In contrast, processing times
(AES and hash checks) remain largely constant, independent
of the load. In turn, a multi-threaded provider instance reduces
the queue times of requests drastically, while an increase in the
computation times of AES description and hash checks shows
that the comparatively low processing effort of these operations
do not amortize the overhead of threading. Still, we conclude
that a multi-threaded provider instance running on commodity
hardware scales to a large number of concurrent requests.

In addition, we evaluate the communication handling
overhead of managing a TLS connection to the actual AP
at which the client requests a roaming network by emulating an
increasing number of virtual Access Points (vAPs) and clients
at these vAPs. Each VAP then instantiates a TLS connection,
over which it sends the authentication request(s), to the provider
instance, at which the connection request spawns a server thread.
We thereby reconstruct the real-life setting of a single provider
instance serving a multitude of distinct APs. As in the previous
evaluation, Fig. 6(b) shows the average and standard deviation
of the time overhead induced by the respective provider-side
functionality over an increasing number of vAPs and clients
at these vAPs. We find that processing times in either step
are largely independent of the number of active APs, i.e., TLS
connections, and do not show strong variations over the number
of users served per AP.

From these complimentary evaluations, we hence derive
the scalability of COWS at the provider. Notably, our im-
plementation relies on unoptimized Python modules for both
the communication server functionality and the respective
cryptography and hash operations. We hence believe that a
substantial optimization potential would still be available in
case of a dedicated real-world implementation.

D. Security Aspects

As discussed in Section III-F, our design anticipates an
asynchronous state of client authentication tokens, i.e., hash
chain elements, as roaming requests are purely opportunistic and
hash elements are only used once in PREQs. In the resulting
case of deviating hash chain indices, the provider tries to
recover the correct index by iteratively decrementing the index
and attempting to decrypt the request with each resulting IV
(cf. Section III-C). Each decryption attempt then requires an
AES operation and, if the decrypted user ID U;p matches

I- 1Thread 3 32 Threadsl

o e
LT

Average Time [ms]
=)

CEU I R I] SO X0 > &S O X 65 5 &S
A0 A0 A0 A0 A0 AT AT A0 AT AT A0 AT AT A0 AT AT A0 A0

In Queue AES Decrypt Hash Checks

(a) Time overhead and impact of threading on provider-side
authentication steps for increasing numbers of users (10°-10°).

[=mm 10vAP EER 100vAPs 3 200 vAPs|

— 100 F
m E
S
[} -1

107" E
E :
=
[5 -
g 1077 E T
G :
>
< 103

1313 135 1313 135 1313 135

In Queue AES Decrypt Hash Checks

(b) Time overhead of TLS connection handling and authentication
over number of users (1-5) simultaneously generating roaming
requests at increasing numbers of virtual AP (vAPs).

Fig. 6. Scalability of provider-side functionality. Note the logarithmic scales.

the Urp associated with the MAC address in the request, one
hash operation. Authenticating a client request in the face of
hash chain indices deviating by m steps thus requires m AES
operations and m subsequent CityHash operations. For a hash
chain of length n, the worst case, i.e., after n — 2 unsuccessful
requests or because of a DoS attack, requires the provider to
perform m = n — 1 authentication steps on the client request.

In this evaluation, we hence analyze the impact of lost
authentication tokens and simultaneously the potential of active
attackers (cf. Section III-F) with regard to the induced resource
consumption at the provider. We measure the computation time
for a hash chain of length of n = 1000 and consider the worst
case of 999 iterations, a medium case of 500 iterations, and the
best case of 1iteration, i.e., an identical index at both sides.
In assuming a moderate hash chain length of n = 1000, we
aim to provide a tangible notion of the resource consumption.
While hash chains may be significantly longer in reality, larger
numbers only continue the trends we show in this evaluation.
Furthermore, the length of the hash chain corresponds to the
number of allowed roaming requests. We deem a number of
n = 1000 to be a good real-world compromise between the
number of attempts and range (or freedom) afforded to the client.
Upon exhaustion of n attempts, a sensible protection against
misuse would require the client to contact her/his provider
via other network means, e.g., from the hotel or coffee shop
network. We compare the performances of a local provider to
an AWS instance. Fig. 7 depicts the average time overhead
induced by increasing disparity of hash chain indices.

Fig. 7 also shows the time requirements of checking the
MAC address (“Client Lookup™) and sending a reply (“Reply
to AP”) as we measure a complete provider-side operation. On

|- Local [Amazon

—_ 2
7 10)
= 10!]
o
£ 10°]
=
o 10"
o 3
C 42 1
o 10 E
> 3
< 10°

N OOV O NOO YOOV YLOLONVYLHO

S S P P S S S
Client Lookup AES Decrypt Hash Checks Reply to AP
Fig. 7. COWS time overhead at the provider for increasing disparity of hash

chain indices between the client and the provider because of unsuccessful
client-side network requests or DoS attacks. Note the logarithmic scale.

each provider instance, timings for both operations are constant
as these operations do not depend on the hash chain index.

In contrast, a larger gap in the indices induces increas-
ing time requirements to perform the AES decryption and
CityHash operations. On the local provider instance, for
example, the total AES decryption time increases from 0.06 ms
for a single, correct decryption to 14.4 ms when 500 iterations
are necessary and accordingly to 26ms for 999 iterations.
Correspondingly, the computation time of a single hash check
on the local provider instance is 0.065 ms, compared to 3.47 ms
for 500 operations and 5.38 ms for 999 operations. The results
for the AWS instance are equivalent with only negligible time
differences compared to our local provider instance.

We obtain these results with consumer-grade hardware and
conclude that attacks on the provider only have a negligible
impact per user, i.e., correctly observed or guessed MAC
address. The length n of the hash chain thereby provides an
adjustable means of controlling the attack impact, as our design
requires the actual user to refresh the hash chain at the provider.
At the cost of a higher overall time overhead, cryptographic
client puzzles [10] in the authentication step between AP and
provider would protect providers also from such limited attacks.

V. CONCLUSION

We propose COWS, a lightweight and flexible approach to
providing Wi-Fi roaming networks at private users’ APs. By
enabling 802.1x-equivalent authentication and relocating the
source of outbound Internet traffic to the mobile user’s home
network provider, COWS removes the security and liability
issues from AP providers offering Wi-Fi roaming. In realizing a
per-user network configuration and instantiation, we furthermore
avoid the overhead and restriction of standing Wi-Fi networks
belonging to a single Wi-Fi sharing community. Intuitive and
secure accounting techniques at the AP and provider then enable
the implementation of incentives for collaboration or micro
payment schemes.

Our implementation for commodity Android smartphones
and 802.11 APs shows the immediate real-life applicability
of COWS. Evaluating our approach in local network settings
demonstrates the negligible time overhead introduced by
authenticating the user at the provider, while in-country and
intercontinental placement of the provider shows the impact of
increased RTTs. Last, COWS inherently supports asynchronous
states of the authentication credentials at the client and the

provider and enables providers to validate incoming requests
at negligible computational costs, thereby protecting them
against DoS attacks and misuse. Future work targets a real-life
deployment of COWS as well as user studies addressing the
appropriate means and incentives of collaboration.

ACKNOWLEDGMENTS

This work has been funded by the German Research
Foundation (DFG) in the Collaborative Research Center (SFB)
1053 “MAKI — Multi-Mechanism-Adaptation for the Future
Internet”.

REFERENCES

[1] “IEEE Standard for Local and Metropolitan Area Networks - Port-Based
Network Access Control,” IEEE Std 802.1X-2010, 2010.

[2] “IEEE 802.11u: Interworking with External Networks,” Amendment to
IEEE Std 802.11-2007, 2011.

[3] R. Chandra, P. Bahl, and P. Bahl, “MultiNet: Connecting to Multiple
IEEE 802.11 Networks Using a Single Wireless Card,” in Joint
Conference of the IEEE Computer and Communications Societies, ser.
INFOCOM’04, 2004.

[4] Cisco, “The Future of Hotspots: Making Wi-Fi as Secure and Easy to Use
as Cellular,” [Online] http://www.cisco.com/c/en/us/solutions/collateral/
service-provider/service- provider- wi-fi/white_paper_c11-649337.html.

[S] Fon Wireless, “Global WiFi Network,” [Online] https://corp.fon.com/en.
[6] Freifunk Community, “Freifunk Website,” [Online] http://freifunk.net.

[7] Global eduroam Governance Committee, “eduroam Initiative,” [Online]
http://eduroam.org.

[8] B. Greenstein, D. McCoy, J. Pang, T. Kohno, S. Seshan, and D. Wetherall,
“Improving wireless privacy with an identifier-free link layer protocol,” in
International Conference on Mobile Systems, Applications, and Services,
ser. MobiSys 08, 2008.

[9] T. Heer, S. Gotz, E. Weingartner, and K. Wehrle, “Secure Wi-Fi Sharing
at Global Scales,” in International Conference on Telecommunications,
ser. ICT ’08, June 2008.

[10] A. Juels and J. G. Brainard, “Client Puzzles: A Cryptographic Coun-
termeasure Against Connection Depletion Attacks.” in Network and
Distributed System Security Symposium, ser. NDSS ’99, 1999.

[11] L. Lamport, “Password Authentication with Insecure Communication,”
Commun. ACM, vol. 24, no. 11, 1981.

[12] D. Leroy, G. Detal, J. Cathalo, M. Manulis, F. Koeune, and O. Bonaven-
ture, “SWISH: Secure Wi-Fi Sharing,” Computer Networks, vol. 55,
no. 7, pp. 1614 — 1630, 2011.

[13] M. Manulis, D. Leroy, F. Koeune, O. Bonaventure, and J.-J. Quisquater,
“Authenticated Wireless Roaming via Tunnels: Making Mobile Guests
Feel at Home,” in Symposium on Information, Computer, and Communi-
cations Security, ser. ASIACCS ’09, 2009.

[14] R. Moskowitz, P. Nikander, P. Jokela, and T. Henderson, “Host Identity
Protocol,” RFC 5201 (Experimental), Internet Engineering Task Force,
Apr. 2008, updated by RFC 6253.

[15] A. Perrig, “The BiBa One-time Signature and Broadcast Authentication
Protocol,” in ACM Conference on Computer and Communications
Security, ser. CCS ’01, 2001.

[16] S. Reddy, D. Estrin, M. Hansen, and M. Srivastava, “Examining
Micro-payments for Participatory Sensing Data Collections,” in ACM
Conference on Ubiquitous Computing, ser. UbiComp ’10, 2010.

[17] N. Sastry, J. Crowcroft, and K. Sollins, “Architecting Citywide Ubiq-
uitous Wi-Fi Access,” in Workshop on Hot Topics in Networks, ser.
Hotnets *07, 2007.

[18] J. Schulz-Zander, L. Suresh, N. Sarrar, A. Feldmann, T. Hiihn, and
R. Merz, “Programmatic Orchestration of WiFi Networks,” in USENIX
Annual Technical Conference, ser. ATC 14, 2014.

[19] H. Wirtz, M. Ceriotti, B. Grap, and K. Wehrle, “Pervasive Content-centric
Wireless Networking,” in 15th Symposium on A World of Wireless, Mobile
and Multimedia Networks, ser. WoWMoM 14, 2014.

