
Delegation-based Authentication and Authorization
for the IP-based Internet of Things

René Hummen∗, Hossein Shafagh¶, Shahid Raza‡, Thiemo Voigt‡§, Klaus Wehrle∗
∗Communication and Distributed Systems, RWTH Aachen University, Germany

Email: {hummen, wehrle}@comsys.rwth-aachen.de
¶Department of Computer Science, ETH Zurich, Switzerland

Email: shafagh@inf.ethz.ch
‡SICS Swedish ICT, Kista, Sweden §Uppsala University, Sweden

Email: {shahid, thiemo}@sics.se

Abstract—IP technology for resource-constrained devices en-
ables transparent end-to-end connections between a vast variety
of devices and services in the Internet of Things (IoT). To protect
these connections, several variants of traditional IP security
protocols have recently been proposed for standardization, most
notably the DTLS protocol. In this paper, we identify significant
resource requirements for the DTLS handshake when employing
public-key cryptography for peer authentication and key agree-
ment purposes. These overheads particularly hamper secure com-
munication for memory-constrained devices. To alleviate these
limitations, we propose a delegation architecture that offloads the
expensive DTLS connection establishment to a delegation server.
By handing over the established security context to the con-
strained device, our delegation architecture significantly reduces
the resource requirements of DTLS-protected communication
for constrained devices. Additionally, our delegation architecture
naturally provides authorization functionality when leveraging
the central role of the delegation server in the initial connection
establishment. Hence, in this paper, we present a comprehensive,
yet compact solution for authentication, authorization, and secure
data transmission in the IP-based IoT. The evaluation results
show that compared to a public-key-based DTLS handshake our
delegation architecture reduces the memory overhead by 64 %,
computations by 97 %, network transmissions by 68 %.

I. INTRODUCTION

The proliferation of IP technology for constrained net-
work environments enables a new class of networked devices
with highly limited computation and memory resources to
autonomously participate in the Internet of Things (IoT).
Specifically, IP technology enables a constrained device to
communicate in an end-to-end fashion with other constrained
devices or services that are located in remote network domains
(see Fig. 1). An IP-enabled sensor device in a body area
network, for example, can transparently send its gathered
medical data to an e-health service without the need for any
application-layer interactions at the gateway [1]. However, in
such scenarios, the transmitted information may be routed via
untrusted network infrastructure such as the Internet. Thus,
peer authentication and end-to-end data protection are crucial
requirements to prevent eavesdropping on sensitive informa-
tion or malicious triggering of harmful actuating tasks.

To afford interoperable network security between end-
points from independent network domains, variants of tra-
ditional end-to-end IP security protocols have recently been

S

Constrained Domain

Constrained Domain

S

Local Network

Internet

D
D D

D
D

GW
6LoWPAN

GW

GW
6LoWPAN

Fig. 1. Constrained devices (D) communicate with each other and with local
or Internet-based services (S) via a gateway (GW). Entities belonging to a
constrained network domain are equipped with the 6LoWPAN layer. Arrows
indicate the achievable connectivity with our delegation architecture.

proposed for constrained devices and the networks formed
by them. These protocol variants include Datagram TLS
(DTLS) [2], HIP DEX [3], and minimal IKEv2 [4]. All of these
protocol variants consider public-key cryptography in their
protocol design. As this type of cryptography incurs significant
processing and transmission overheads in constrained network
environments [5], research and standardization currently aim at
reducing the public-key-related overhead during the protocol
handshake. Proposed approaches in this context include session
resumption mechanisms [6] and caching of static handshake
information such as certificates [7]. However, as we identify
in this paper, the considerable RAM and ROM requirements
render the use of public-key cryptography infeasible for a wide
range of constrained devices in the first place.

Our contributions in this paper are threefold. First, we
detail and quantify the impact of public-key cryptography on
the memory requirements of a DTLS protocol implementation
for constrained devices. We chose DTLS for our analysis as it
is anticipated to become the primary IP security solution for
the IoT1. Second, we propose a delegation architecture that
enables memory-constrained devices to communicate securely
across independent network domains. Specifically, we separate
the DTLS connection establishment from the protection of
application data and offload the connection establishment to
a delegation server. By subsequently handing over the estab-
lished connection context to the constrained device, this device
no longer needs to implement expensive public-key cryptogra-

1The DTLS In Constrained Environments (DICE) working group was
recently chartered at the IETF with the goal to improve the applicability of
DTLS for constrained devices and the networks formed by them.978-1-4799-4657-0/14/$31.00 c© 2014 IEEE

phy for the connection establishment and can leverage efficient
symmetric-key cryptography for the protection of application
data. Third, we show how our delegation architecture naturally
provides authorization functionality for a constrained network
domain. More precisely, by leveraging its central role in the
initial connection establishment, the delegation server can
exercise control over the initialization of new connections for
local constrained devices. The evaluation results confirm that
our proposed delegation architecture considerably improves the
feasibility of DTLS-protected communication across network
domains for memory-constrained devices. In addition, our ar-
chitecture achieves similarly low transmission and computation
overheads as a purely symmetric-key-based DTLS handshake.

This paper is structured as follows. Section II gives a brief
overview of the network scenario and the DTLS protocol. In
Section III, we highlight the memory impact of public-key
cryptography on a DTLS protocol implementation. We then
introduce our delegation architecture in Section IV. Here, we
also show how to authorize new connection establishments.
In Section V, we discuss the security considerations of our
proposed delegation architecture. We then present the results
of our detailed evaluation in Section VI. Finally, Section VII
examines related work and Section VIII concludes this paper.

II. PREREQUISITES

We now provide a brief overview of our abstract network
scenario and the DTLS protocol as the basis of our work.

A. Network Scenario

As depicted in Fig. 1, our assumed network scenario
consists of constrained devices, local or Internet-based ser-
vices, and gateways that interconnect the different network
domains and communication end-points. Constrained devices
are assumed to communicate via constrained link layer tech-
nologies such as IEEE 802.15.4. Hence, transmissions within a
constrained network domain involve lossy wireless links with
significant packet size limitations. Additionally, we assume
constrained devices to be IP-enabled and to be equipped with
6LoWPAN [8], an IPv6 adaptation layer for constrained link
layers standardized at the IETF. 6LoWPAN-enabled gateways
then act as mere IP packet forwarders and connect the con-
strained network domains to the local IP network infrastructure
or the Internet via regular wired or wireless connections.

With respect to processing and storage resources, we as-
sume that constrained devices are equipped with only a few
MHz of computation power, several kilobytes of RAM and
several tens of kilobytes of ROM. Furthermore, constrained
devices may be battery-powered. Thus, besides computation
and memory overheads, energy efficiency constitutes an addi-
tional important factor when considering protocol feasibility
in constrained network environments. Gateways and services,
on the contrary, run on commodity, wall-powered network
and server hardware, respectively. Hence, these devices de-
note comparably unconstrained nodes in our abstract network
scenario. Notably, this network scenario reflects a wide range
of IP-enabled network setups, e.g., in the context of e-health,
home automation, and industrial control applications.

ClientHelloFlight 1
HelloVerifyRequest

Flight 2
ClientHelloFlight 3

ServerHello
Certificate?

ServerKeyExchange?
Flight 4

CertificateRequest?

ServerHelloDone
Certificate?

ClientKeyExchange
CertificateVerify?

Flight 5
[ChangeCipherSpec]

Finished
[ChangeCipherSpec]

Flight 6Finished

Client Server

Fig. 2. Message flow of the DTLS protocol handshake. Messages marked
with a star (?) are optional and their transmission depends on the negotiated
cryptographic primitives for peer authentication and key agreement.

B. The Datagram TLS Protocol

The DTLS protocol is the datagram variant of the widely
used Transport Layer Security (TLS) protocol. DTLS was
originally developed to secure streaming applications such as
VoIP. To this end, the DTLS protocol design replaces the
underlying reliable transport channel of TLS with an unreliable
channel, e.g., as provided by UDP. Besides this modification,
the main design goal of the DTLS specification is to preserve
the semantics and security guarantees of the TLS protocol.

To establish a new DTLS security context for the pro-
tection of application data, a client and a server perform
a connection handshake that consists of up to 15 messages
(see Fig. 2). These handshake messages are bundled into 6
message flights. Flights 1 and 2 serve as a return-routability
test for Denial of Service (DoS) protection. The central part
of the handshake consists of flights 3, 4, and 5. Here, the
peers first negotiate the cipher suites to be used for the
cryptographic operations. The peers then authenticate each
other and carry out a key agreement for the protection of
the subsequent handshake messages and application data. In
this context, DTLS supports a wide range of public-key-based
primitives and optionally provides for a purely symmetric-key-
based handshake. The Finished messages in flights 5 and
6 conclude the handshake. These messages allow both peers
to verify the correctness of the performed handshake. The
peers, therefore, compute a hash over the entire handshake
and transmit this information to the communication partner in
an encrypted form. Successful decryption and hash verification
then validate the derived session keys and the integrity of the
entire handshake. Finally, the peers use the derived session
keys to protect the transmission of subsequent application data.

III. PUBLIC-KEY CRYPTOGRAPHY IN THE DTLS
HANDSHAKE

Public-key cryptography is the de-facto standard for peer
authentication across independent network domains in the In-
ternet. It enables two peers to only exchange the public portion
of a public/private key-pair over untrusted infrastructure. Based
on these credentials, the owner of the corresponding private
key can then securely be authenticated. By augmenting the
public key with further information such as a domain name

via certificates, the public key can additionally be bound
to a specific device or network domain. Hence, for peer
authentication, both communicating end-points only need to
trust a common certificate authority and are not required to
maintain a pre-shared security context.

However, public-key cryptography involves significant
computation, transmission, and memory overheads in the con-
text of constrained devices [5], [6]. Here, we focus on the
memory aspects of public-key cryptography and show that its
use in IP security protocols may incur prohibitive overheads
regarding constrained devices with limited memory resources.
We now highlight and quantify the memory impact of public-
key cryptography on a DTLS protocol implementation for
constrained devices and its protocol mechanisms. We structure
our discussion along the following two dimensions: i) run-time
memory requirements, and ii) implementation size. We refer to
Section VI for detailed information about our evaluation setup.

Run-time memory requirements. During the memory analy-
sis of our public-key-enabled DTLS implementation, we found
that the support of the certificate-based handshake requires a
notable amount of RAM resources for constrained devices.
Specifically, public-key functionality and certificate parsing
require about 1.4 kB of static RAM in our evaluation setup.
This overhead mainly stems from the relic toolkit2 as the
underlying cryptographic library of our protocol implemen-
tation. The choice of a different cryptographic library would
not have changed this observation significantly as similar RAM
requirements were also reported for other open source libraries
with support for elliptic curve cryptography (ECC) [9].

In addition to this inherent overhead of public-key cryptog-
raphy, its application in the DTLS handshake also influences
the memory requirements of the DTLS protocol mechanisms.
Most importantly, we found that the packet processing of
the certificate-based handshake requires about 1.3 kB of static
RAM for the correct handling of out-of-order or lost handshake
messages. This high overhead is exclusively due to the specific
design traits of the DTLS protocol. More precisely, a receiving
peer must maintain the original sending order of the delivered
messages when computing the handshake verification hash for
the Finished message. As a result, this peer must buffer
all packets of a message flight until it can restore the correct
sending order. Likewise, the retransmission mechanism of the
DTLS protocol requires a sending peer to buffer sufficient
information for the recreation of an entire message flight as
retransmissions operate on a per-flight basis (see Fig. 2).

Considering the entire DTLS protocol functionality, we
observed static RAM requirements of about 6.2 kB and a
maximum stack size of about 1.8 kB for the certificate-based
handshake in our evaluation setup. To put these numbers
into perspective, e.g., the TelosB platform [10] is equipped
with only 10 kB of RAM. Hence, the RAM requirements of
public-key cryptography in IP security protocols such as DTLS
may often be prohibitive for such constrained devices. This
is especially true when considering the additional memory
requirements of the operating system and the application logic.

Implementation size. Similar to our observations concerning
the run-time memory requirements, our analysis also revealed

2http://code.google.com/p/relic-toolkit/

an extensive utilization of ROM resources. Specifically, more
than 50 % of the total ROM requirements of 41.3 kB for our
public-key-enabled DTLS implementation can be attributed to
the relic toolkit. Also here, the use of a different cryptographic
library would not have dramatically changed this observation
as other libraries with ECC support likewise require 16 kB of
ROM or more [9]. Interestingly, certificate parsing – another
aspect that often is considered costly with respect to memory
resources – can be implemented with as few as 1.5 kB of ROM
when focusing on a critical subset of all standardized certificate
extensions and skipping over unsupported ones. Hence, while
public-key support itself requires extensive ROM resources
on constrained devices, mere certificate parsing only adds a
modest overhead to the certificate-based DTLS handshake.
This is an especially important observation when considering
potential hardware support for ECC operations.

Still, already the base functionality of the DTLS protocol,
i.e., excluding public-key cryptography, incurs a non-negligible
ROM overhead of about 17 kB in our protocol implementation.
A major part of this overhead stems from the complex hand-
shake mechanisms in the DTLS protocol design. Importantly,
this unavoidable overhead is further elevated by additional
functionality that is required for the verification of certificates
during the DTLS handshake. More precisely, certificate verifi-
cation requires loose but global time synchronization to verify
the validity period of a certificate as well as functionality for
certificate status verification to ensure that a certificate has not
been revoked at the time of handshake execution. Thus, the
certificate-based DTLS handshake quickly requires extensive
ROM resources. This is especially critical for devices that, e.g.,
are based on the 16-bit MSP430 micro-controller platform.
These devices can only address a maximum memory space
of 64 kB for both RAM and ROM combined. For such and
similarly memory-constrained devices, the certificate-based
DTLS handshake may therefore often be infeasible.

To summarize, public-key cryptography enables secure
communication with low management efforts as cryptographic
identities can be exchanged over untrusted infrastructure and
can additionally be bound to specific devices via certificates.
However, the certificate-based DTLS handshake incurs mem-
ory overheads that often are prohibitive for constrained de-
vices. Hence, to enable secure communication for devices with
insufficient RAM or ROM resources regarding the certificate-
based handshake, an alternative approach to establish a secure
connection across independent network domains is needed.

IV. DESIGN

With support for a symmetric-key-based handshake, the
DTLS protocol already provides an efficient alternative to
public-key cryptography. More precisely, symmetric-key-based
peer authentication and key agreement in the DTLS handshake
incur near zero additional memory overhead as the required
cryptographic primitives are also used for other tasks in
the protocol design, e.g., the protection of application data.
However, the symmetric-key-based DTLS handshake requires
secret keys to be pre-shared and readily available at both com-
munication end-points when establishing a secure end-to-end
connection. In other words, the symmetric-key-based hand-
shake requires a key provisioning mechanism that securely
deploys secret information at the end-points before a secure

 Internet D

R

Constrained Domain

D

2) Initial DTLS handshake

3) Session
 resumption

C
ert

1) Out-of-band
 secret exchange

DS

GW

Fig. 3. The handshake delegation procedure. When a new constrained device
(D) joins the local network domain, the delegation server (DS) imprints a
master key in the constrained device. DS can then perform a certificate-based
DTLS handshake with a remote end-point (R) on behalf of D. By encrypting
the security context with the master key and offloading it to R, DS can securely
hand over the security context of the established DTLS connection to D.

DTLS connection can be established. To solve this dilemma
especially when the end-points belong to independent network
domains and communicate over untrusted infrastructure, we
now present the design of our delegation architecture as a
simple key provisioning mechanism. We then show how our
architecture can be used to authorize communication inside a
local network domain and for remote services.

A. Delegating the DTLS Connection Establishment

The main goal of our proposed delegation architecture is
to reconcile the following two conflicting objectives. On the
one hand, we aim at facilitating established best practices
for peer authentication in the Internet. We, thus, intend to
re-use existing security protocols and public-key infrastruc-
tures for authentication purposes across independent network
domains. On the other hand, we want to enable constrained
devices with limited memory resources to participate in secure
communication with remote end-points. We thereby primarily
focus on the scenario where the remote end-point, e.g., an
Internet service, has sufficient resources for a standard DTLS
protocol implementation as well as for the support of public-
key cryptography and certificate validation functionality.

Architectural overview. As depicted in Fig. 3, the main
building block of our proposed delegation architecture is the
introduction of a delegation server that allows to separate the
initial DTLS connection establishment from the subsequent
protection of application data. The main task of the delegation
server is to provide a constrained device with the necessary
security context to securely communicate with a remote end-
point. Hence, our delegation server has a similar role to a
key distribution center in protocols for local network security
such as Kerberos. However, in contrast to these approaches,
our proposed delegation server does not maintain pre-shared
secret keys for all potential communication partners. Instead,
it establishes an on-demand security context with a remote
end-point to achieve a scalable solution with respect to the
vast number of Internet services that a constrained device can
potentially communicate with. To establish this on-demand
security context, the delegation server acts on behalf of a
constrained device during a certificate-based DTLS handshake.
The delegation server then hands over the established security
context to the constrained device (see steps 2 and 3 in Fig. 3).

Bootstrapping a constrained device. To allow for a protected
exchange of the security context between the delegation server
and the constrained device, we require both entities to share a
symmetric key, i.e., the device-specific master key (see step 1

in Fig. 3). This key may, e.g., be imprinted in the device via
physical contact [11] or wireless communication [12] with the
delegation server when bootstrapping the device into the local
network domain. In addition, this bootstrapping procedure pro-
vides the delegation server with information about the DTLS
cipher suites that are supported by the constrained device for
the protection of application data. With this information, the
delegation server can then establish a DTLS connection with
a remote end-point on behalf of the constrained device.

Delegation procedure. In our delegation architecture, we
assume that the delegation server and constrained devices
in a local network domain are administered by a common
operator. This operator can, e.g., be the owner of a constrained
device in a private network scenario or a group of professional
network administrators in an enterprise setting. To afford
a new interconnection between a constrained device and a
remote end-point, the operator instructs the delegation server to
establish a DTLS connection with this end-point. During this
connection establishment, the delegation server and the remote
end-point mutually authenticate each other. More precisely, the
delegation server authenticates the remote end-point via certifi-
cates during the DTLS handshake. To this end, the delegation
server maintains a pool of trusted certificates similar to, e.g.,
today’s web browsers. The delegation server, in turn, either
authenticates to the remote end-point via certificates during
the DTLS handshake or via an application-level password
immediately after the handshake completed. In the former case,
the operator additionally needs to provide the remote end-point
with a certificate identifying the delegation server prior to the
handshake, e.g., via the web-interface of an Internet service.

The main goal of our delegation procedure is to hand over
the security context of the above connection to a constrained
device. To this end, the delegation server and the remote end-
point employ the session resumption extension of the DTLS
protocol [13], [14] during the above connection establishment.
With session resumption, the delegation server and the remote
end-point agree on maintaining sufficient information of the
original connection to resume the connection after it has been
terminated. Session resumption additionally allows one end-
point to transfer its security context to the other end-point in
an encrypted session ticket for safe-keeping. This enables the
offloading end-point to remain stateless while a connection
is inactive and to re-claim its security context in a subsequent
session resumption handshake. The delegation server leverages
this mechanism to push its security context over to the remote
end-point. It thereby encrypts its security context with the
device-specific master key that it shares with the constrained
device. The delegation server further attaches the IP address
of the constrained device to the session ticket in plain form.
After the handshake between the delegation server and the
remote end-point has completed, the delegation server closes
the connection and purges its local connection state.

At this point, the remote end-point can establish a secure
connection with the constrained device (see step 3 in Fig. 3).
To this end, it initiates a session resumption handshake with
the constrained device at the previously announced IP ad-
dress. Likewise, the delegation server can trigger the session
resumption handshake at the constrained device by sending an
initiation command with the IP address of the remote end-

point to the constrained device. During the session resumption
handshake, the remote end-point transfers the session ticket
with the encrypted security context of the delegation server to
the constrained device. The constrained device then decrypts
and uses this context to authenticate and to re-establish the
previous connection with the remote end-point.

Notably, the session resumption handshake has an ab-
breviated form and neither requires public-key cryptography
nor certificate-related functionality as it is strongly based
on the previously established security context. This allows
us to unburden the constrained device from all certificate-
related overheads as well as most DTLS handshake com-
plexities that result from large message flights. Moreover,
session resumption enables the end-points to tear down and
to efficiently re-establish a DTLS connection when needed.
This allows to handle multiple DTLS connections even on
memory-constrained devices. Finally, new session keys for the
protection of application data are derived during each session
resumption handshake. Hence, security properties do not de-
grade even if large amounts of data were to be transmitted.

B. Authorizing Inter- and Intra-Domain Communication

By establishing secure connections on behalf of a con-
strained device, our delegation server can effectively control
which remote end-point this device can communicate with.
To prevent an unauthorized end-point from interacting with a
constrained device, we require all constrained devices to only
accept DTLS handshakes involving its device-specific master
key. These master keys are only shared with the delegation
server. The delegation server in turn only establishes new
connections to authenticated services that were triggered by the
operator of the local network domain. With these policies, our
delegation architecture naturally allows to restrict connections
to remote end-points that were authorized by an operator.

Until now, we only employ our delegation architecture –
and thus its authorization capabilities – for remote end-points.
To also facilitate authorization of communication within the
local network domain, we extend our delegation architecture
to connection establishments between local constrained de-
vices. Importantly, the delegation server obtains the device-
specific master key of each local constrained device during
the bootstrapping procedure. This enables the delegation server
to perform a symmetric-key-based DTLS handshake with a
constrained device A on behalf of another constrained device
B. During this handshake, the delegation server employs the
DTLS session resumption extension and encrypts the estab-
lished security context for device B in a session ticket. This
allows each of the two constrained devices to trigger a ses-
sion resumption handshake as presented above. As the initial
handshake involves the device-specific master key between the
delegation server and device A, device A is ensured that the
current connection has been authorized by the operator of the
local network domain. Likewise, device B verifies this fact
by successfully decrypting the session ticket with its device-
specific master key during the session resumption handshake.

Revocation of authorizations. The operator of the local net-
work domain may eventually decide to revoke the authorization
of a specific DTLS connection involving a local constrained
device or a remote end-point. To handle such a revocation,

the delegation server includes a connection identifier in the
encrypted part of its session tickets. When a connection is
revoked, the delegation server instructs the constrained device
to add the identifier to a list of invalid connections. The
constrained device then closes a potentially active connection
and no longer accepts handshakes involving this identifier.

As the connection blacklist may grow in size over time and
occupy non-negligible memory resources at a constrained de-
vice, the delegation server can also instruct a device to change
the decryption key for the session tickets. This step invalidates
previously issued session tickets and enables the device to
flush its blacklist. To afford such resetting of the blacklist
without the need to completely re-bootstrap the constrained
device, the delegation server no longer directly employs the
device-specific master key when encrypting security contexts
for the constrained device. Instead, the delegation server and
the constrained device perform a symmetric-key-based DTLS
handshake as part of the bootstrapping procedure. The peers
then employ the derived key of this handshake, which would
otherwise be used for the protection of application data, to
encrypt and decrypt security contexts in session tickets. To
reset the blacklist, the delegation server and the constrained
device simply perform another symmetric-key-based DTLS
handshake and establish a new derived key. The delegation
server then re-establishes the security contexts with those end-
points that the device is still authorized to interact with.

V. SECURITY CONSIDERATIONS

We now briefly discuss attacks that an adversary can mount
against our delegation architecture in the order of their severity.

Compromised remote end-point. If an adversary com-
promised a remote end-point, e.g., an Internet service, this
adversary could retrieve a large quantity of stored security
contexts for inactive connections between constrained devices
and the compromised end-point. While session tickets are
always stored in encrypted form at the remote end-point, the
adversary could still get access to the security contexts of
the compromised end-point. This, however, is similarly true
for the private key of the remote end-point when employing
public-key cryptography. Hence, we leverage current best prac-
tices for public-key cryptography to mitigate such an attack.
Specifically, we require the remote end-point to encrypt its
own security context while a connection is inactive and revoke
compromised security contexts. For revocation purposes, we
facilitate the revocation procedure that we presented above.

Compromised delegation server. An adversary may also
compromise the delegation server and retrieve all device-
specific master keys of the local network domain. To prevent
the adversary from issuing new or revoking existing authoriza-
tions for local constrained devices, the operator must revoke
the certificate of the delegation server and issue a new one
after the delegation server has been sanitized or replaced.
Moreover, local devices must be re-bootstrapped and imprinted
with new device-specific master keys. After that, the authorized
connections for all devices in the local network domain can
be re-established by the delegation server. While limited to a
single network domain, our delegation server must be hardened
against this attack similar to a key distribution center for local
network security solutions to prevent information leakage.

1 2 3 4 5 6 7 8

Delegation

Symmetric

Certificate

Memory [kB]

1.08 kB 1.45 kB 0.89 kB

1.08 kB 0.91 kB 0.94 kB

1.08 kB 3.21 kB 1.81 kB1.34 kB

sym. crypto

general proc.

PK crypto

stack

Fig. 4. RAM overhead of the certificate-based DTLS handshake, the
symmetric-key-based DTLS handshake, and our delegation architecture. Our
delegation approach requires slightly more RAM than the symmetric-key-
based handshake, but considerably less than the certificate-based handshake.

Compromised constrained device. If an adversary compro-
mised a constrained device, the adversary could gain access
to its master key. Hence, the compromised device must be re-
bootstrapped and imprinted with a new master key. Likewise,
the delegation server must revoke and re-establish authorized
connections for this specific device to prevent the adversary
from impersonating the device towards others. Notably, this
attack is not unique to our delegation architecture and similarly
exists when employing public-key cryptography.

VI. EVALUATION

For our evaluation, we extended the symmetric-key-based
tinyDTLS implementation3 with support for the certificate-
based handshake. Moreover, we added the required session
resumption functionality for our delegation architecture. As
constrained devices, we employed the WiSMote platform [15]
featuring a 16 MHz MSP430 micro-controller, 16 kB of RAM,
128 kB of ROM, and an IEEE 802.15.4 radio interface. This
platform supports extended 20 bit addressing. We used Contiki
OS [16] in version 2.7 as the underlying operating system and
deployed our WiSMotes in the public testbed FlockLab [17]
for evaluation purposes. Notably, while we were unable to run
the certificate-based DTLS handshake on TelosB motes, the
extended addressing space of the WiSMotes enabled us to
run and compare the certificate-based DTLS handshake, the
symmetric-key-based handshake, and our proposed delegation
architecture. Importantly, we also successfully verified that our
delegation architecture is supported by TelosB motes.

With respect to the cryptographic primitives, we followed
current security recommendations for constrained network
environments [18]. Specifically, we used elliptic curve NIST
P-256 for public-key operations, AES-128 for symmetric-key
operations, and SHA256 for hashing purposes. For the public-
key operations, we employed the open source relic toolkit.
To evaluate the certificate-based DTLS handshake, we created
a self-signed certificate for our own root certificate authority
(CA) based on the above elliptic curve. This certificate was
pre-provisioned on all devices in our evaluation setup. Fur-
thermore, we issued per-device certificates that were signed by
our root CA. With this setup, the certificate-based handshake
required the transmission of one certificate per end-point and
one signature verification for the validation of a certificate
chain. Note that our measured transmissions constitute a lower
bound on the certificate-related overhead as device certificates
in our evaluation setup had a small size (i.e., 0.37 kB) and did
not involve intermediate certificates in the certificate chain.

3http://tinydtls.sourceforge.net/

0 5 10 15 20 25 30 35 40 45

Delegation

Symmetric

Certificate

Memory [kB]

5.18 kB 8.99 kB

5.18 kB 8.35 kB

5.18 kB 12.99 kB 22.88 kB

sym. crypto

general proc.

PK crypto

Fig. 5. ROM overhead of the certificate-based DTLS handshake, the
symmetric-key-based DTLS handshake, and our delegation architecture. The
public-key library constitutes the major contributor to the ROM requirements
of the certificate-based DTLS handshake.

A. Reduced RAM and ROM Requirements

To derive RAM and ROM estimates for our DTLS imple-
mentation, we analyzed the Contiki binaries with the msp430-
size and msp430-objdump tools. We distinguished between
three variants: i) with certificate-based DTLS functionality,
ii) limited to the purely symmetric-key-based DTLS hand-
shake, and iii) with additional support for our delegation
architecture. Furthermore, we analyzed the maximum stack
size of the different DTLS handshake variants by initializing
the RAM resources of the constrained devices with a well-
defined pattern as the first task during the device boot-up
phase. After the successful conclusion of the handshake, we
then dumped the RAM content. By determining the amount of
dynamic memory that was overwritten during the execution of
the handshake, we were able to estimate the maximum stack
size of our DTLS implementation.

As illustrated in Fig. 4 and 5, the certificate-based DTLS
handshake requires almost three times the RAM and ROM
resources of the symmetric-key-based handshake. Public-key
cryptography constitutes the key differentiator with an over-
head of 1.34 kB of static RAM and 22.88 kB of ROM. Notably,
also the memory overhead of the DTLS base functionality
increases when comparing the symmetric-key-based to the
certificate-based DTLS handshake. This increase primarily
stems from the additional and more complex DTLS mes-
sage processing and the increased retransmission buffers for
the longer message flights of the certificate-based handshake
(compare non-marked messages in Fig. 2 with the complete
handshake). Importantly, the retransmission-related RAM over-
head further grows when larger certificates or longer certificate
chains are employed than the ones used in our evaluation setup.

In addition to these static memory overheads, the maximum
stack size of the certificate-based DTLS handshake (1.81 kB)
is almost twice as high as the stack size of the symmetric-
key-based handshake (0.94 kB). Again, the most significant
overhead driver is the public-key library that dynamically
allocates memory during its initialization and for the actual
cryptographic operations. Overall, the certificate-based DTLS
handshake trades a low management effort of peer authen-
tication and key agreement across independent network do-
mains for significant memory requirements. These overheads,
however, may often be prohibitive for constrained devices that
exhibit memory limitations similar to the TelosB platform with
48 kB of ROM, 10 kB of RAM, and 16 bit addressing.

In contrast, our proposed delegation architecture enables
a constrained device to offload all public-key- and certificate-
related operations to the delegation server. This relieves the

C S D C S D C S D C S D C S D C S D
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Flight 1 Flight 2 Flight 3 Flight 4 Flight 5 Flight 6

1
2
3
4
5

p
ro

ce
ss

in
g
 t

im
e
 [

s]
general

sym. crypto

PK crypto

Fig. 6. Client-side computation overhead for the certificate-based DTLS
handshake (C), the symmetric-key-based DTLS handshake (S) and our dele-
gation architecture (D) on a per flight basis. Our delegation architecture incurs
a low processing overheard, similar to the symmetric-key-based handshake.

constrained device from a considerable memory burden. As
depicted in Fig. 4 and 5, the memory requirements of our
proposed delegation architecture, in fact, only show a marginal
increase compared to the purely symmetric-key-based DTLS
handshake. More precisely, RAM and ROM requirements
increase by 0.54 kB and 0.64 kB, respectively. This slight
increase originates from the additional protocol logic for
the session resumption extension and the storage buffer for
a small number of session tickets. To summarize, devices
with sufficient memory resources for the symmetric-key-based
DTLS handshake are very likely to also support our delegation
architecture and, thus, can participate in authorized and secure
communication across independent network domains.

B. Additional Run-time Improvements

We also evaluated the run-time performance of our pro-
posed delegation architecture in constrained network envi-
ronments. As baselines for this evaluation, we measured the
computation and transmission overheads of the DTLS protocol
for the certificate-based and symmetric-key-based handshakes
between two wirelessly connected WiSMotes. We then com-
pared these baselines against the results for our delegation
architecture. The presented results denote averages over 100
measurement runs. The standard deviation was below 13.9 ms
for the public-key-related operations and below 1.55 ms for the
remaining processing tasks.

In-node processing time. Fig. 6 and Fig. 7 depict the com-
putation overhead on the client- and the server-side for the dif-
ferent DTLS handshake variants. The certificate-based DTLS
handshake incurs an overall processing overhead of about 6 s
per end-point. This significant overhead primarily stems from
the public-key operations required for the certificate-based
peer authentication (i.e., 4.32 s) and the key agreement (i.e.,
1.32 s) during the DTLS handshake. Combined, all public-key
operations in the certificate-based DTLS handshake demand
about 95 % of the overall processing time per end-point, thus
dwarfing the remaining processing overheads of 0.05 s for the
symmetric-key operations and of 0.25 s for the general packet
processing (e.g., see message flights 4 and 5 in Fig. 6). The
verification of the certificate chain in our evaluation scenario
only requires a single signature verification, i.e., 1.9 s. Impor-
tantly, this certificate verification overhead grows linearly with
number of intermediate certificates in a certificate chain.

C S D C S D C S D C S D C S D C S D
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Flight 1 Flight 2 Flight 3 Flight 4 Flight 5 Flight 6

1
2
3
4
5

p
ro

ce
ss

in
g
 t

im
e
 [

s]

general

sym. crypto

PK crypto

Fig. 7. Server-side computation overhead for the certificate-based DTLS
handshake (C), the symmetric-key-based DTLS handshake (S) and our dele-
gation architecture (D) on a per flight basis. The processing overheads on the
server-side are similar to those on the client-side.

In contrast, the purely symmetric-key-based DTLS hand-
shake exhibits a considerably reduced processing overhead of
about 0.18 s per peer. Our delegation architecture achieves the
same low overhead. Notably, the verification and decryption
of a session ticket (about 8.59 ms) and the generation of a
new session ticket for a subsequent DTLS connection with the
same end-point (about 11.08 ms) incur additional overheads
compared to the symmetric-key-based DTLS handshake (e.g.,
see message flight 2 in Fig. 6). However, these additional
overheads are compensated by the fewer DTLS messages
and, consequently, the decreased packet processing cost for
the omitted messages in the session resumption handshake.
Overall, our proposed delegation architecture considerably
reduces the processing overhead compared to the certificate-
based DTLS handshake and achieves an equal processing
efficiency to the symmetric-key-based DTLS handshake.

Transmission overhead. As shown in Fig. 8, our general
observations for the in-node processing also apply to the
measured transmission overheads of the different DTLS hand-
shake variants. More precisely, the certificate-based DTLS
handshake demands a total of 1609 bytes for the transmis-
sion of all handshake messages. In contrast, the symmetric-
key-based handshake and our delegation architecture require
transmissions of 458 bytes and 515 bytes, respectively.

Regarding the certificate-based handshake, all 15 messages
of the DTLS protocol are needed for the connection establish-
ment (see all messages in Fig. 2). When transmitted over size-
constrained IEEE 802.15.4 radio links, these messages must
additionally be split into 23 packet fragments due to their
extensive message size. Such fragmentation has previously
been shown to potential be harmfully [19] and is especially
critical when considering the lossy nature of the wireless links.
Specifically, with DTLS, already the loss of a single fragment
of a message flight results in the retransmission of the entire
flight. As each additional fragment of a flight adds to the
overall probability of a lost packet and hence a retransmission,
flights consisting of multiple fragments are undesirable. Still,
the longest message flight of the certificate-based DTLS hand-
shake, i.e., flight 4, must be split into 8 fragments. Moreover,
as this flight contains certificate information, larger certificates
or longer certificate chains than the ones used in our evaluation
setup not only add to the immediate transmission cost, but also
increase the non-negligible probability of retransmissions.

C S D C S D C S D C S D C S D C S D
0

100

200

300

400

500

600

700
U

D
P
 p

a
y
lo

a
d
 l
e
n
g
th

 [
b
y
te

]

Flight 1 Flight 2 Flight 3 Flight 4 Flight 5 Flight 6

general

PK crypto

certificate

session ticket

Fig. 8. Transmission overhead for the certificate-based DTLS handshake (C),
the symmetric-key-based DTLS handshake (S) and our delegation architecture
(D) on a per flight basis. Our delegation approach constitutes a similar
transmission overhead as the symmetric-key-based handshake.

Contrarily, the symmetric key-based handshake allows to
reduce the number of handshake messages to 10 (see un-
marked messages in Fig. 2). As the individual message sizes
also are considerably smaller than those of the certificate-
based handshake, only 9 fragments need to be transmitted
for the complete handshake. Notably, the ServerHello and
ServerHelloDone messages fit into a single fragment.
Our delegation architecture achieves the same reduction in
message fragmentation (i.e., 9 message fragments) and thus
incurs similar transmission overheads as the purely symmetric-
key-based handshake. The major individual contributor for the
transmission overhead of our delegation architecture are the
two session tickets in the session resumption handshake, each
of which has a size of 110 bytes. Hence, while exhibiting
a slight increase in the absolute transmission overhead, our
delegation architecture incurs the same amount of message
forwarding overhead as the symmetric-key handshake.

To conclude, our proposed delegation architecture signifi-
cantly outperforms the certificate-based DTLS handshake with
respect to computation, memory, and transmission overheads.
At the same time, it enables peer authentication and autho-
rization across independent network domains. Finally, it only
adds marginal memory requirements and achieves the same
low computation and transmission overheads as the standard
symmetric-key-based DTLS handshake.

VII. RELATED WORK

For our discussion of related work, we distinguish three
main research directions: i) alternative delegation and autho-
rization approaches for the IP-based IoT, ii) related progress
concerning cryptographic primitives, and iii) further IP security
protocol improvements in the context of the IoT.

Several delegation and authorization approaches were re-
cently presented that aim at offloading expensive IP security
protocol operations to more powerful devices. The authors
in [20], [21], [22] propose to delegate the public-key operations
of DTLS, TLS, and IKEv2 to an on-path gateway, respectively.
These approaches share the end-to-end security keys with the
gateway. Thus, the authors effectively require gateways to be
fully trusted and to be hardened against potential attacks. In
contrast, our delegation architecture offloads the initial con-
nection establishment to an off-path delegation server. Hence,
our architecture does not require similar assumptions about

the underlying infrastructure and supports the deployment of
commodity hardware. Unlike our work, these approaches also
do not consider revocation in their design. Saied et al. [23],
[24], [25] propose to split the private key of the constrained
device into multiple blocks. Proxies inside the constrained
network domain then perform public-key operations based
on their share of the private key. The proposed approaches,
however, add a considerable number of network messages to
the protocol handshake. In contrast, our delegation architec-
ture decreases computation, memory, as well as transmission
overheads. The Server-based Certificate Validation Protocol
(SCVP) [26] enables a client to delegate certificate validation
to a trusted server. Still, SCVP does not allow to offload other
public-key-related operations of the certificate-based DTLS
handshake. In [27], we previously presented initial ideas on
delegating the certificate-based DTLS handshake via session
resumption mechanisms. This paper extends on our previous
work by contributing a significantly refined design and a
detailed evaluation of our proposed delegation architecture.

Concerning related progress of cryptographic primitives,
Hu et al. [28] show that public-key cryptography can be
implemented and efficiently be used via dedicated hardware
modules for constrained devices. Kothmayr et al. [29] sub-
sequently present an implementation of the certificate-based
DTLS handshake based on such hardware support. However,
while allowing to decrease overheads that are directly at-
tributable to the public-key operations, the certificate-based
DTLS handshake involves significant additional overheads
stemming from the protocol design itself and from the need
for time synchronization and certificate status verification func-
tionality. Importantly, our delegation architecture also allows to
reduce these overheads and does not mandate special-purpose
hardware for constrained devices. Implicit certificates [30]
allow to decrease the transmission and verification overheads
of traditional public-key certificates by super-imposing cer-
tificate elements. Still, implicit certificates do not alleviate
the need for public-key cryptography on constrained devices.
Garcia-Morchon et al. [31] propose a polynomial scheme as a
replacement for public-key cryptography in the DTLS hand-
shake. However, similar to the symmetric-key-based DTLS
handshake, their approach depends on the secure provisioning
of the polynomial shares before a DTLS connection can be
established. Hence, they require a key provisioning mechanism
similar to our delegation architecture for secure communica-
tion across independent network domains.

Further IP security protocol improvements for the IoT
predominantly focus on adapting the protocol run-time prop-
erties to the special characteristics of constrained devices.
To decrease handshake transmissions, the proposed Cached
Information Extension for TLS [7] enables a client to cache
static server information and to omit this information during
subsequent handshakes. In [32], we previously presented a
header compression mechanism for DTLS. Complementary to
our work here, such mechanisms allow to further decrease
the transmission overhead of our proposed delegation architec-
ture. Moreover, in [6], we introduced comprehensive session
resumption, denial-of-service protection, and retransmission
mechanisms for DTLS, HIP DEX, and minimal IKEv2 that are
tailored towards constrained network environments. Especially,
the proposed session resumption functionality provides the

necessary protocol mechanisms to also enable our delegation
architecture for HIP DEX and minimal IKEv2.

VIII. CONCLUSION

In this paper, we analyzed the impact of public-key
cryptography on the certificate-based DTLS handshake and
identified significant RAM and ROM requirements. These
requirements render the certificate-based handshake infeasible
for a wide range of constrained devices. To still enable secure
communication between constrained devices and remote end-
points, we proposed a delegation architecture that allows to
separate the initial DTLS connection setup from the subsequent
protection of application data. This delegation architecture is
based on the introduction of a delegation server. By leveraging
the central role of the delegation server in the initial connec-
tion establishment, our delegation architecture also allows to
authorize connections inside a local network domain as well
as between a constrained device and a remote end-point.

As the evaluation results show, our delegation architec-
ture nearly achieves a three-fold reduction of the memory
requirements compared to the certificate-based DTLS hand-
shake. Moreover, our architecture only incurs marginally in-
creased memory overheads considering the symmetric-key-
based DTLS handshake. Importantly, we achieve the same
low computation and transmission overheads as a purely
symmetric-key-based handshake. Hence, in conclusion, our
proposed delegation architecture provides a comprehensive, yet
compact solution for authentication, authorization, and secure
data transmission for the IP-based IoT.

ACKNOWLEDGMENTS

The authors would like to thank Christoph Walser and
Niclas Finne for their valuable support. This work was
partly funded by the German Federal Ministry of Economics
and Technology under the project funding reference num-
ber 01MD11049 and the Swedish Foundation for Strategic
Research (SSF). The responsibility for the content of this
publication lies with the authors.

REFERENCES

[1] S.-J. Jung and W.-Y. Chung, “Non-Intrusive Healthcare System in
Global Machine-to-Machine Networks,” in Proc. of IEEE Sensors
Journal, (Volume:13, Issue:12), 2013.

[2] E. Rescorla and N. Modadugu, “Datagram Transport Layer Security
Version 1.2,” RFC 6347, IETF, 2012.

[3] R. Moskowitz and R. Hummen, “HIP Diet EXchange (DEX),” draft-
moskowitz-hip-dex-01 (WiP), IETF, 2012.

[4] T. Kivinen, “Minimal IKEv2,” draft-kivinen-ipsecme-ikev2-minimal-01
(WiP), IETF, 2012.

[5] A. S. Wander, N. Gura, H. Eberle, V. Gupta, and S. C. Shantz, “Energy
analysis of public-key cryptography for wireless sensor networks,” in
Proc. of IEEE PerCom, 2005.

[6] R. Hummen, H. Wirtz, J. H. Ziegeldorf, J. Hiller, and K. Wehrle,
“Tailoring End-to-End IP Security Protocols to the Internet of Things,”
in Proc. of IEEE ICNP, 2013.

[7] S. Santesson and H. Tschofenig, “Transport Layer Security (TLS)
Cached Information Extension,” draft-ietf-tls-cached-info-16 (WiP),
IETF, 2014.

[8] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, “Transmission
of IPv6 Packets over IEEE 802.15.4 Networks,” RFC 4944, IETF, 2007.

[9] M. Sethi, J. Arkko, A. Keranen, and H. Rissanen, “Practical Con-
siderations and Implementation Experiences in Securing Smart Object
Networks,” draft-aks-crypto-sensors-02 (WiP), IETF, 2012.

[10] J. Polastre, R. Szewczyk, and D. Culler, “Telos: enabling ultra-low
power wireless research,” in Proc. of ACM/IEEE IPSN, 2005.

[11] F. Stajano and R. Anderson, “The resurrecting duckling: Security issues
for ad-hoc wireless networks,” in Proc. of Security Protocols, 1999.

[12] C. Kuo, M. Luk, R. Negi, and A. Perrig, “Message-in-a-bottle: User-
friendly and secure key deployment for sensor nodes,” in Proc. of ACM
SenSys, 2007.

[13] H. Zhou, P. Eronen, and H. Tschofenig, “Transport Layer Security
(TLS) Session Resumption without Server-Side State,” RFC 5077, IETF,
2008.

[14] R. Hummen, J. Gilger, and H. Shafagh, “Extended DTLS Session
Resumption for Constrained Network Environments,” draft-hummen-
dtls-extended-session-resumption-01 (WiP), IETF, 2013.

[15] Arago Systems, “WiSMote,” http://www.aragosystems.com/images/sto
ries/WiSMote/Doc/wismote en.pdf, [Online, last accessed: 08.04.2014].

[16] A. Dunkels, B. Grönvall, and T. Voigt, “Contiki - a Lightweight and
Flexible Operating System for Tiny Networked Sensors,” in Proc. of
IEEE LCN, 2004.

[17] R. Lim, F. Ferrari, M. Zimmerling, C. Walser, P. Sommer, and J. Beutel,
“FlockLab: A testbed for distributed, synchronized tracing and profiling
of wireless embedded systems,” in Proc. of ACM/IEEE IPSN, 2013.

[18] Z. Shelby, K. Hartke, and C. Bormann, “Constrained Application
Protocol (CoAP),” draft-ietf-core-coap-18 (WiP), IETF, 2013.

[19] R. Hummen, J. Hiller, H. Wirtz, M. Henze, H. Shafagh, and K. Wehrle,
“6LoWPAN Fragmentation Attacks and Mitigation Mechanisms,” in
Proc. of ACM WiSec, 2013.

[20] J. Granjal, E. Monteiro, and J. S. Silva, “End-to-end transport-layer
security for Internet-integrated sensing applications with mutual and
delegated ECC public-key authentication,” in Proc. of IFIP Networking,
2013.

[21] S. Fouladgar, B. Mainaud, K. Masmoudi, and H. Afifis, “Tiny 3-TLS:
A trust delegation protocol for wireless sensor networks,” in Proc. of
Security and Privacy in Ad-Hoc and Sensor Networks, 2006.

[22] R. Bonetto, N. Bui, V. Lakkundi, A. Olivereau, A. Serbanati, and
M. Rossi, “Secure communication for smart IoT objects: Protocol
stacks, use cases and practical examples,” in In Proc. of IEEE WoW-
MoM, 2012.

[23] Y. B. Saied and A. Olivereau, “D-HIP: A distributed key exchange
scheme for HIP-based Internet of Things,” in Proc. of IEEE WoWMoM,
2012.

[24] Y. B. Saied and A. Olivereau, “(k, n) threshold distributed key exchange
for HIP based internet of things,” in Proc. of ACM MobiWac, 2012.

[25] Y. B. Saied and A. Olivereau, “HIP Tiny Exchange (TEX): A distributed
key exchange scheme for HIP-based Internet of Things,” in Proc. of
ComNet, 2012.

[26] T. Freeman, R. Housley, A. Malpani, D. Cooper, and W. Polk, “Server-
Based Certificate Validation Protocol (SCVP),” RFC 5055, 2007.

[27] R. Hummen, J. H. Ziegeldorf, H. Shafagh, S. Raza, and K. Wehrle,
“Towards Viable Certificate-based Authentication for the Internet of
Things,” in Proc. of ACM HotWiSec, 2013.

[28] W. Hu, P. Corke, W. Shih, and L. Overs, “secfleck: A public key
technology platform for wireless sensor networks,” in Proc. of EWSN,
2009.

[29] T. Kothmayr, C. Schmitt, W. Hu, M. Brünig, and G. Carle, “DTLS
based security and two-way authentication for the Internet of Things,”
in Ad Hoc Networks (Volume:11, Issue:8), 2013.

[30] G. Zaverucha, “Standards for Efficient Cryptography 4: Elliptic Curve
Qu-Vanstone Implicit Certificate Scheme (ECQV), Working Draft,”
Certicom Research, March 2011.

[31] O. Garcia-Morchon, S. L. Keoh, S. Kumar, P. Moreno-Sanchez,
F. Vidal-Meca, and J. H. Ziegeldorf, “Securing the IP-based internet
of things with HIP and DTLS,” in Proc. of ACM WiSec, 2013.

[32] S. Raza, H. Shafagh, K. Hewage, R. Hummen, and T. Voigt, “Lithe:
Lightweight Secure CoAP for the Internet of Things,” in IEEE Sensors
Journal (Volume:13, Issue:10), 2013.

