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ABSTRACT
Simulation of wireless systems is highly complex and can
only be efficient if the simulation is executed in parallel. To
this end, independent events have to be identified to enable
their simultaneous execution. Hence, the number of events
identified as independent needs to be maximized in order to
increase the level of parallelism. Traditionally, dependencies
are determined only by time and location of events: If two
events take place on the same simulation entity, they must
be simulated in timestamp order. Our approach to over-
come this limitation is to also investigate data-dependencies
between events. This enables event reordering and paral-
lelization even for events at the same simulation entity. To
this end, we design the simulation language PSimLa, which
aids this process. In this paper, we discuss the PSimLa de-
sign and compiler as well as our data-dependency analysis
approach in detail and present case studies of wireless net-
work models, speeded up by a factor of 10 on 12 cores where
time-based parallelization only achieves a 1.6x speedup.

Categories and Subject Descriptors
I.6.2 [Simulation and Modeling]: Simulation Languages

General Terms
Languages, Performance, Algorithms

Keywords
Parallel simulation; Static code analysis; Data dependencies

1. INTRODUCTION
Simulation is an essential methodology in the design and

development of wireless communication systems. However,
wireless simulation models are particularly complex, as they
need to reflect sophisticated physical processes in software.
Hence, parallelization is necessary to retrieve results in time.

All traditional parallelization approaches base on the lo-
cal causality constraint, fulfilled “if and only if each Logical
Process (LP) processes events in nondecreasing timestamp
order” [9, p. 32]. However, we argue that this constraint is
not a necessary condition, but two events can be indepen-
dent even if their re-ordering poses a causal violation. By
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analyzing data-dependencies at compile time it can be deter-
mined if the two events do actually not access a data item
in a conflicting manner. Since the only existing approach
by Chen et al. [4, 5] does not incorporate the challeng-
ing yet essential part of analyzing data access by pointers
or references we propose in [18] a novel approach to data-
dependency analysis for parallelizing network simulation.
We suggest to develop a Domain-Specific Language (DSL)
for data-dependency based parallel simulation, but keep it
close to C++ to maintain a flat learning curve for model
developers. However, to avoid problems rendering data ac-
cess tracking infeasible, like the unsolved problem of pointer
analysis [2, 10], our language differs from C++, but does
not remove a feature without providing proper alternatives.
We allow using C++ and our language in a single model to
enable smooth transition for existing code. In this paper we
make the following contributions:

1. We discuss PSimLa, a language similar and compatible
to C++, but replacing features of C++ by alternative
concepts to increase static analyzability of model code.

2. We discuss the details of our data-dependency analy-
sis approach. This shows, that in fact structured lan-
guages can be analyzed by tracking data access, in-
creasing the amount of events recognized as indepen-
dent and enhancing the degree of parallelism of other-
wise hard-to-parallelize simulation models.

We integrate our approaches into OMNeT++ and the par-
allelization framework Horizon [13, 14]. OMNeT++ is one
of the most commonly used open-source simulation frame-
works. The shared-memory architecture of Horizon max-
imizes the applicability of the analysis results due to the
possibility to efficiently determine the events currently be-
ing processed. We perform a detailed evaluation of this
approach and discuss its general applicability. Our evalu-
ation shows that certain previously hard-to-parallelize wire-
less simulation models achieve almost linear speedup when
data-dependency information is exploited. On a 12-core ma-
chine our approach is more than 3 times faster than time-
based parallelization for a wireless mesh case study, and
more than 6 times for an LTE simulation.

The remainder of this paper is structured as follows: After
analyzing the problem (Sec. 2), we discuss the design of
PSimLa (Sec. 3) in more detail. We show the feasibility of
static analysis by introducing a data-dependency analysis
algorithm (Sec. 4). We discuss important issues (Sec. 5)
before we analyze evaluation results (Sec. 6). Finally, we
compare our approach to existing simulation languages and
analysis approaches (Sec. 7) before our conclusion (Sec. 8).



2. PROBLEM ANALYSIS
Static code analysis has been commonly used to inves-

tigate different properties of computer programs in many
languages [2]. However, certain properties of the languages
render the analysis easier, harder, or infeasible. The absence
of side effects in functional programs, e. g., enables trivial
detection of function in- and output. On the other hand,
pointer analysis is still considered unsolved [2, 10], hence
reliably tracking data access in pointer-based languages like
C++ has to be considered infeasible. Though smart pointers
and unique pointers mitigate the problems, this still holds
for recent C++ standards, especially because raw pointers
are still available and necessary. Since most wireless simu-
lation models are written in structured languages and many
model developers are not familiar with functional program-
ming, limiting data-dependency based parallel simulation to
functional languages is not an option. Instead, we investi-
gate the applicability on structured programming languages.

The infeasibility of pointer analysis excludes languages
which heavily rely on pointers. Global variables are con-
sidered harmful in parallel programs: in shared-memory
systems where they might induce race conditions and in
distributed systems, whose entities cannot share the state
of a global variable. Since today’s wide-spread languages
do not adhere to these constraints, we decided to modify a
well-established language to support data-dependency anal-
ysis. Many model developers are familiar with C++ as the
most commonly used network simulators OMNeT++ and
ns-3 base on C++. However, to support data-dependency
analysis, global variables and pointer support have to be
removed and a proper alternative for pointers needs to be
provided to avoid rendering the language useless.

Data-dependency analysis has been extensively studied in
the compiler construction domain to enable automatic paral-
lelization of arbitrary programs. However, these approaches
do not incorporate the notion of simulation time and discrete
events into their analysis, hence they would not exploit the
full potential in this scope. Instead, we develop an approach
that applies similar analyses, but as well accounts for the pe-
culiarities of discrete event simulation.

3. THE PSimLa LANGUAGE
PSimLa is designed according to the goals elaborated [18].

It is a Turing complete language with particular emphasize
on static analyzability for data-dependencies. Similarity and
compatibility to C++ ensures that existing models can be
smoothly translated and the learning curve is kept as flat as
possible. In the following, we describe the compilation pro-
cess and introduce the building blocks of PSimLa in detail.

3.1 Compilation Process
PSimLa is based on C++ and the simulation elements

of OMNeT++. Code-to-code translation to C++ enables
flexible linking of PSimLa modules with both C++ code
and C++-compatible libraries. The compilation runs in 5
steps (cf. Fig. 1). The developer (1) creates code in PSimLa
and/or C++ and the configuration in the OMNeT++ NED-,
MSG-, and INI-format. Our parser checks the syntax of the
PSimLa code and creates an internal representation simi-
lar to an abstract syntax tree (2). The static code analysis
(see Sec. 4 for more details) can then use this representa-
tion to identify event dependencies and independencies (3).
The abstract syntax tree is then serialized into C++ code
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Figure 1: The PSimLa compilation process. The
developer implements the model (1), triggers trans-
lation of PSimLa code into C++ code (2, 3), triggers
compilation of C++ code (4), and executes the sim-
ulation using OMNeT++ (5).

effectively resulting in a code-to-code translation of PSimLa
into C++. Additionally, the analysis yields C++ code rep-
resenting the gained dependency information that can be
used during runtime for parallelization. If it detects event
dependencies, which the developer might be able to resolve
manually, it provides hints to the modeler (3a) that can be
used to improve upon the model in a next iteration. The
final result of step 3 together with the C++ code and con-
figuration specification of the developer poses a simulation
model complying with the OMNeT++ specification. This
model can be compiled (4) and executed by OMNeT++ (5).
A modified version of OMNeT++ (see Sec. 4.6) uses the re-
sults of the static analysis to improve the parallelization.

3.2 PSimLa Building Blocks
In [18], we describe the basic building blocks of PSimLa,

which correspond to those of OMNeT++. A PSimLa Mod-
ule, corresponding to an OMNeT++ Simple Module, can
be specified either in PSimLa or – to maintain compatibility
with existing code – in C++. Modules can be connected into
Compound Modules or a Network by OMNeT++ NED-files.
Data can only be exchanged between Modules by Messages
(OMNeT++ MSG-format). Modelers cannot create global
variables. Classes can be used to define complex data types
and are specified in PSimLa or C++. In the following, we
discuss each building block in more detail.

Modules: A Module is defined similar to a C++ class,
but with the keyword module. In the body, developers in-
clude both behavior implementation and parameter and gate
specification. The syntax of parameter and gate specifica-
tion is adopted from OMNeT++. Like a Simple Module in
OMNeT++ a PSimLa Module needs to implement an event
handler and can implement initialization and teardown func-
tions. From the Module code, the compiler generates an
OMNeT++ NED-file as well as C++ code and header files.

Data Types: Like C++, we provide primitive data types
and enumerations, and developers can create classes. We
also provide container formats from the C++ standard li-
brary as language built-ins to increase analyzability due to
the possibility to exploit the container semantics in the anal-
ysis algorithm. We include the containers vector (dynami-
cally resized array) and queue (FIFO queue) with the option
to include more into the compiler implementation.

Memory Management: To increase the level of analyz-
ability, the memory management is handled by the com-
piler rather than the developer. Hence, the developer is
only provided references to objects. Like Java, we hand ob-
ject references to functions (call-by-reference). To monitor
an object’s life cycle, we use reference counting and delete



objects as soon as the reference count reaches zero, i. e., no
more references to the object persist. Additionally, only one
reference must exist to data items included in a message to
ensure that no two independent events can access the same
data item concurrently. To avoid that reference loops pre-
vent correct cleanup, we adopt the weak pointer concept.

Our prototype implementation of the PSimLa compiler
chooses the storage location (dynamic or automatic memory,
usually implemented as heap and stack) similar to Java. Lo-
cal variables of primitive data types are placed in automatic
memory, objects and arrays are dynamically allocated. This
decreases performance compared to optimized C++ code
(see Sec. 6.1), hence future compiler implementations should
improve the algorithm to select the best location. However,
this does not affect the question how well data-dependency
analysis is suited for speeding up parallel simulation.

Libraries: Due to our compatibility with C++, existing
libraries with C++ bindings (like the C++ standard library)
can be linked with PSimLa models. Nevertheless, PSimLa
built-in data types (like FIFO queues) should be preferred
over external libraries to increase the code analyzability.

Code Elements: The syntax of PSimLa functions is basi-
cally similar to the C++ syntax, except that – as discussed
above – the memory is not managed by the user, hence the
user cannot use pointers. We provide the well-known in-

clude directive to include C++ header files to bind existing
C++ code. Inside any PSimLa function, inline C++ code
blocks can be created. To ease model development, we pro-
vide language built-ins for simulation related operations like
message transmission or random number generation.

4. ANALYSIS TECHNIQUES
In this section we show the feasibility of static code anal-

ysis of PSimLa by discussing our data-dependency analysis
approach in detail. We sketched the idea shortly in [18].

To this end, our analysis approach targets three goals:
Maximize Recognition Rate: Our primary goal is to suc-

cessfully detect as many independent events as possible since
this increases the parallelization gain.

Minimize Runtime Overhead: While our static code anal-
ysis determines the event dependencies at compile time, the
gained knowledge has to be applied during runtime. To this
end, it is necessary to determine whether it is safe to execute
events in parallel by querying the dependency information.
While we cannot completely avoid runtime overhead, we aim
at preparing as much as possible at compile time.

Maintain Correctness: The analysis must not recognize
two dependent events as independent to avoid false simula-
tion results. Our approach must compute the same results
as sequential execution of the code. However, we allow a
relaxation to this constraint that can be activated or deacti-
vated by the user: If two events draw a random number from
the same Random Number Generator (RNG) stream, there
is in fact a dependence between the two events. By execut-
ing those events in reverse order the random numbers pro-
vided to the events are swapped. Nevertheless, both num-
bers stem from the same distribution. Hence, if the model
only expects a random number following a certain distribu-
tion (rather than the next random number from a certain
RNG stream), the events could be executed out-of-order (or
in parallel if the RNG source is thread-safe or locked). If we
waive the guarantee of assigning the same random number
to the same event in every execution, we still obtain valid

results, but lose repeatability. Consequently, this relaxation
switch allows the user to trade repeatability for performance.

In the following we first introduce the analysis approach
in general before we discuss the details of each part.

4.1 General Approach
To elaborate promising analysis approaches, we post a

simple formalism for parallel simulation. The focus hereby
is to determine whether two events are independent or not.
We assume that the simulation can be decomposed into a
set of partitions which communicate with each other only
by message passing. These partitions comply with LPs in
distributed simulations. In PSimLa, every Module can be a
partition since Modules can only communicate via messages.

We define an event as a 3-tuple, such that the set of all
possible events is E := (T×P×D). T is the time domain, P
the set of partitions, and elements in D denote the data ac-
cess pattern of an event, i. e., which data element is accessed
how. The exact definition of D is provided in Sec. 4.3. Let
s ⊆ (E×E) be the scheduling relation with (e1, e2) ∈ s iff e2
is created by e1. The reflexive, transitive closure s∗ yields all
directly and transitively created events and the event itself.

To formalize independence, we define the operator ⊥ ⊆
(E×E) with e1⊥e2 denoting that e1 and e2 are independent.

In traditional Parallel Discrete Event Simulation (PDES)
the approaches differ in the way they predict whether two
events on different partitions eventually induce a depen-
dency. However, for two events on the same partition they
all check the local causality constraint [9], i. e., those events
are always assumed to depend on each other. Hence, for two
events e1 = (t1, p1, d1) ∈ E, e2 = (t2, p2, d2) ∈ E traditional
PDES assumes: p1 = p2 ⇒ e1 6⊥ e2.

However, while this assumption is safe, it is not true in
general. In fact, the events can still be independent if the
effects of e1 do not influence e2 and vice versa. We introduce
the operator � ⊆ (D × E) with d � e indicating that the
behavior of e is influenced by a write operation in d.

We can then derive the following additional method to de-
termine independence of e1 and e2. Without loss of general-
ity we assume t1 ≤ t2. If first, e2 is neither affected by e1 nor
any event created by e1, and second, none of those events (e1
and the events created by e1) is influenced by e2, then e1 and
e2 are in fact independent: (∀(e1, e′) = (e1, (t

′, , d′)) ∈ s∗ :
t′ ≤ t2 ∧ d′ 6� e2 ∧ d2 6� e′)⇒ e1⊥e2.

Hence, to determine the independence of two events it is
crucial to analyze not only time and location of each event,
but also its scheduling behavior and data access pattern.

To this end, our approach is to analyze the event handler
code in order to categorize event types and identify conflicts
with other types based on the data accessed. In the follow-
ing, we discuss the five steps of our analysis in detail.

4.2 Identifying Event Types
In a first step, at compile time we identify different types

of events in the provided simulation model. This allows us to
specify dependency rules on an event type basis. At runtime
we then only need to determine the type of an event in order
to be able to investigate the dependency rules.

The common programming model in OMNeT++ is to pro-
vide a single message handler per module and branch upon
different attributes of the message delivered to that handler.
For example, an event handler at a router might branch upon
the message kind (routing message, data packet) and one or
more of the branches might branch again upon the receiving



1 void handleMessage ( Message msg) {
2 i f (msg . getKind ()==1)
3 myInt=0;
4 i f (msg . getKind ()==2)
5 myInt=myFn( myInt ) ;
6 sendDelayed (msg , 0 , ”myOutputGate ” ) ;
7 }

Figure 2: Event handler of example PSimLa Module
MyMod. Excerpt from our example introduced in [18].

interface (i. e., distinguish packets from the upper layer from
packets from the lower layer).

Our event type classification algorithm starts with a single
event type per module. We then analyze the event handler
code of each module for any branch solely based on a mes-
sage attribute. The first conditional encountered results in
splitting the event type into two different types, one with
the condition being fulfilled and one for the opposite. Sim-
ilarly, a switch statement results in multiple event types,
one for each case of the switch statement. For each branch
we repeat this procedure possibly splitting the correspond-
ing event type again until no more message attribute based
branches are detected. Hence, the branches form a tree and
each leaf of that tree corresponds to exactly one event type.

We extend our formalism by the notion of event types.
We define Θ as the set of all detected event types and the
function τ : E → Θ assigning each event instance its type.

There are three types identified for each instance of the
module MyMod in the example in Fig. 2: One for message
kind 1, one for message kind 2, and one for message kind
being neither 1 nor 2. Note that at compile time we do
not know how many instances will be created of each mod-
ule. Hence, the set Θ is rather a theoretic set that is not
exactly known to the analysis algorithm. Instead the anal-
ysis only stores the criteria to distinguish event types. For
the example, we assume that there is only one instance of
MyMod, called mymod, and the output of that instance is
connected to its input. Hence, we only have three event
types in the simulation. In the following, we refer to those
types as ϑmymod1 to ϑmymod3, respectively.

4.3 Tracking Data Access
For every event type, we first determine which code blocks

the program flow passes if an event of this type is executed.
This includes any code outside of conditionals, as well as ei-
ther of the two (potentially empty) blocks of a conditional.
For conditionals not branching upon message attributes and
therefore not resulting in different event types, we consider
both blocks, i. e., we assume the worst case here. This is nec-
essary since not every condition can be evaluated at compile
time. Hence, we apply a conservative simplification here.
Similarly, we assume that loops are always executed at least
once even though the loop termination condition might al-
ready be false before the loop is entered for the first time.

In the example, ϑmymod1 passes lines 3 and 6, ϑmymod2

passes lines 5 and 6, and ϑmymod3 passes line 6 only.
For every code block passed by the program flow of each

event type, we determine which data items are accessed.
Since PSimLa does not provide global variables, data items
can only be accessed by two means: First, they can be an
element of the current module or (directly or indirectly) re-
ferred to by a reference in the module. Second, data items
can be an element of the message. Local variables cannot
cause conflicts with concurrently running events since they

cannot be accessed by the concurrent event. Since messages
must not reference to data items that are still referenced
from somewhere else, all items of a message can be treated
as local variables. Hence, we only need to investigate items
accessed via module members. Additionally, if a reference
is copied into a local variable, we have to treat this local
variable like the original reference.

For each event type ϑ ∈ Θ, we can now create a list Lϑ
of accessed data items by parsing the code line by line and
performing the following actions for certain statements.
• On a function call we retrieve the code of the called

function and parse that code as well.
• On creating a local reference variable Rl, we create an

initially empty list π(Rl) of possible locations this vari-
able might point to. Although during program execu-
tion a reference can only point to a single location at
any point in time, we need a list of potential locations
since we cannot evaluate every conditional, hence there
might be more than one option.
• On copying a reference Rm referred to by a module

variable to a local reference Rl, we add Rm to π(Rl).
• On copying a local reference R1 to another local refer-

ence R2 we append π(R1) to π(R2).
• If a local variable of primitive data type is accessed, we

do nothing since this can never cause a conflict.
• If an object referenced by a local reference variable Rl is

accessed, we append π(Rl) to Lϑ. Note that references
are also special cases of objects. Reading or modifying
a member variable of a module is as well a relevant
operation if this member variable is a reference.
• If an object referenced by the module is accessed, we

append this object to Lϑ.

During this procedure we do not only track which objects
are accessed, but also how they are accessed. To this end, we
distinguish between references, primitive data types, arrays,
and certain special data items for language built-ins.

For references we track the following two operations:
Dereferencing: If a reference is dereferenced in order to

find an object, the reference itself is read.
Update: If a reference is modified, this poses a write oper-

ation on the reference itself.
For primitive data items, we distinguish between:

Read: The variable value is read, but not modified.
Write: The value is modified in any way but the following.
Increment: The value is incremented or decremented by

one of the operators ++, --, +=, or -=. Such accesses are
modifications, but can be re-ordered without changing
the final result if performed in a thread-safe manner.

Since it is not generally possible to determine the index
used to access an element of an array (as well as similar
index-accessible containers) during compile time, we do not
treat each item of an array separately, but treat the whole
array as a single item. Hence, we distinguish between read
and write operations on the array.

Our analysis recognizes two language built-ins that are
handled as special data items: RNGs and queues. This list
can be extended by adding further objects as language built-
ins to PSimLa and implementing the corresponding analy-
sis passes according to the semantics of these objects. For
RNGs there is only a single operation: drawing a random
number. This is treated according to the relaxation switch
discussed in the analysis goals. With strict RNG ordering,
RNG accesses need to be treated like write operations. With



relaxed ordering, the OMNeT++ RNGs are locked and ac-
cesses are handled like read-only operations.

For queues, we distinguish between:
Enqueue: Appending at the end of the queue.
Dequeue: Retrieving and removing the first item.
Query Size: Determine the size of the queue. This also

includes special cases like emptiness checks (size=0).
Now, for each event type we maintain a list of objects

accessed and for each access the operation performed.
We now specify the data access pattern set D previously

introduced in Sec. 4.1 as D := P(∆×A) with ∆ being the set
of all data items in the simulation and A the set of all access
operations discussed above. While d is the actual data access
pattern of e = ( , , d) ∈ E, we introduce d′ϑ as a conservative
over-estimation of data accesses by events of type ϑ. This re-
flects the inability of exactly predicting every data access in
a Turing-complete programming language at compile time.
For every event type ϑ our analysis then determines a set
d′ϑ such that ∀e = ( , , d) ∈ E : (τ(e) = ϑ⇒ d′ϑ ⊇ d).

For convenience, we define r
∧

= “read primitive data type”
and w

∧

= “write primitive data type”. For the provided ex-
ample our analysis determines d′ϑmymod1

:= {(myInt, w)},
d′ϑmymod2

:= {(myInt, r), (myInt, w), (myParam, r)}, and for

the third event type d′ϑmymod3
:= ∅.

4.4 Determining Scheduling Relations
For the independence criterion derived in Sec. 4.1 we need

to additionally determine the scheduling relation s. Like d,
we cannot determine s exactly due to the inability to analyze
every property of any Turing-computable function. Instead,
we define the relation s′ ⊆ (Θ × Θ) with the requirement
(e1, e2) ∈ s ⇒ (τ(e1), τ(e2)) ∈ s′. However, the opposite
does not necessarily need to be true. This means, s′ is a
conservative over-estimation of s on event type basis.

In order to derive the scheduling relations, we follow a
similar procedure as to derive the data access patterns (see
Sec. 4.3). For every event type, we search the reachable code
blocks for calls to scheduling built-ins of PSimLa. On occu-
rance of such a built-in, we need to determine the type of
the newly created event. Since this type depends on the at-
tributes of the message (see Sec. 4.2), we need to investigate
which attributes might be set. This can be an easy task
if the attributes are set closely to the scheduling without
conditionals that cannot be evaluated during compile time.
However, it is not always possible to exactly determine the
value of a message property at compile time in a Turing-
complete language. Hence, we allow wildcards for message
properties. If the message handler of the receiving module
branches on a property that contains a wildcard, we have to
consider both event types as potential options.

In our simple example, all three event types create a new
event by the code in line 6. Since the incoming message
is sent unmodified, the type of the newly created event is
identical to the type of the incoming event. Hence, s′ =
{(ϑmymod1, ϑmymod1), (ϑmymod2, ϑmymod2), (ϑmymod3, ϑmymod3)}.

4.5 Inferring Event Dependencies
This step combines the information gathered during the

previous steps into a set of dependency information. We
defined the relation � for this purpose in Sec. 4.1. Again,
we define a conservative over-estimation on event type basis
�′⊆ (Θ×Θ), such that for every two events e1 = (t1, p1, d1),

e2 = (t2, p2, d2) ∈ E with t1 ≤ t2 the following condition
must be fulfilled: d1 � e2 ⇒ τ(e1) �′ τ(e2).

Additionally, we define the relation �A ⊆ (A × A), such
that a1 �A a2 denotes that if in sequential execution the
operation a1 is executed prior to a2 on the same data item,
those operations must not be re-ordered. In particular, this
relation holds the following items:
References: If the data item is a reference and either or

both of the operations are update operations, the op-
erations must not be re-ordered. Hence, a1 �A a2 if
either a1 or a2 is a reference update operation.

Primitive Data Types: If either or both of the operations
are write operations, they depend on each other. If
both operations are increment operations, we rewrite
these accesses by using atomic operations such that
they can still be executed independently of each other.
However, a read operation and an increment operation
yield a dependency since the result of the read opera-
tion is changed by the incrementation.

Arrays: If either or both of the operations are write oper-
ations, they depend on each other.

RNGs: As discussed in Sec. 3 the user can trade repeata-
bility for performance by allowing re-ordering of RNG
calls. Hence, depending on the user’s choice, for a

∧

=
“draw random number” a �A a or a 6�A a.

Queues: In general, only read-only operations on a queue
can be parallelized. However, we apply special han-
dling of queues to increase the level of parallelism:
To every element enqueued, we assign the timestamp
of the event that performed the enqueuing operation.
This allows us to correct an out-of-order enqueuing op-
eration, by not enqueuing the element to the queue’s
end, but shifting it to a position, such that the queue
elements are ordered according to their timestamps.
A size query then still depends on a previous enqueu-
ing operation: If the size is queried by an event e2 =
(5 s, , ), but e2 is executed prior to e1 = (4 s, , ) and
e1 potentially includes an enqueuing operation, the size
query cannot determine how many elements the queue
will contain at t = 5 s since this depends on the be-
havior of e1. However, an enqueuing operation does
not depend on a previous size query: An enqueuing
operation by e2 can be executed before a size query
by e1, and e1 can still determine the size at t = 4 s by
ignoring any element in the queue with a timestamp
greater than 4 s.
Nevertheless, a dequeuing operation must not be re-
ordered with neither operation since by removing an
element from the queue we lose the necessary informa-
tion. This could only be solved by keeping information
of deleted elements. Since this causes additional over-
head, it is not part of our analysis approach.

We use this relation �A and the sets d′ϑ determined in
Sec. 4.3 to determine �′. A pair of event types is in this
relation if we find a conflicting data access: ∃α1 = (δ1, a1) ∈
d′ϑ1

, α2 = (δ2, a2) ∈ d′ϑ2
such that δ1 = δ2 and a1 �A a2,

then ϑ1 �′ ϑ2. To reduce the runtime overhead, we store
for every event type a list Cϑ with “conflicting” event types,
i. e., ϑ′ ∈ Cϑ ⇔ ϑ′ �′ ϑ.

For the provided example, we determine the following
sets: Cϑmymod1 = {ϑmymod1, ϑmymod2} for the first event type,
Cϑmymod2 = {ϑmymod1, ϑmymod2} for the second type, and for
the third type Cϑmymod3 = ∅.



4.6 Runtime Component
The static code analysis provides the event dependencies

in a representation that enables efficient dependency lookups
during runtime. We integrate a runtime component into
Horizon [13, 14] which exploits this information.

When the conservative synchronization algorithm of Hori-
zon prevents offloading the next event eN for parallelization,
we hand eN to the runtime component. This first determines
the type τ(eN) and derives the dependency list Cτ(eN). We
apply a shortcut for the case that this list is empty. In this
situation, eN does not depend on any other event in the
simulation, hence we can offload it immediately for parallel
execution without any further investigation.

However, if Cτ(eN) is not empty, we need to determine
whether the type of one of the events that are currently
executed by a worker thread occurs in Cτ(eN). We name
the set of the currently executed events O ⊆ E. If ∃e ∈ O :
τ(e) ∈ Cτ(eN), then eN depends on e and cannot be executed
in parallel with e. Hence, we need to wait for e to complete,
before we can check for independence again.

If such an e does not exist, we need to investigate the
transitive closure of the scheduling relation of every event in
O. To this end, let s′+ be the transitive closure of s′. During
runtime, we establish the set s′O := {ϑ|s′+(τ(e), ϑ),e ∈ O}
and search for a ϑ′ ∈ s′O. If we find such an element, eN
cannot safely be executed immediately. If we determine that
s′O ∩ Cτ(eN) = ∅, then we can safely offload eN immediately
to a worker thread for parallel execution.

5. DISCUSSION
We discuss aspects regarding the investment required by

modelers to benefit from our solution as well as the underly-
ing assumptions and general applicability of our approach.

5.1 Manual Effort
With the introduction of a new simulation language we

pose a rather high entry barrier for modelers to adapt our
solution. To lower this barrier, we decided to 1. keep the
syntax as close to C++ as possible to reduce the learning
effort, and 2. maintain compatibility with C++-based OM-
NeT++ models to allow partial translations.

Hence, for existing models we recommend a smooth transi-
tion by translating one module after the other. By translat-
ing the modules which pose the most severe parallelization
bottlenecks, modelers can already expect some speedup from
our analysis. Further translation can then be performed at
a later point in time or omitted if the gain already suffices.

New simulation models can be implemented from scratch
in PSimLa. The similarity to C++ reduces the effort to
understand the concepts. Furthermore, existing libraries can
still be used within PSimLa models.

We argue that while we cannot completely eliminate the
entry barrier, we kept it as low as possible.

5.2 General Applicability
Our analysis bases on two assumptions: 1. Each data item

is only accessible from a single module at a time. 2. Global
knowledge about the current simulation state exists.

An assumption similar to the first one has to be posed
for every parallel simulation approach since multiple pro-
cessing units cannot access the same data item at the same
time. While we decided to scope this on a module level, our
approaches can be easily adapted to fit other scopes as well.
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Figure 3: Overhead of the different configurations
measured by the Null-Model. Less is better.

However, the second assumption limits applicability of our
analysis approach to distributed simulation. An empty con-
dition list still allows immediate execution of any event of
such type in distributed simulation as the state of a remote
LP does not matter. If, however, the event interferes with
other events which might arrive from a remote LP later, the
runtime component cannot work in a distributed simulation
like described above. Hence, the runtime component has to
be adapted by applying different means to determine which
event types might arrive at the LP. This needs to be investi-
gated in more detail in future research efforts. Nevertheless,
we argue that the design of PSimLa – aiming at a high level
of analyzability – as well supports analysis approaches better
suited for distributed simulation.

Alternatively, by simply ignoring the state of remote LPs
events can be speculatively executed on the local LP. The
data-dependency analysis then reduces the number of roll-
backs by determining if an event arriving out-of-order does
actually not violate the correctness of the simulation.

6. EVALUATION
We evaluate our approaches in terms of both overhead

and speedup. Additionally, we conduct two case studies
to quantify the impact on existing simulation models. All
measurements are conducted on a compute server with two
6-core Opteron CPUs and a total of 32 GB of RAM running
Ubuntu 12.04. We repeat every experiment at least 5 times,
the plots depict the average and the 95 % confidence interval
for each configuration. Note, that some confidence intervals
are particularly small, thus hard to recognize.

6.1 Overhead Evaluation
There are two sources of overhead in our approaches: First,

suboptimal translation of PSimLa into C++ code can de-
crease performance. Second, the runtime component of the
analysis tool introduces overhead to yield decisions.

To quantify this overhead, we use three different models:
First, we verify that the overhead is negligible if we use a
“Null-Model” [14], i. e., a model that only handles events
without actually performing computations. In this case, the
only overhead stems from the fact that the OMNeT++ mes-
sage pointer that is handled to the event handler, needs to
be cast into a smart pointer to activate reference counting.
Second, we estimate the code-translation overhead by an-
alyzing the overhead of the most severe data type in our
prototype implementation of the PSimLa compiler: multi-
dimensional arrays. Third, we measure the decision over-
head of the runtime component by feeding it with decision
problems of varying levels of complexity.
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Null-Model.
The Null-Model [14] only evaluates overhead by not per-

forming any computations. It consists of 110 modules with
an event handler only repetitively rescheduling an event.

We implemented this model in C++ as well as PSimLa
to compare the overhead of the two languages. We ran the
model 1. sequentially, 2. with the parallelization architecture
Horizon [13, 14], and 3. with additional activation of our
analysis approaches. The third option can only be applied
on the PSimLa model. Fig. 3 depicts the runtimes of these
5 different configurations. Comparing the sequential execu-
tions, we observe a slight but negligible additional overhead
of PSimLa caused by pointer casts and reference counting.
Activating the parallelization architecture Horizon signifi-
cantly raises the overhead as discussed in [14]. In this case
the overhead introduced by the translation of PSimLa is
no longer observable. Activating the analysis does not in-
crease the overhead either. We conclude that the overhead of
PSimLa and our analysis is negligible if the event handlers of
the model are simple. Any additional overhead stems from
suboptimal translation of event handler code and compli-
cated offloading decisions as discussed in the following.

Code-Translation Overhead.
As discussed in Sec. 3.2, our prototype implementation

does not automatically choose the best storage location for
arrays, but always allocates them dynamically. While C++
developers can decide to place an array in automatic mem-
ory with virtually no allocation time, our PSimLa compiler
allocates dynamic memory even if the array is only required
locally. Since this is the primary source for code translation
overhead, we decided to quantify this overhead as a worst-
case example. We investigated primitive data types as well
as 1-, 2-, and 3-dimensional arrays. We measured perfor-
mance of allocation as well as element access by performing
only such an operation in a loop.

The results are displayed in Fig. 4. While allocation in
automatic memory consumes virtually no time, dynamic al-
location in PSimLa is considerable and grows with the num-
ber of dimensions. This is not a surprising result and con-

firms that future efforts need to investigate better placement
strategies. However, access to array elements only poses a
small amount of overhead caused by better cache-locality
in automatic memory. We also observe that this overhead
super-linearly grows with the number of dimensions.

We as well considered a real world fading model [20] heav-
ily using multi-dimensional arrays. For this example, we ob-
serve a factor 2 slowdown in the fading computation function
due to allocation and access overhead. We hence recommend
to use the opportunity of PSimLa to implement parts of the
model in C++ for such kind of code and only realize the
remaining parts in PSimLa. Nevertheless, the PSimLa com-
piler needs to deal with this issue in future versions.

Decision Overhead.
When the runtime component has to decide whether to

offload the next event immediately for parallel execution, it
determines the event type and then determines the schedul-
ing relations only if the next event generally depends on
other events. Hence, for the overhead evaluation we inves-
tigate two questions: 1. How long does it take to identify
the event type ϑ, determine that there are no dependen-
cies (Cϑ = ∅), and return the result? 2. How long does it
take to yield a decision if the scheduling relations need to
be investigated (since Cϑ 6= ∅)?

For the first question, we measure the decision time for
events whose event type is classified by either an integer or
a string (14 characters on average). Hence, determining the
event type is either an integer-based branch or a string com-
parison. The results are depicted in Fig. 5(a). The integer-
based type classification and decision yielding takes only
a few processor cycles (4 ns), the string comparison takes
about 100 ns. Hence, on event types with no data-depen-
dencies the decision is yielded highly efficiently, especially if
the classification does not involve string comparisons.

If the event has dependencies on other events, we need to
determine the scheduling relation for the currently offloaded
events s′O and search it for conflicts. We therefore investi-
gate the overhead for different sizes of s′O (see Fig. 5(b)). For
|s′O| = 1 we need 60 ns to determine the event types, con-
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Figure 6: Runtime of events with basic operations and a complexity loop. Less is better.

struct s′O, and yield the decision. With increasing size of s′O
the decision overhead grows almost linearly up to 15µs for
1024 event types. Hence, the runtime component is more
efficient if the scheduling relations are smaller. However,
since the number of different event types in a simulation is
typically rather low, we expect also the scheduling relation
set to be rather small in typical simulations.

6.2 Speedup Evaluation
We evaluate the gain of our analysis approaches in simple

cases. We only use one of the basic operations that our anal-
ysis should detect (see Sec. 4.3). We create events that only
use this basic operation followed by a loop simulating differ-
ent workloads of the event. Due to the overhead introduced
by the parallelization engine the loop needs to maintain a
certain complexity until parallelization can pay off. In our
experiments, we vary the complexity between 1µs and 100µs
and run an additional experiment without the loop. We in-
vestigate four operations: reading of a primitive data type,
writing to a primitive data type, incrementing a primitive
data type, enqueuing to a queue.

Fig. 6 depicts the results. Observing the results with no
or low complexity again shows the overhead introduced by
the parallelization engine Horizon (which cannot run events
in parallel since the timestamps do not yield independent
events). Our analysis already improves upon this situa-
tion by yielding positive parallelization decisions which al-
low parallelizing the overhead. For a complexity of 10µs
we observe that the parallelization gains significant boosts
for read, increment, and enqueuing. We also observe that
there is no gain for write operations. This means that the
analysis correctly identifies conflicting write operations and
prevents them from being executed in parallel. Finally, we
observe close-to-linear speedup for high event complexities
when the analysis can identify independent events. Addi-
tionally, we observe that there is no severe impact of neither
the increased complexity by using atomic operations for in-
crementations nor the sorting of the queue.

From these results we derive that the benefit in general
not only depends on the simulation model but also on the
model implementation. If an event handler issues a write to

a variable used by another event, the two events cannot be
parallelized. In a worst case scenario (i. e., the affected event
types yield by far the most complex events in the model),
this eliminates the benefit of our approach. However, our
analysis tool provides information on the determined event
dependencies. If the gained speedup does not fulfill the ex-
pectations, this information can be used to track down and
eliminate the bottleneck. For the implementation of wire-
less models this means that complex channel computations
should be separated from modifying the channel state to
avoid introducing unnecessary dependencies.

6.3 Case Studies
We conduct two case studies to evaluate the practical

impact of our approaches in wireless network simulation,
namely a Wireless Mesh Network (WMN) and an LTE model.
We implemented both models completely in C++ as well as
PSimLa. We also exploit the opportunity to combine both
languages in order to mitigate the drawbacks of poor trans-
lation in certain cases (see Sec. 3.1).

We execute all three implementations (PSimLa, C++,
and combined) 1. sequentially and 2. parallelized by Horizon.
Additionally, we execute the two implementations contain-
ing PSimLa code parallelized by exploiting the data-depen-
dency knowledge of the code analysis. This yields eight con-
figurations. We measure the speedup of each configuration
compared with sequential execution of the C++ model, i. e.,
the speedup of this case is by definition 1.

For both case studies we verified that in all configurations
the simulation results are identical to the results of a se-
quential execution. We discuss the results in the following.

Wireless Mesh Network.
The first model simulates a 57 node mesh network where

data is transmitted from node to node over a wireless chan-
nel simulated with an accurate OFDM fading model [20].

The results are depicted in Fig. 7(a). As the overhead
evaluation of the OFDM fading code shows (cf. Fig. 4(c)),
the fading code is poorly translated from PSimLa to C++ by
our prototype compiler. For this reason, sequential execu-
tion of a full implementation in PSimLa yields a considerable
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Figure 7: Case studies: Speedup over sequential ex-
ecution of the C++ model. More is better.

slowdown over C++ code. Hence, we decided to implement
the fading in C++, which yields performance similar to the
C++ model if executed sequentially or by Horizon. By addi-
tionally exploiting the analysis results the model execution
achieves close-to-linear speedup while the C++ model can
only be speeded up by a factor of 3.2.

LTE Simulation Model.
Our second case study simulates a 48 cell LTE network

with an abstract LTE model as described in [17]. Initially,
this model creates separate events if multiple data pack-
ets are transmitted in a single Time to Transmit Interval
(TTI). Since the parallelizability of these events is not en-
countered by traditional techniques, this configuration par-
allelizes poorly (cf. Fig. 7(b)). However, the data-depen-
dency analysis determines the actual independence of those
events and achieves close-to-linear speedup.

The results of our code analysis disclosed this bottleneck
in the C++ model. We fixed the bottleneck in the C++
model by bundling the events together and achieved a com-
parable performance. This shows that the analysis has the
potential to eliminate performance bottlenecks automati-
cally and avoid the need for manual model adaptations.

7. RELATED WORK
We compare our work with related efforts in the area

of DSLs designed for the simulation context as well as ap-
proaches to static code analysis of simulation code.

7.1 Simulation Languages
DSLs for simulation have a long tradition. Simula [6] and

GPSS [16] have been developed in the 60s and 70s respec-
tively to incorporate the special requirements of simulation
in the language design. However, these languages were not
designed for PDES. Apostle [22] and Parsec [1] are the most
prominent examples of DSLs designed for parallel simula-
tion. Though these languages have been tailored to ease the
development of models that can efficiently be executed in
parallel, the underlying parallelization concepts only rely on
event timestamps in order to derive event dependencies. The
languages are not designed with a focus on analyzability.

A more modern approach in this field is Pose [21]. Though
Pose is rather a simulation framework than a simulation lan-
guage, it bases on the DSL Charm++ [11], which is designed
for parallel programming in general. The aim of Pose is to
make parallelization transparent to the model developer by
applying the virtualization scheme of Charm++ providing
virtual objects. The framework can map those virtual ob-
jects to processors, such that model developers no longer
need to cope with efficient partitioning. However, Charm++
is designed to allow developers to create efficient parallel pro-
grams, but does not put particular emphasis on analyzability
to automatically detect independencies.

Recent efforts include ErlangTW [19], a simulation frame-
work based on the functional programming language Erlang.
We already discussed the pros and cons of functional pro-
gramming languages in Sec. 2. Although we expect static
analysis to be easier for functional programs, to the best of
our knowledge no approach exists analyzing data-dependen-
cies in ErlangTW. We believe that our analysis approach
could be as well applied on ErlangTW with less effort for
data access tracking due to the absence of side effects. In
this paper, however, we demonstrate the feasibility of data-
dependency analysis even for a structured language.

Further modern DSLs are SESSL [7] and DEVS-Ruby [8].
While SESSL focuses on a language to describe simulation
experiments, DEVS-Ruby focuses on a specification for mod-
els following the DEVS formalism [23]. Neither of those lan-
guages incorporates the ability to analyze model code for
data-dependencies into the language design. We conclude
that a language that actually incorporates this feature can
increase the parallelism in simulation models.

7.2 Static Code Analysis
Chen et al. [4, 5] propose a similar approach to analyze

data-dependencies for parallel simulation. To this end, they
focus on Electronic System Level (ESL) design. As opposed
to our approach, the authors did not create a dedicated lan-
guage, but base their analysis on the language SpecC, com-
monly used in ESL design. Like C, SpecC supports pointers
to address data items in dynamic memory. Similar to our
approach, the analysis of Chen et al. checks the model code
for conflicts between data accesses. However, since the ap-
proach is unable to reliably detect conflicts when data is
accessed via a pointer, the authors decided to terminate the
analysis on any occurance of a pointer access, and handle the
pointer access like a conflicting data access. Hence, only if all
items accessed by an event handler are either objects in au-
tomatic memory or members of the local module, this analy-
sis can improve performance. While this might be a feasible
limitation in the ESL domain, we argue that for a wide area
of simulation models, especially wireless networks, this is
not a suitable simplification. In order to investigate whether
data-dependency analysis is generally feasible for simulation
models implemented in a structured programming language,
it is necessary to support the basic features of the selected
language. In particular, this includes access to data items
which are not within the scope of the function, but can only
be accessed via a reference or pointer. To circumvent the
unsolved problem of pointer analysis [2, 10] without facing
this limitation, we decided to create the pointer-less lan-
guage PSimLa and base our analysis on PSimLa code. This
shows the feasibility of detecting data-dependencies even if
references are used within the analyzed code.



Further approaches to static code analysis in the area of
simulation focus on performance prediction or model testing
rather than automatic performance improvements. Cavitt
et al. [3] and Kappler et al. [12] use static code analysis
to investigate the model and derive performance prediction
models. Overstreet [15] showed the usability of static code
analysis to verify correctness of simulation models.

We conclude that, while there is an approach using static
code analysis to performance improvement of ESL models,
there is no general approach to increase the level of paral-
lelism usable in wireless and other simulation models. In
this paper, we demonstrate the feasibility of data-depen-
dency analysis for a structured programming language that
includes all features necessary for model development.

8. CONCLUSION
This paper discusses the simulation language PSimLa,

which is specifically designed for analyzability, as well as an
approach exploiting this feature to analyze event dependen-
cies and use this information to increase the level of paral-
lelism. A model can be implemented completely or partially
in PSimLa, which is similar to C++. This enables a smooth
transition for existing C++ code. The translated parts can
then be analyzed at compile time, such that the execution
is speeded up by exploiting those information. Our evalua-
tion shows promising results indicating that certain wireless
simulation models, which are not well parallelized by tra-
ditional approaches, can strongly benefit from this analy-
sis: In two case studies our approach reaches close-to-linear
speedup for models which are hardly parallelized by tradi-
tional techniques.

Future efforts address three dimensions: language syntax,
translation quality, and analysis approaches. The features
of PSimLa supported by our prototype implementation of
the compiler are sufficient to implement any model. Never-
theless, the feature set needs to be extended to provide all
elements of modern high-level languages. The evaluation of
the code translation quality has shown certain bottlenecks
that need to be eliminated. Especially the allocation of ar-
rays can be improved by smarter concepts to decide whether
to allocate dynamic memory or use automatic memory in-
stead. Additional analysis approaches can further improve
the degree of parallelism. These should address more sophis-
ticated methods to analyze more complex code, potentially
detecting more independent events in situations where our
approaches assume dependency due to a too conservative
analysis. Furthermore, independence information in a shape
better applicable for distributed simulation can improve per-
formance for simulations executed on multiple machines.
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