
Large-Scale Network Simulation: Leveraging the Strengths
of Modern SMP-based Compute Clusters

Mirko Stoffers∗, Sascha Schmerling∗, Georg Kunz∗, James Gross‡, Klaus Wehrle∗
∗Communication and Distributed Systems, RWTH Aachen University
‡School of Electrical Engineering, KTH Royal Institute of Technology

stoffers@comsys.rwth-aachen.de

ABSTRACT
Parallelization is crucial for efficient execution of large-scale
network simulation. Today’s computing clusters commonly
used for that purpose are built from a large amount of multi-
processor machines. The traditional approach to utilize all
CPU cores in such a system is to partition the network
and distribute the partitions to the cores. This, however,
does not incorporate the presence of shared memory into
the design, such that messages between partitions on the
same computing node have to be serialized and synchro-
nization becomes more complex. In this paper, we present
an approach that combines the shared-memory paralleliza-
tion scheme Horizon [9] with the standard approach to dis-
tributed simulation to leverage the strengths of today’s com-
puting clusters. To further reduce the synchronization over-
head, we introduce a novel synchronization algorithm that
takes domain knowledge into account to reduce the number
of synchronization points. In a case study with a UMTS
LTE model, we show that both contributions combined en-
able much higher scalability achieving almost linear speedup
when simulating 1,536 LTE cells on 1,536 CPU cores.

Categories and Subject Descriptors
I.6 [Simulation and Modeling]: Miscellaneous

General Terms
Design, Performance, Algorithms

Keywords
Parallel simulation, Shared-memory, Distributed simulation

1. INTRODUCTION
Network simulation models have grown continuously in

size. Higher degrees of detail and the desire for simulation
of larger networks have driven the requirement for high-
performance execution of such simulation models. Unfor-
tunately, CPU power dissipation prevents hardware manu-
facturers from increasing the clock frequency of single cores.
Instead, multiple cores are included in a single machine, such
that software developers have to adapt their software to uti-
lize the full power available.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIMUTools 2014 March 17–19, Lisbon, Portugal.
Copyright 2014 ACM ...$15.00.

Further, computing clusters and supercomputers have been
available for decades. This hardware has driven the develop-
ment of Parallel Discrete Event Simulation (PDES) [5] since
the 1970s. The traditional approach to PDES is the (static)
decomposition of a simulation model into multiple Logical
Processes (LPs) in order to map one or more LP(s) to each
processor. LPs then communicate by exchanging messages
via the interconnect of the computing cluster. We refer to
this approach as distributed simulation in the following.

On modern multi-core machines this approach can be used
as well: Instead of assigning LPs to processors, LPs are
assigned to processor cores. The cores then communicate
via exchanging messages through the shared memory. How-
ever, approaches to shared-memory PDES [8, 9, 24] have
proved that it can be more efficient to conceptually design
parallel simulation explicitly for multi-core machines rather
than adopting distributed simulation. Obviously, these ap-
proaches rely on the availability of shared memory, and
therefore do not scale beyond the size of a single computer.

Modern computing clusters and supercomputers are typ-
ically built by interconnecting a set of shared-memory sys-
tems [15]. Traditionally, researchers decompose the simu-
lation model into sufficiently many LPs to run an LP on
each CPU core. This, however, means that the cores in-
side a computing node treat the shared memory as a buffer
for serialized synchronization messages rather than access-
ing other LP’s memory directly. We argue that this does
not utilize the full power available. Instead, we propose an
approach which leverages the strengths of shared-memory
PDES while allowing the utilization of multiple cluster nodes
through distributed simulation. By significantly reducing
the synchronization and communication overhead inside the
simulation, we increase the scalability dramatically.

In particular, we make the following contributions:
1. We propose a multi-level parallelization approach, Dis-

tributed Horizon that combines the shared-memory
PDES concept Horizon [9] with traditional distributed
simulation to leverage the strengths of both.

2. We propose a novel synchronization algorithm, Dy-
namic Barrier Synchronization (DBS) that re-
duces the number of synchronization points by apply-
ing domain knowledge.

We investigate the influence of certain model properties
and show the benefit of our contributions by means of a
case study (large-scale UMTS LTE network). Our measure-
ments show promising results for a wide variety of model
properties. Distributed Horizon outperforms distributed
simulation for many parameters in a Closed Queuing Net-

work benchmark. With domain knowledge applied, in the
LTE case study both contributions combined achieve almost
linear speedup on more than 1,500 cores.

The remainder of this paper is structured as follows: We
first discuss related efforts targeting similar goals as well as
the approaches underlying this work. After describing the
challenges in Section 3, we present and discuss the contri-
butions in close detail in Section 4 and 5. After that, we
explain the evaluation setup and the results in Section 6.
Finally, we outline future work and conclude the paper.

2. RELATED WORK
In this section we discuss traditional techniques to PDES

as well as newer approaches targeting similar goals to our
work. In distributed simulation the simulation model is de-
composed into LPs and the LPs are assigned to processing
entities. A synchronization algorithm is necessary to avoid
out-of-order execution of events at each LP.

The choice of the best fitting synchronization algorithm
is crucial for simulation performance. In the following, we
discuss traditional synchronization algorithms before we fo-
cus on more advanced approaches in conservative synchro-
nization. We furthermore introduce approaches to shared-
memory PDES as well as multi-layer parallelization.

2.1 Basic Synchronization Algorithms
There are two classes of conservative synchronization algo-

rithms: A synchronous algorithm synchronizes all LPs at the
same point in time while in an asynchronous algorithm LPs
can synchronize locally. The most common synchroniza-
tion algorithms of these classes are CMB [3] (asynchronous)
and LBTS [4] (synchronous). CMB, where LPs send null-
messages to their neighbors based on the local simulation
state, heavily suffers from the time creeping problem [6], es-
pecially in wireless network simulation. Therefore, LBTS is
better suited for these situations. Here, each LP adds the
minimum link delay to the next local event and the next
global barrier is defined as the minimum of all these time-
stamps. After that, each LP can execute all its local events
until that timestamp. This guarantees progress since each
synchronization allows at least the execution of one event.
Nevertheless, small link delays result in small parallelization
windows and therefore poor parallelization speedup.

2.2 Advanced Synchronization Algorithms
To mitigate the drawbacks of CMB and LBTS, approaches

have been proposed to increase the parallelization window.
In this area, the Bounded Lag algorithm by Lubachevsky

[14] introduces a bounded lag to provide lookahead, but in-
creases the parallelization window by the concept of so called
opaque periods. Hence, each node in the simulation has a
means to provide a guarantee that it will not generate any
outgoing message during this opaque period. The author
demonstrates the usefulness of this approach for an Ising
Model where a node will never generate an outgoing message
between two events of a certain type, and the time between
the two events is determined by drawing a random number.
However, this approach does not allow to discard the guar-
antee upon arrival of an incoming message. This works for
the Ising Model since incoming messages do not generate
new events during the opaque period. Nevertheless, it does,
for example, not work for a network node that processes in-
coming packets independently such that the opaque period
generated by one packet can not provide a guarantee on the

opaque period of another packet arriving at a later point
in time. Hence, we focus on the design of a more generic
approach working in more diverse situations.

Path Lookahead by Meyer and Bagrodia [16, 17] allows
to determine larger lookahead values. It computes the syn-
chronization points by adding the delays along a potential
path through the simulation entities and ignoring paths that
could never be taken by the messages. Hence, it requires
model annotations to distinguish possible from impossible
paths. However, in this work we target a more generic ap-
proach where the next synchronization point can be deter-
mined not only by an additive function, but also, for ex-
ample, by a ceiling function mapping the current simulation
time to the next time slot where a message might be sent.

Furthermore, domain-specific approaches to more efficient
synchronization have been taken. For example, Nicol [18]
proposed a lookahead extraction scheme for FCFS queu-
ing networks. In [7], Heidelberger and Nicol introduce a
scheme specifically tailored to efficiently parallelize Contin-
uous Time Markov Chains. However, we argue that it is
necessary to design a synchronization algorithm feasible in
a broader field of domains to accommodate more users.

2.3 Shared-Memory and Multi-Layer PDES
To utilize the full potential of today’s compute clusters,

approaches incorporating the presence of shared memory
into the design have to be taken. Such an approach is Hori-
zon [9], based on the concept of expanded event simulation.
The idea of expanded event simulation is to provide a means
for simulation modelers to naturally include processing du-
rations into the simulation: Instead of simulating a time-
consuming process by a start- and an end-event separately,
Horizon offers expanded events spanning a duration of sim-
ulated time. Since the output of such an event can not be
visible to the system before the calculation is completed, an
expanded event naturally guarantees that no events can oc-
cur before the end time of the event. This way, the process-
ing duration opens a parallelization window and all events
that start during this window can be executed in parallel.

Horizon is based on a master/worker paradigm [10] where
the master assigns parallelizable events directly to the worker
threads. Therefore, the scheduler thread continuously picks
the next event from the Future Event Set (FES) and deter-
mines the parallelizability. As soon as the event can be exe-
cuted, the scheduler selects an idle worker thread and places
a pointer to the event at a specific point in the shared mem-
ory. The spinning worker immediately starts processing the
event. To use every core available in the system, we recently
enabled the scheduler to change its role to a worker thread
(if no worker is available for event execution) and the next
finished worker takes over the scheduler role.

We have shown that Horizon is both correct and efficient
on shared-memory systems [10]. However, at the moment,
Horizon does not exploit cache locality such that superlinear
speedup is unlikely.

Additionally, a multitude of hierarchical approaches has
been proposed by the research community for efficient PDES
and certain approaches also focus on shared-memory sys-
tems. One of the first approaches in this area was Local
Time Warp by Rajaei et al. [20]. Local Time Warp joins
multiple LPs into a cluster and performs optimistic syn-
chronization inside each cluster, limited by a time window
conservatively negotiated among the clusters. While this

approach was not specifically tailored to today’s multi-core
based compute clusters, it could be easily applied on this
hardware by assigning each LP cluster to a computing node.
However, the benefit would be limited since this approach
would not use shared memory for inter-LP communication.

A different approach to multi-level PDES was performed
by Xiao et al. in 1999 [24]. This approach (CCT) is an ex-
tension of CMB targeting single shared-memory machines to
increase load balancing through decreasing LP sizes. There-
fore, the authors introduce a hierarchical scheduling algo-
rithm that schedules groups of LPs while each group sched-
ules the LPs inside this group. However, only a single syn-
chronization algorithm is applied here, such that this ap-
proach is a hierarchical scheduling algorithm, rather than a
hierarchical synchronization algorithm.

Based on CCT, Nicol and Liu introduce Composite Syn-
chronization [19] combining the asynchronous CCT with a
synchronous approach to mitigate the disadvantages of both.
Recently, this approach was extended to allow the execu-
tion of multiple Symmetric Multiprocessor (SMP) machines
[13]. The approach requires thresholds to decide which syn-
chronization algorithm to use for which channel, such that
it is necessary to solve an optimization problem to deter-
mine these thresholds. A similar approach by Liu and Nicol,
DaSSF [12] enables the distribution of SSF to run on shared-
memory based computing clusters. SSF was initially based
on CCT such that it only ran on a single SMP machine.

While these approaches target the same computing plat-
form as we do, all of them rely on the partitioning of the
model and maintain a separate FES for each LP. We argue
that a more fine-grained parallelization on a per-event ba-
sis, as it is achieved by Horizon, allows for increased load
balancing. Additionally, Horizon takes a different way of
providing a parallelization window, such that simulations
that can not benefit from traditional techniques can benefit
from the parallelization window of Horizon. Furthermore,
we showed that the centralized architecture of Horizon al-
lows for more sophisticated synchronization techniques like
probabilistic synchronization [11] since the scheduler main-
tains global knowledge of the simulation state. Hence, for
our approach we identified Horizon as the most promising
technique to distribute work among cores in an SMP system.

3. CHALLENGES
Today’s compute clusters and supercomputers consist of a

set of computing nodes linked with a high-speed interconnect
like Infiniband. Each computing node is an SMP system,
based on a set of multi-core processors sharing the same
main memory with about 8 to 16 cores per node [15].

The standard approach to PDES on these systems is the
decomposition of the simulation model into a large number
of LPs and assigning each CPU core at least one LP. Hence,
each multi-core processor executes several LPs in parallel.
Synchronous synchronization algorithms like LBTS then re-
quire the synchronization of all LPs in the overall simulation
resulting in a synchronization message for each pair of LPs
at every synchronization point. This means that a comput-
ing node might receive and transmit several copies of the
same synchronization message for the LPs on that node.

Furthermore, each processing core is statically assigned an
LP. Hence, it is not possible to easily transfer load to other
cores on the same compute node if the cores are not equally
loaded. Dynamic load balancing techniques exist, but bear

additional overhead for workload migrating.
To utilize the full processing power of today’s computing

clusters and supercomputers, scalability is the most impor-
tant performance issue. Each additional CPU core should
significantly contribute to the simulation performance such
that the costs of purchasing and maintaining larger clusters
pay off. While performance studies show the scalability of
distributed simulations for certain synthetic benchmarks on
up to 2 million cores [2], not every simulation model is that
well-suited for the loose synchronization necessary.

The traditional approach to apply distributed simulation
on today’s clusters yields the following challenges which we
describe in detail in the following:
• The synchronization overhead grows with the number

of CPU cores.
• Proper load balancing over all LPs becomes harder

with an increasing number of LPs.

Synchronization Overhead.
For asynchronous synchronization algorithms like CMB

large lookaheads are vital to avoid time creeping. Hence,
for simulation models with small link delays (like wireless
networks), synchronous algorithms like LBTS are preferred.

In LBTS, a barrier needs to be negotiated between all
LPs in the simulation. Thus, the number of MPI messages
exchanged and therefore the synchronization overhead in-
creases with the number of LPs in the simulation. This is
particularly challenging for large-scale simulations since the
performance gained by adding additional processing units is
easily eliminated by the additional overhead. Note that ev-
ery core added to the simulation needs to synchronize with
all the other cores in the simulation.

Load Balancing.
Proper load balancing is crucial for efficient large-scale

simulation. The slowest LP always determines the simula-
tion performance since all faster LPs need to wait for it to
reach the specified barrier and potentially send out the nec-
essary simulation events. Unbalanced load introduces idle
times at less loaded LPs which waste computing resources,
hence the overall simulation performance is reduced.

While load balancing is already a crucial issue in small-
scale simulations, it gets more challenging at larger scales.
Each LP added to the simulation needs to maintain the same
pace as the other LPs. If the added LP is faster than the
slowest LP, resources of the additional computing unit are
wasted. If the LP is slower, it slows down the overall simula-
tion wasting resources at all other computing units. Hence,
each LP added might even slow down the overall simulation.

Furthermore, with varying load during a single simula-
tion run there is no static partitioning that can ensure equal
load during the whole run, hence waiting times occur on
each LP. Dynamic partitioning could allow the migration of
higher loaded simulation entities, but introduces additional
overhead for the entity migration. Furthermore, predictions
on the load in future simulation steps are required.

In summary, this work tackles two challenges by introduc-
ing a novel PDES approach: minimizing synchronization
overhead and optimizing load balancing across computing
units. In our approach we apply a multi-level paralleliza-
tion scheme based on Horizon and distributed simulation to
increase load balancing and decrease synchronization effort.
By means of a novel synchronization algorithm we further-
more reduce the number of synchronization points necessary.

LP

LP

LP

LP

LP

LP

LP

LP

serialized message exchange (MPI)

(a) Traditional Distributed Simulation. The model is de-
composed into LPs and each processing unit executes
an LP.

push event (shared memory)

event
scheduler

worker worker worker worker

(b) Shared-memory Parallelization Horizon. The central
scheduler thread dynamically offloads parallelizable
events to idle worker threads.

push event (shared memory)

event
scheduler

worker worker worker worker

push event (shared memory)

event
scheduler

worker worker worker worker

serialized message exchange (MPI)

LP LP

(c) Distributed Horizon. We combine both schemes to leverage the strengths of SMP systems while enabling scala-
bility beyond single computing nodes. Each LP now executes a Horizon process with multiple worker threads.

Figure 1: Distributed Horizon: The combination of (a) traditional distributed simulation with (b) the SMP
approach Horizon leverages the strengths of today’s SMP-based computing clusters and supercomputers.

4. EFFICIENT MULTI-LEVEL PDES
In this section we first describe the goals of our approach

to efficient PDES simulations on SMP-based clusters before
we introduce both contributions Distributed Horizon and
the Dynamic Barrier Synchronization algorithm DBS.

4.1 Design Goals
In general, the goal of our multi-level PDES approach is

to achieve high scalability on SMP-based clusters and max-
imize the performance of the simulation while the approach
should be as easy to use by modelers as possible. More
specifically, we state the following design goals:
Improve Load Balancing. Proper load balancing is a cru-

cial property influencing the performance of parallel
simulation. Idle CPU cores can not contribute to the
progress of the simulation. The goal of our approach is
to achieve better load balancing than distributing LPs
over CPU cores in a straightforward way. We aim at
parallelizing smaller work units inside each computing
node to minimize the difference in work unit sizes.

Reduce Synchronization Overhead. Besides that, syn-
chronization overhead is the most important factor in-
fluencing PDES performance. We summarize both the
effort to agree on synchronization barriers and the ef-
fort to exchange event data between processing units
under this notion. Synchronization barriers can be
more efficiently agreed upon if they are negotiated lo-
cally between the CPU cores of a single computing
node. Nevertheless, global barriers are required. We
aim at minimizing both the number of synchronization
points where global barriers need to be determined and
the effort to determine each barrier. Furthermore, we
target an efficient way of exchanging event data be-
tween the processing units of a single computing node

avoiding the need for serialization and deserialization.
Increase Scalability. Our approach targets maximum scal-

ability of a broad range of simulation models given
that the model itself is scalable with the appropriate
technique. This means that increasing the network
size should not affect the simulation performance if
at the same time the same amount of computing re-
sources is added to the simulation. Our evaluation
shows that the standard approach of distributed PDES
with LBTS to simulate an LTE network does not main-
tain this property. Already a small-size network of
only 48 LTE cells can not benefit from the total pro-
cessing power available in four 12-core machines of a
compute cluster. With our approach we target higher
parallelization speedups for larger scale networks.

Ensure Ease-of-Use. Finally, PDES is only accepted by
model developers if it is easy enough to apply. The
goal of our approach is to ensure the ease-of-use such
that the speedup achieved by the simulation is worth
the effort required from the model developer. We aim
at minimizing the effort for decomposing the network
into LPs as well as specifying lookahead. However, we
argue that certain manual effort can be tolerated if the
performance boost can justify the overhead.

We divide our PDES approach into two independent con-
cepts: Distributed Horizon leverages the strengths of
SMP-based computing clusters by applying a multi-level
parallelization scheme with distributed and shared-memory
tailored parallelization concepts. The Dynamic Barrier Syn-
chronization algorithm increases parallelization windows by
enabling the model developer to easily include domain knowl-
edge into the model. Combining both approaches then al-
lows to utilize the full processing power of today’s computing
clusters achieving almost linear speedup in our case study.

4.2 Distributed Horizon
The idea behind our multi-level parallelization scheme

Distributed Horizon is straightforward: We observed that
Horizon enables efficient utilization of today’s multi-core
shared-memory systems. Therefore, we apply Horizon as the
first level of our approach. Since Horizon by design does not
scale beyond the size of available shared-memory systems,
we need to combine this approach with an approach for sim-
ulation on multiple machines. Hence, we apply traditional
distributed simulation as the second level of our multi-level
parallelization to enable scalability beyond a single comput-
ing node.

Figure 1 visualizes the multi-level parallelization. Like
for distributed simulation (see Figure 1(a)), the simulation
model needs to be decomposed into several LPs. However,
it is not necessary to create as many LPs as CPU cores are
available for execution, but we only need an LP for each
computing node. Each node then maintains an FES for the
events on that LP as well as input and output queues like in
the standard design of distributed simulation. However, in-
stead of running a single scheduler that executes the events
on that LP sequentially, we execute the Horizon scheduler
(see Figure 1(b)) on each LP. As in pure Horizon, this sched-
uler thread assigns the events to workers on the same com-
puting node by a particularly lightweight pointer passing
scheme via shared memory (see Section 2.3).

Figure 1(c) visualizes the execution of Distributed Hori-
zon on a two-node cluster. The simulation is partitioned
into two LPs, each maintaining enough parallel events to
keep all workers busy. The two nodes exchange serialized
messages when events are transferred across LPs or the LPs
need to be synchronized.

After initialization, each event scheduler now performs the
following steps in a loop:

1. Offload all parallelizable events to worker threads.
2. Receive incoming MPI messages.
3. Determine next barrier.
For the first step it is necessary to obey two different kinds

of synchronization barriers: the first is derived from Hori-
zon (intra-LP barrier), the second is derived from distributed
simulation (inter-LP barrier). Hence, the two synchroniza-
tion algorithms need to be combined in a way that ensures
causal correctness while maximizing the parallelization win-
dow and minimizing the synchronization overhead. Further-
more, the determination of the next barrier (Step 3) needs
to be performed in a modified way. We discuss the combined
synchronization algorithm in more detail in the following.

Synchronization in Distributed Horizon.
We need to design the multi-level synchronization algo-

rithm in a way that it ensures the causal correctness of the
simulation results. We therefore combine the causality con-
straint for distributed simulation as defined in [5] with the
causality constraint for Horizon as defined in [10]:

Definition 1. A DES obeys the causality constraint if and
only if each LP processes each pair of non-overlapping events
in non-decreasing starting time order.

This means that the local event scheduler of each LP has
to ensure that i) it only offloads an event if it overlaps with
all events currently being executed on the same LP, and ii) it
only offloads an event e if no incoming message might cause
another event prior to e.

b4

LP 1

LP 2 e7 e8 e9

b1 b2 b3

e4

e3

e2 e5 e6

e1

sim.
time

Figure 2: LBTS. The algorithm subsequently deter-
mines the (inter-LP) barriers b1 to b4 by adding the
lookahead to the first event in the simulation. Solid
arrows denote lookahead.

Hence, the scheduler has to maintain two barriers: an
intra-LP barrier and an inter-LP barrier. The intra-LP bar-
rier is determined by the basic Horizon rule: from all events
currently being executed the earliest end time determines
the intra-LP barrier. The inter-LP barrier needs to be de-
termined by inter-process communication like in distributed
simulation. For this purpose we implemented two different
synchronization algorithms: LBTS [4] and our novel scheme
Dynamic Barrier Synchronization (see Section 4.3). LBTS
in Distributed Horizon works similar to the traditional
LBTS algorithm (cf. Figure 2). Each LP determines the next
event in the FES and adds the lookahead. Then, the mini-
mum of these values determines the next inter-LP barrier.

The local event scheduler of each LP checks both barri-
ers before offloading an event for parallel execution. If the
intra-LP barrier prevents the event from being executed, the
scheduler waits for the corresponding event to be completed,
updates the barrier, and checks again. If the inter-LP barrier
prevents the event from being executed, the scheduler ini-
tiates a new LBTS synchronization and waits for the other
LPs to transmit their barrier timestamp. Only if both barri-
ers allow the execution of the event, the event can be safely
offloaded to a worker thread.

4.3 Dynamic Barrier Synchronization
Conservative synchronization algorithms essentially de-

pend on sufficient lookahead between LPs, typically derived
from link delays. Asynchronous synchronization protocols
like CMB suffer from the time creeping problem, synchronous
protocols like LBTS would, in the worst case, require a syn-
chronization for each single event. On the other hand, op-
timistic synchronization requires expensive rollbacks, espe-
cially when simulation models maintain large states.

We argue that simple annotations created by a domain
expert (e. g., the model developer) can significantly increase
parallelization windows while reducing synchronization ef-
fort, for example in the following 3 cases: In an LTE model
it usually suffices to exchange messages between LPs each
1 ms, i. e., at the beginning of each Transmission Time Inter-
val (TTI), or even less often. A node in a computer network
can predict a lower bound on the processing time of a packet
traversing the network stack up and down and can this way
create a guarantee for the earliest output time. In a queuing
network, the sum of the delays between queues can as well
provide a means to derive higher parallelization windows.

We therefore introduce our approach Dynamic Barrier

Simulation
Kernel

t(e)

tb

Partition
Component

upd.

Simulation Model

LP 1

MPI
Simulation

Kernel

t(e)

tb

Partition
Component

upd.

Simulation Model

LP 2

Figure 3: In DBS each LP maintains a Partition
Component that can be implemented by the model
developer and updated during the simulation by the
simulation entities. The synchronization algorithm
then determines the next barrier by requesting the
Partition Component.

Synchronization allowing a modeler to dynamically spec-
ify the next synchronization barrier, by exploiting domain
knowledge.

The general concept is depicted in Figure 3. Each LP
maintains the simulation entities (e. g., modules) assigned to
that LP. Additionally, we create an instance of a so called
Partition Component that allows the modeler to store and
provide information which do not belong particularly to a
simulation module, but to the overall partition. For DBS
to work properly, we only require a single function to be
implemented in this component. This function is provided
the timestamp t(e) of the next event e in the FES and needs
to return another timestamp tb. The simulation framework
considers tb as a guarantee that this LP will not generate any
messages prior to this timestamp. However, this guarantee
is discarded if a new message is received from a neighboring
LP, i. e., this message is still allowed to generate outgoing
messages prior to tb. More precisely, the minimum of the
timestamps at all LPs yields a guarantee that no LP will
send out a message to be executed before this timestamp.

The simulation procedure is then similar to LBTS. The
scheduler processes local events and receives incoming mes-
sages until it reaches a barrier. However, instead of sending
out the timestamp t(e) of the next event e, it then requests
the local partition component to determine a barrier time-
stamp tb. After that, the LP broadcasts its local barrier tb
and receives the timestamps of the other LPs. We denote
the set of all timestamps by Tb. Similarly to LBTS, the
next global synchronization barrier is now derived as the
minimum of all exchanged timestamps, i. e., b := min(Tb).

It is obvious that a modeler can simply mimic LBTS with
this algorithm. The Partition Component is provided the
timestamp of the next local event t(e) to determine the next
local guarantee tb. For LBTS, this guarantee is the sum
of t(e) and the lookahead l. Therefore, it suffices to return
tb := t(e) + l to provide the same barrier as LBTS. How-
ever, by providing a timestamp tb > t(e)+ l through adding
domain knowledge, modelers can increase the parallelization
window and decrease the number of synchronization points.

We reconsider the example in Figure 2. LBTS subse-
quently creates 4 barriers and provides only small paral-
lelization windows. However, there are only two cross-LP
messages, such that – with global knowledge of the simula-
tion model – it becomes clear that the parallelization win-
dows are smaller than necessary. Provided that the time-
stamps of the next outgoing messages are known before the
execution of e1, the model developer can annotate this infor-
mation into the Partition Component (see Figure 4). Then,
the Partition Component of LP 1 yields tb1 and the com-
ponent of LP 2 yields tb2. The minimum barrier (tb1) then
opens a parallelization window that allows LP 1 to execute
e1 to e5 while LP 2 executes e7 and e8.

LP 1

LP 2 e7 e8 e9

b1

e4

e3

e2 e5 e6

e1

sim.
time

tb2 tb1

Figure 4: Through applying domain knowledge,
model developers can significantly reduce the num-
ber of synchronization points with Dynamic Barrier
Synchronization (compared to LBTS in Figure 2).

DBS in Distributed Horizon.
We designed DBS as a synchronization algorithm for both

distributed simulation and Distributed Horizon. The
integration into Distributed Horizon is straightforward:
When the Horizon scheduler needs to determine a new global
barrier, it does not execute LBTS but DBS as described
above in order to negotiate a new (inter-LP) barrier. DBS
then requests the local Partition Component for the next
guarantee timestamp and the minimum of all these time-
stamps is the next inter-LP barrier for each LP. This in-
creases the parallelization window like in distributed simu-
lation, but additionally provides larger windows for Horizon
to parallelize events.

5. DISCUSSION
Distributed Horizon can be easily used with any sim-

ulation model that is well suited for distributed simulation
and Horizon. The user only needs to specify the partitions
and can run the simulation in parallel.

However, with LBTS as a synchronization paradigm the
parallelization window is limited. The Horizon scheduler can
not execute two events in parallel if there is an inter-LP bar-
rier in between, even if the events overlap and the Horizon
paradigm therefore allows parallelization. Figure 2 depicts
this problem. Here, e1 and e2 are not executed in parallel
due to b1. A conservative scheme without domain knowledge
can not avoid this situation since e7 on LP 2 might induce
an event e′ prior to e2 not overlapping with e2. In this case,
e′ needs to be executed before e2. Hence, inter-LP barriers
limit the parallelization window provided by Horizon and
prevent parallel execution of actually independent events.

Our approach to Dynamic Barrier Synchronization pro-
vides a means to the user to annotate the next necessary
synchronization point. We argue that this annotation can
be achieved by the modeler through applying domain knowl-
edge. For time-slotted systems like LTE where messages are
only exchanged at certain points in time, this annotation
can be trivially performed. The function only needs to de-
termine the next time slot (e. g., next TTI) and return it.

However, this kind of annotation can become more com-
plicated if the next message is not that easy to predict. For
example, in a network router the timestamp of the next out-
going event can be determined by computing a lower bound
for the time it takes for a network packet to traverse the

queue queue queue switch

queue queue queue switch

queue queue queue switch

Figure 5: The closed queuing model consists of a set
of tandem queues, each of which consists of a set of
queues connected to a switch which randomly feeds
back jobs to another tandem queue.

network stack up and down. If a packet has already been
partially processed, the remaining computing time needs to
be reduced accordingly. Note that in this example the bar-
rier determined is the same that would be determined by
the path lookahead concept of Meyer and Bagrodia [16].

To this end, a modeler has to carefully design and im-
plement the Partition Component to avoid yielding too op-
timistic barriers. Such an error would result in a causal
violation at the receiving LP. Since this might induce false
simulation results, we decided to abort the simulation and
yield an error describing the wrong guarantee timestamp.
This allows to track down and fix the annotation bug.

It is also possible to provide too conservative guarantees
resulting in poor performance. However, by just adding the
lookahead to the current event timestamp it is always possi-
ble to provide at least the guarantee of LBTS and therefore
achieve at least the performance of LBTS.

We recommend the following work flow for DBS: i) use
LBTS to check the correctness and parallelizability of the
model, ii) then use DBS with providing the guarantees as
LBTS does, and iii) finally increase these guarantees step
by step until the performance is satisfying. Furthermore,
it is possible to develop tools that analyze previous simu-
lation runs and provide the modeler information about the
necessary synchronization points and potential barrier an-
notations.

6. EVALUATION
We evaluate the performance of our contributions by first

investigating the influence of certain parameters on the per-
formance of a rather synthetic queuing network simulation
and then applying the approaches to a case study based on
an abstract LTE model.

6.1 Methodology
We implemented Distributed Horizon and DBS for OM-

NeT++ [21] since there is an implementation for both Hori-
zon [9] and distributed simulation (called Parsim [23]) for
OMNeT++. To ensure a fair comparison, we chose OM-
NeT++ as the base framework for all measurements. We
extended Parsim with an implementation of LBTS as de-
scribed by Chandy and Sherman in [4].

We measured the performance of four different configura-
tions: i) Parsim (distributed simulation) with LBTS, ii) Par-
sim with DBS, iii) Distributed Horizon with LBTS, and
iv) Distributed Horizon with DBS.

All results are based on 5 repetitions of the measurements
on the “Bull MPI-S” cluster of the Computing Center of
RWTH Aachen University [1]. In this cluster, each node is
equipped with 12 physical CPU cores rated at 3 GHz. The

Channel

Physical Layer

MAC Layer

App

Channel N...Channel 1

Physical Layer

MAC Layer

App N...App 1

Channel

Physical Layer

MAC Layer

App

Figure 6: Layers and data flow in the abstract LTE
model. The stations communicate by sending the
packets along the arrows. Additionally, the MAC
schedule and mobile station positions are broadcast
every TTI to the two-hop neighbor cells.

plots show the average parallelization speedup as well as the
99 % confidence intervals.

We created two different simulation models: a CQN model
to investigate the influence of certain parameters on the per-
formance of the approaches and an abstract LTE model to
determine the scalability of the techniques.

Closed Queuing Network.
We base our Closed Queuing Network (CQN) evaluation

model on the queuing network example of OMNeT++. Here,
a set of tandem queues (i. e., sequentially connected queues)
is connected by switches that feed outgoing jobs from a tan-
dem randomly into another tandem queue (see Figure 5).
After a process reached the beginning of a queue, it is ser-
viced for a certain amount of time. We model the service
event by means of an expanded event spanning the service
time. Replacing two distinct start- and stop-service events
by a single expanded event is the primary idea of Horizon
[9]. This does not change the semantics of the model, but
provides a parallelization window to Horizon since the ex-
panded event can not create new events before its end time.
To mimic workload of a potentially sophisticated event han-
dler, the service event includes a loop performing dummy
operations for a certain amount of time. We further imple-
mented DBS by estimating the time it takes until the next
job leaves the LP and providing this time as the next barrier.

We created a base configuration that enables speedup with
all investigated approaches and then modified event com-
plexity, service time, and delays in a parameter study.

Abstract LTE Model.
We evaluate our contributions by means of a case study of

an LTE simulation. For this purpose, we developed an ab-
stract LTE simulation model for OMNeT++ which attaches
importance to the structure of LTE rather than details of the
implementation. We designed the model in a way that LTE
engineers can include detailed algorithms for the parts they
are interested in, e. g., the MAC scheduler which assigns
transmission resource blocks to mobile stations. We argue
that these algorithms typically only increase the complex-
ity of the simulation but do not change the structure of the
model, hence providing more parallelizable workload. Our
model exchanges information at the beginning of every TTI
with all cells in a two-hop neighborhood. Since LTE works
in these time slots, we argue that relevant information can
be exchanged at exactly these time points and no communi-
cation within a TTI is necessary. Furthermore, direct com-
munication between far away cells should not be necessary

for interference calculation or cell synchronization. We con-
clude that typical LTE simulation applications scale similar
or better with our approaches than this abstract model.

Our LTE model is constructed as follows (cf. Figure 6).
On each mobile station there is an application module, gen-
erating traffic by means of a Poisson process, such that all
stations cause an average load of 40 % in the cell. Sim-
ilarly, the base stations maintain such an application for
each connected mobile station. The base station MAC layer
computes the schedule by means of a simple algorithm and
distributes it to the mobile stations. At the beginning of
the TTI, all packets that can be transmitted in that TTI
are then forwarded to the physical layer which transmits
the data to the corresponding channel at the destination.
Here, path loss, fading, and interference is computed and the
packet is either forwarded or marked corrupted and deleted.
For load generation, we applied an accurate OFDM fading
model as described in [22].

We evaluate our approaches by scaling the LTE model
from 48 cells on 48 CPU cores up to 1,536 cells on 1,536
CPU cores distributed over 128 computing nodes.

6.2 Closed Queuing Network
For the CQN model, we created a base configuration and

modified certain parameters one after the other.

CQN Base Configuration.
We perform a first comparison with the following param-

eters: The network consists of 4 tandem queues each main-
taining 48 basic queues. With Distributed Horizon we
partition this model into 4 LPs (a tandem queue per LP)
to execute the simulation on 4 computing nodes. For tradi-
tional distributed simulation we further partition each tan-
dem queue into 12 LPs of 4 basic queues each.

The service time is exponentially distributed with a mean
of 10 s. The delay between two queues is fixed to 1 s, the
delay between a switch and the subsequent tandem queue is
set to 10 s. For the base scenario we set the average event
complexity of the service event to 100µs.

Figure 7 depicts the results of the base configuration. We
observe that Distributed Horizon gains significantly more
speedup than traditional distributed simulation. We at-
tribute this to the fact that Horizon opens another paral-
lelization window that allows for additional parallelization
of events inside the tandem queues. With 10 s, the link
delay between two LPs of Distributed Horizon is signif-
icant and the expanded events provide additional potential
for parallelization. On the other hand, the link delays be-
tween two smaller LPs of traditional distributed simulation
is shorter and since this approach does not use the service
time for parallelization, speedup is rather limited.

We further experience that DBS provides an observable,
but small gain. We attribute this to the fact that most of the
time there is actually workload at the last queue in the tan-
dem and it is therefore – even with knowledge of the model –
not possible to provide significantly greater lookahead. We
nevertheless observe that the approach is not worse than
LBTS since the window is never smaller than the one deter-
mined by LBTS.

CQN Parameter Study.
In the following, we discuss the influence of certain pa-

rameters in the simulation on the parallelizability with the

0

6

12

18

S
p

e
e
d

u
p

Parsim, LBTS

Parsim, DBS

Distr. Hor., LBTS

Distr. Hor., DBS

Figure 7: Speedup of CQN Base Setup. Event Com-
plexity: 100 µs, Mean Service Time: 10 s, Switch-to-
queue Delay: 10 s, Queue-to-queue Delay: 1 s.

different approaches. In particular, we vary the event com-
plexity, the mean service time, the queue-to-queue delay,
and the switch-to-queue delay.

With sufficient event complexity all approaches gain sig-
nificant speedup. However, with decreasing event complex-
ity we expect Distributed Horizon to loose performance
since the Horizon schedulers have to offload each event sepa-
rately for parallel execution and therefore introduce a small
amount of overhead for each event. Figure 8(a) depicts the
results of event complexities ranging from 1µs to 100µs.
While we observe the expected drop in the performance of
Distributed Horizon, we also observe a drop in the per-
formance of OMNeT++ Parsim. This means that even with
coarser grained parallel jobs, performance heavily depends
on the complexity of each event. In the end, for lightweight
events Distributed Horizon gains minimal speedup while
the traditional approach becomes as slow as sequential exe-
cution for event complexities of only 1µs.

Figure 8(b) depicts the influence of the mean service time
of the jobs. In Distributed Horizon, we observe rather
low sensitivity to the mean service time. On the one hand,
shorter service times result in shorter parallelization win-
dows for Horizon. On the other hand, the number of events
in the parallelization window of the distribution level in-
creases. In the end, this results in similar performance for
different service time values. As opposed to Distributed
Horizon, Parsim shows significantly more sensitivity to the
service time. If the service time is as short as the queue-
to-queue delay, Parsim nearly reaches the performance of
Distributed Horizon.

The switch-to-queue delay has, as depicted in Figure 8(c),
no influence on the performance of traditional parallel sim-
ulation. Since the limiting lookahead is determined by the
switch-to-switch delay, the switch-to-queue delay does not
influence the parallelization windows. On the other hand,
the coarser grained LPs of Distributed Horizon deter-
mine their inter-LP lookahead exclusively from the switch-
to-queue delay. Hence, we observe higher speedups for longer
switch-to-queue delays in Distributed Horizon. Further-
more, DBS gains more speedup over LBTS when the looka-
head is small. We attribute this to the fact that DBS addi-
tionally incorporates the state of the simulation as well as
the current service time and can therefore hide the influence
of the lookahead to a certain degree.

The queue-to-queue delay is the parameter that deter-
mines the lookahead for the simulations with Parsim. The
coarser grained partitions of Distributed Horizon only
determine the lookahead from the switch-to-queue delay.
Therefore, this parameter has no influence on the perfor-
mance of Distributed Horizon (see Figure 8(d)). On the
other hand, larger lookahead values allow Parsim to out-

1 5 10 100
0

6

12

18

S
p

e
e
d

u
p

Parsim, LBTS

Parsim, DBS

Distr. Hor., LBTS

Distr. Hor., DBS

(a) Complexity [µs/event]
1 2 5 10

0

6

12

18

S
p
e
e
d
u
p

(b) Mean Service Time [s]

1 2 5 10
0

6

12

18

S
p
e
e
d
u
p

(c) Switch-to-queue Delay [s]
1 2 5 10

0

6

12

18

S
p
e
e
d
u
p

(d) Queue-to-queue Delay [s]

Figure 8: CQN Parameter Study: Speedup when varying certain parameters from the base case in Figure 7.

0

12

24

36

48

S
p
e
e
d
u
p

Parsim, LBTS

Parsim, DBS

Distr. Hor., LBTS

Distr. Hor., DBS

Figure 9: Parallelization speedup of LTE with 48
cells on 4 computing nodes with 12 CPU cores each.

perform Distributed Horizon. This means that in situa-
tions where traditional synchronization algorithms can pro-
vide better parallelization windows than Horizon, traditional
distributed simulation is better suited than Distributed
Horizon.

In summary, Horizon depends on significant durations
of the most complex events while Parsim requires signifi-
cant link delays to extract lookahead. Hence, Distributed
Horizon achieves the best speedup if both is available while
traditional distributed simulation might be the better choice
for simulations with high link delays and short event dura-
tions.

6.3 LTE Case Study
For the LTE case study, we first compare the performance

achieved in a 48 cell setup before we increase the number of
cells to investigate the scalability of the approaches.

Performance Comparison.
For the first evaluation setup, we created an LTE network

comprising 48 cells and executed the simulation on 4 com-
puting nodes equipped with 12 physical cores each. Hence,
we have 4 LPs in Distributed Horizon and 48 LPs with
Parsim. For a fair comparison, we ensured that in both set-
ups we have the same assignment of cells to compute nodes.
We performed this distribution in a way that neighboring
cells are on the same computing node if possible.

Figure 9 depicts the results of this setup. We observe

48 96 192 384 768 1536
Number of LTE Cells (=Number of CPU Cores)

0

20

40

60

80

100

P
e
rc

e
n
t

Li
n
e
a
r

S
p
e
e
d
u
p

Figure 10: LTE scalability study: Performance com-
pared to linear speedup, extrapolated from a se-
quential simulation run with 48 cells. For legend
see Figure 9.

that OMNeT++ Parsim reaches with LBTS only a speedup
of about 20 on this 48-core system. Applying Distributed
Horizon reduces the complexity of the inter-LP synchro-
nization and achieves therefore a speedup of about 30. On
the other hand, applying DBS reduces the number of syn-
chronization points significantly since the necessity of syn-
chronizing each packet generation event at the application
layer modules is omitted. This increases the speedup from
20 to 40. With both schemes combined, an almost linear
speedup of 44 is achieved on the 48-core system.

Scalability Evaluation.
We investigate the scalability of our approach by increas-

ing the number of LTE cells. At the same time, we increase
the number of computing nodes available to the simulation
such that there is always a physical core per cell. We extrap-
olate the performance of a sequential simulation run for all
scenarios from the run with 48 cells and compute how close
the approaches get to linear speedup. The results are de-
picted in Figure 10. We observe that the LBTS synchroniza-
tion algorithm is not scalable at all. Without Distributed
Horizon, LBTS achieves a speedup of less than 8 simulat-
ing 384 cells on 384 CPU cores. We attribute this to the
fact that all applications generating events have to be syn-
chronized all over the simulation. However, Distributed

Horizon performs significantly faster also with LBTS since
it reduces the amount of LPs that need to be synchronized
at each synchronization point.

With DBS we observe proper scalability in computing
time of both Parsim and Distributed Horizon. Utiliz-
ing the shared memory with Distributed Horizon addi-
tionally reduces the memory requirements. For this rea-
son, a simulation with 1,536 cells was still feasible with Dis-
tributed Horizon while Parsim ran out of memory. Fur-
thermore, we observe less sensitivity to network size for Dis-
tributed Horizon allowing almost perfect scaling of the
LTE simulation up to a network size of 1,536 cells. Here, we
measure only a few percent longer simulation runtimes than
for the 48 cell setup and compared to the extrapolated run-
time of sequential simulation a speedup of 1,300, i. e., about
85 % of linear speedup.

7. CONCLUSION AND FUTURE WORK
In this work, we introduced two approaches to reduce the

synchronization effort in parallel simulation and increase the
load balancing to leverage the strengths of today’s com-
puting clusters. Our multi-level synchronization paradigm
Distributed Horizon combines the shared-memory par-
allelization approach Horizon with the traditional approach
of distributed simulation. This allows distributing workload
across computing nodes while at the same time minimizing
the synchronization effort inside a computing cluster node
by applying a scheme specifically tailored to SMP nodes.
With our novel synchronization algorithm DBS it is addi-
tionally possible to specify greater parallelization windows
to further reduce the synchronization overhead.

Future efforts to Distributed Horizon target the emerg-
ing platform of many-core processors like Intel Phi. Here, a
third synchronization layer between Horizon and distributed
simulation could be introduced to reduce the contention to
the central structures of Horizon if 100 or more threads run
on an SMP node. Furthermore, different synchronization
algorithms including optimistic approaches or advanced ap-
proaches like probabilistic synchronization [11] could be ap-
plied on the layers of Distributed Horizon to investigate
the performance. Focusing on our novel synchronization al-
gorithm DBS, future efforts could create an asynchronous
synchronization algorithm from the guarantees of DBS.

In summary, in this work we introduced two contributions,
Distributed Horizon and Dynamic Barrier Synchroniza-
tion, which in combination showed to scale an LTE model
almost linear on more than 1,500 cores.

Acknowledgments
This research was funded by the DFG Cluster of Excellence on Ul-
tra High-Speed Mobile Information and Communication (UMIC).

8. REFERENCES
[1] D. an Mey et al. The RWTH HPC-Cluster User’s Guide.

Technical report, RWTH Aachen University, Aug. 2013.
[2] P. Barnes, C. Carothers, D. Jefferson, and J. LaPre. Warp

Speed: Executing Time Warp on 1,966,080 Cores. In Proc.
of the 27th ACM SIGSIM Conf. on Principles of Advanced
Discrete Simulation, 327–336, 2013.

[3] K. Chandy and J. Misra. Distributed Simulation: A Case
Study in Design and Verification of Distributed Programs.
IEEE Trans. on Software Engineering, 5(5):440–452, 1979.

[4] M. Chandy and R. Sherman. The Conditional-Event
Approach to Distributed Simulation. Technical report,
DTIC Document, 1989.

[5] R. Fujimoto. Parallel Discrete Event Simulation.
Communications of the ACM, 33(10):30–53, 1990.

[6] R. Fujimoto. Parallel and Distributed Simulation. In Proc.
of the 31st Winter Simulation Conf., 122–131, 1999.

[7] P. Heidelberger and D. Nicol. Conservative Parallel
Simulation of Continuous Time Markov Chains Using
Uniformization. IEEE Trans. on Parallel and Distributed
Systems, 4(8):906–921, 1993.

[8] D. Jagtap, N. Abu-Ghazaleh, and D. Ponomarev.
Optimization of Parallel Discrete Event Simulator for
Multi-core Systems. In Proc. of the 26th Intl. Parallel
Distributed Processing Symposium, 520–531, 2012.

[9] G. Kunz, O. Landsiedel, J. Gross, S. Götz, F. Naghibi, and
K. Wehrle. Expanding the Event Horizon in Parallelized
Network Simulations. In Proc. of the 18th Symposium on
Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, 172–181, 2010.

[10] G. Kunz, M. Stoffers, J. Gross, and K. Wehrle. Runtime
Efficient Event Scheduling in Multi-threaded Network
Simulation. In Proc. of the 4th Conf. on Sim Tools and
Techniques, 359–366, 2011.

[11] G. Kunz, M. Stoffers, J. Gross, and K. Wehrle. Know Thy
Simulation Model: Analyzing Event Interactions for
Probabilistic Synchronization in Parallel Simulations. In
Proc. of the 5th Conf. on Sim Tools and Techniques,
119–128, 2012.

[12] J. Liu and D. Nicol. Learning Not to Share. In Proc. of the
15th Workshop on Parallel and Distributed Simulation,
46–55, 2001.

[13] J. Liu and R. Rong. Hierarchical Composite
Synchronization. In Proc. of the 26th Workshop on
Principles of Advanced and Distributed Sim., 3–12, 2012.

[14] B. Lubachevsky. Efficient Distributed Event-Driven
Simulations of Multiple-Loop Networks. Communications
of the ACM, 32(1):111–123, 1989.

[15] H. Meuer, E. Strohmaier, J. Dongarra, and H. Simon.
Top500 List, June 2013. www.top500.org/list/2013/06/.

[16] R. Meyer and R. Bagrodia. Improving Lookahead in
Parallel Wireless Network Simulation. In Proc. of the 6th
Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems, 1998.

[17] R. Meyer and R. Bagrodia. Path Lookahead: A Data Flow
View of PDES Models. In Proc. of the 13th Workshop on
Parallel and Distributed Simulation, 1999.

[18] D. Nicol. Parallel Discrete-Event Simulation of FCFS
Stochastic Queueing Networks. In Proc. of the ACM
SIGPLAN Conf. on Parallel Programming: Experience
with Applications, Languages and Systems, 124–137, 1988.

[19] D. Nicol and J. Liu. Composite Synchronization in Parallel
Discrete-Event Simulation. IEEE Trans. on Parallel and
Distributed Systems, 13(5):433–446, 2002.

[20] H. Rajaei, R. Ayani, and L.-E. Thorelli. The Local Time
Warp Approach to Parallel Simulation. In Proc. of the 7th
Workshop on Parallel and Distributed Simulation, 119–126,
1993.

[21] A. Varga. The OMNeT++ Discrete Event Simulation
System. In Proc. of the 15th European Simulation
Multiconf., 2001.

[22] C. Wang, M. Pätzold, and Q. Yao. Stochastic Modeling and
Simulation of Frequency-Correlated Wideband Fading
Channels. IEEE Trans. on Vehicular Technology,
56(3):1050–1063, 2007.

[23] D. Wu, E. Wu, J. Lai, A. Varga, A. Şekercioğlu, and
G. Egan. Implementing MPI Based Portable Parallel
Discrete Event Simulation Support in the OMNeT++
Framework. In Proc. of the 14th European Simulation
Symposium, 2002.

[24] Z. Xiao, B. Unger, R. Simmonds, and J. Cleary. Scheduling
Critical Channels in Conservative Parallel Discrete Event
Simulation. In Proc. of the 13th Workshop on Parallel and
Distributed Simulation, 20–28, 1999.

