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ABSTRACT
6LoWPAN is an IPv6 adaptation layer that defines mech-
anisms to make IP connectivity viable for tightly resource-
constrained devices that communicate over low power, lossy
links such as IEEE 802.15.4. It is expected to be used in
a variety of scenarios ranging from home automation to in-
dustrial control systems. To support the transmission of
IPv6 packets exceeding the maximum frame size of the link
layer, 6LoWPAN defines a packet fragmentation mechanism.
However, the best effort semantics for fragment transmis-
sions, the lack of authentication at the 6LoWPAN layer, and
the scarce memory resources of the networked devices render
the design of the fragmentation mechanism vulnerable.

In this paper, we provide a detailed security analysis of
the 6LoWPAN fragmentation mechanism. We identify two
attacks at the 6LoWPAN design-level that enable an at-
tacker to (selectively) prevent correct packet reassembly on
a target node at considerably low cost. Specifically, an at-
tacker can mount our identified attacks by only sending a
single protocol-compliant 6LoWPAN fragment. To counter
these attacks, we propose two complementary, lightweight
defense mechanisms, the content chaining scheme and the
split buffer approach. Our evaluation shows the practicality
of the identified attacks as well as the effectiveness of our
proposed defense mechanisms at modest trade-offs.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Security and protection (e.g., firewalls)
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Internet of Things; 6LoWPAN; Fragmentation; Hash chains

1. INTRODUCTION
6LoWPAN [23, 31] is an IETF-standardized IPv6 adapta-

tion layer that enables IP connectivity over low power, lossy
network links. It is envisioned as the main building block
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for a number of network scenarios in the Internet of Things
including home automation, industrial control systems, and
smart cities [27]. Accordingly, a wide range of applications
in these scenarios employ 6LoWPAN for IP-based communi-
cation via standard or special-purpose upper layer protocols.

As its main task, 6LoWPAN adjusts IPv6 packets to the
unique characteristics and requirements of wireless multi-
hop communication between low-power devices. The vari-
ety of applications thereby requires 6LoWPAN to support
both small-sized transmissions, e.g., for sensor data or con-
trol commands, and large transmissions, e.g., for firmware
updates or security protocol handshakes [37, 24, 19].

To enable the transmission of large IPv6 packets over size-
constrained link layer technologies such as IEEE 802.15.4 [26],
6LoWPAN provides fragmentation support at the adapta-
tion layer. However, the design of the 6LoWPAN fragmenta-
tion mechanism renders buffering, forwarding and processing
of fragmented packets challenging on resource-constrained
devices. Specifically, malicious or misconfigured nodes may
send duplicate or overlapping fragments. Due to the lack
of authentication at the 6LoWPAN layer, recipients are un-
able to distinguish these undesired fragments from legiti-
mate ones for packet reassembly. Moreover, reassembling
nodes have to optimistically store fragments of a packet and
rely on a timeout mechanism to discard incomplete packets.
This, however, may cause the scarce memory of a node to be
occupied with incomplete packets due to missing fragments.
Thus, lossy links as well as malicious or misconfigured nodes
can block the processing of newly received fragmented pack-
ets by spuriously occupying buffer resources.

Our contribution in this paper is the detailed security
analysis of the 6LoWPAN fragmentation mechanism for net-
works that consist of resource-constrained devices. We iden-
tify two attacks that a malicious node can mount against
the 6LoWPAN layer. First, an eavesdropping attacker can
reactively prevent the successful processing of fragmented
packets by duplicating an overheard fragment with the frag-
ment duplication attack. Second, an attacker without over-
hearing capabilities can pro-actively block processing of any
fragmented packet at the target node by sending a single
6LoWPAN fragment with the buffer reservation attack.

To protect resource-constrained devices against these at-
tacks, we propose two complementing, lightweight mecha-
nisms. The content-chaining scheme mitigates the fragment
duplication attack by offering efficient per-fragment sender
authentication. Moreover, the split buffer approach fosters
competition for the scarce buffer resources between legit-
imate nodes and an attacker on a per-packet basis. Our
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Figure 1: 6LoWPAN packet structure of a first frag-
ment FRAG1 and subsequent fragments FRAGN.

packet discard strategy for the split buffer purges packets
with suspicious sending behavior from the buffer in case of
a buffer overload situation. Our evaluation shows that these
mechanisms mitigate the identified attacks at low cost.

The structure of this paper is as follows. We first give a
brief overview of the 6LoWPAN fragmentation mechanism
in Section 2. We then describe the network scenario and
the attacker model, and provide a detailed security analy-
sis of the 6LoWPAN fragmentation mechanism in Section 3.
Based on these findings, we introduce our complementary,
lightweight countermeasures in Sections 4 and discuss their
security considerations in Section 5. In Section 6, we show
that our proposed approaches protect against the identified
attacks and discuss their trade-offs. Finally, Section 7 dis-
cusses related work and Section 8 concludes our paper.

2. 6LoWPAN PACKET FRAGMENTATION
As a basis for our security analysis, we now give a brief

overview of the 6LoWPAN fragmentation mechanism. We
also discuss the packet routing mechanisms supported by
6LoWPAN and their implications on fragment forwarding.

2.1 Fragmentation Mechanism
The 6LoWPAN adaptation layer is located between the

network and the link layer. It provides header compression
and packet fragmentation functionality for IPv6 packets. In
case of packet fragmentation, each 6LoWPAN fragment car-
ries information that allows for in-place reassembly, even for
out-of-order fragments. In contrast to regular IP fragments,
6LoWPAN fragments only include IP header information in
the initial fragment of a packet.

When an IPv6 packet at a sending node exceeds the avail-
able link layer payload size, the 6LoWPAN fragmentation
mechanism treats the (compressed) IPv6 packet as a single
data field and iteratively segments this field into fragments
according to the maximum frame size at the data link layer.
Each fragment includes a fixed-size fragment header. The
remaining space of the link-layer frame is iteratively filled
with the IPv6 packet content (see Figure 1).

This process implies that only the first fragment (FRAG1 )
contains end-to-end routing information. Hence, a receiving
node needs to correlate the remaining fragments (FRAGN )
to the FRAG1 in order to derive IP-based routing or process-
ing decisions for these fragments. To this end, 6LoWPAN
fragments contain a datagram tag that is included in each
fragment header and is unique per sender and fragmented
packet. Thus, the datagram tag enables a receiving node to
look up routing information for all fragments belonging to a
fragmented packet after the FRAG1 has been received.

Each fragment also carries information that allows for in-
place reassembly of fragmented packets at a receiving node.
The datagram size of the unfragmented (and uncompressed)
IPv6 packet enables a receiving node to reserve buffer space

for reassembly of the whole packet. The datagram offset in-
dicates the position of the current payload within the origi-
nal IPv6 packet and thus the reassembly buffer.

2.2 Fragment Forwarding Mechanisms
6LoWPAN supports three routing mechanisms [31, 2].

Mesh-under routing offers packet forwarding based on link-
layer routing schemes. In contrast, route-over delegates
routing to the network layer on a per-packet basis, which
enhanced route-over optimizes by applying forwarding deci-
sions on a per-fragment basis after the FRAG1 is received.

With mesh-under routing, the 6LoWPAN layer prepends
each fragment with a mesh routing header. This header
contains the end-to-end source and destination link layer
addresses. As the link layer routing scheme at a forwarding
node can immediately use this information to derive a rout-
ing decision on a per-fragment basis, mesh-under routing is
oblivious to packet fragmentation. As a result, individual
fragments may take different paths towards the destination.

In contrast to mesh-under routing, route-over routing does
not require additional header information and derives for-
warding decisions at the network layer. To this end, a receiv-
ing node first reassembles the entire packet before passing
the packet to the upper layers for processing. If the packet
is destined for another node, the receiving node looks up
the next hop in its IPv6 routing table and passes the packet
to the 6LoWPAN layer for re-fragmentation. As forwarding
nodes apply the routing decision on a per-packet basis, all
fragments of a packet are sent along the same path.

To afford mesh-under-like forwarding efficiency, enhanced
route-over [2] proposes an optimization of the route-over ap-
proach. Enhanced route-over derives forwarding decisions
directly based on the IP header information in the FRAG1.
It then stores the forwarding decision, forwards the FRAG1,
and applies the same forwarding decision on reception of a
FRAGN that belongs to the same IPv6 packet. Hence, while
FRAGNs can be forwarded individually, they are transmit-
ted along the same path, similar to route over.

We now proceed with the security analysis of the pre-
sented 6LoWPAN fragmentation and routing mechanisms.

3. SECURITY ANALYSIS
Our security analysis focuses on how an attacker can mis-

use the 6LoWPAN fragmentation and routing mechanisms
in order to deny the correct processing of legitimate frag-
mented packets. Specifically, we focus on the challenging
case of an in-network, standard-compliant attacker that di-
rectly exploits vulnerabilities of the 6LoWPAN protocol de-
sign and characteristics of the respective network scenario.

We make no assumptions regarding the attacker’s hard-
ware resources. Thus, our identified attacks are feasible even
for resource-constrained devices that are similar or equal to
the actual devices in the network. Furthermore, the appar-
ently benign behavior at the 6LoWPAN layer makes the at-
tacker and the attacks themselves hard to detect. As such,
these attacks are complementary to research on network-
external attacks such as jamming-based attacks [32, 38].

We now describe the network scenario and the attacker
model as the basis of our security analysis. We then proceed
with our discussion of the identified attacks and analyze the
topological position of a node that can be targeted depend-
ing on the routing scheme and the location of the attacker.
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Figure 2: Network scenario with resource-
constrained nodes (R) that connect to the Internet
via a gateway (GW). The attackers Eve (E), Mal-
lory (M), and Malice (M*) are marked in dark grey.
Arrows indicate specific forwarding paths.

3.1 Network Scenario
In our security analysis, we abstract from specific device

types, link layer technologies, and network topologies and
only regard generic network characteristics. Still, our focus
lies on resource-constrained devices. Hence, our network
scenario consists of devices with only a few MHz of compu-
tational power and tens of kilobytes of RAM. These devices
communicate over low-power wireless links and may option-
ally use security mechanisms provided at the link layer, e.g.,
based on network-wide keys. We assume the 6LoWPAN
network to be connected by a gateway to a backbone infras-
tructure such as the Internet (see Figure 2).

Most notably, the ability of the resource-constrained de-
vices in our network scenario to process and store frag-
mented packets for reassembly is very limited. For exam-
ple, the default configuration of the Contiki operating sys-
tem [14] for the Tmote Sky platform is restricted to the re-
assembly of only a single fragmented packet at a time with
a maximum IPv6 packet size of 240 bytes.

3.2 Attacker Model
We distinguish between three different types of attack-

ers: Eve, Mallory, and Malice. Eve and Mallory are both
network-internal attackers who participate in the 6LoWPAN
network. To join a network without link layer security, Eve
and Mallory can simply be placed within radio range of the
target network. In case of a protected network, an attacker
must first gain admission to the network, e.g., by extracting
the security keys from a legitimate node [20, 1].

Both, Eve and Mallory, participate in the routing struc-
ture and thus can send messages to any node in the network.
However, with respect to the forwarding path of specific frag-
mented packets, they are situated in different network loca-
tions (see Figure 2). Eve is located besides the forwarding
path of the fragmented packets. Thus, she can overhear the
communication channel and send packets in reaction to over-
heard messages. Mallory is located on the forwarding path.
Hence, she has Eve’s capabilities and can also delay, reorder,
alter or simply drop legitimate packets. The capabilities of
Mallory allow her to mount at least the attacks that are vi-
able for Eve. Thus, we do not mention her explicitly in our
security considerations when discussing Eve.

In contrast to Eve and Mallory, Malice is located out-
side the 6LoWPAN network and has significantly more re-
sources than the resource-constrained nodes. This enables
her to simply flood a resource-constrained node with numer-
ous large packets [21]. The fragmentation of these packets
at the gateway further amplifies this attack by increasing
the number of packets that the target node has to process.

To protect against such flooding-based attacks from Mal-
ice, the gateway may employ authenticated tunnels to ex-
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Figure 3: Packet diagram depicting the fragment
duplication attack. A target must decide which frag-
ment payload (P3 or P ′3) to use during reassembly.

ternal hosts as well as rate limitation for large packets from
authenticated sources. Authenticated tunnels enable the
gateway to exclude external hosts from communication if
they do not behave correctly. Furthermore, rate limitation
at the gateway prevents the 6LoWPAN network or a single
6LoWPAN node from being overloaded due to the vast dif-
ference in network resources. However, these mechanisms
at the gateway still leave the 6LoWPAN network vulnera-
ble to network-internal attackers. We therefore focus our
discussion on attacks that Eve and Mallory can mount.

3.3 Fragment Duplication Attack
The fragment duplication attack leverages the fact that a

recipient cannot verify at the 6LoWPAN layer if a fragment
originates from the same source as previously received frag-
ments of the same IPv6 packet. Thus, the recipient cannot
distinguish legitimate fragments from spoofed duplicates at
the time of reception. Instead, it has to process all fragments
that appear to belong to the same IPv6 packet according to
the sender’s MAC address and the 6LoWPAN datagram tag.

Eve can exploit this fact to selectively block the reassem-
bly of specific fragmented packets at a target node. For ex-
ample, she may aim at preventing secure communication by
blocking handshake packets of the DTLS protocol. To do so,
she inspects the wireless medium for fragments that contain
a DTLS message type. She then injects spoofed FRAGNs
with random payload and a fragment header that links her
fragments to the legitimate 6LoWPAN packet, as illustrated
in Figure 3. As the target node cannot distinguish spoofed
and legitimate FRAGNs, it cannot decide which fragments
to use during packet reassembly at the 6LoWPAN layer.

In general, Eve can block the delivery of any fragmented
IPv6 packet in her vicinity by injecting FRAGNs for each
observed packet. In addition, higher layer protocols may
retransmit lost application data in order to ensure reliable
delivery, e.g., for confirmable messages in CoAP [36]. Eve’s
blocking of retransmitted packets then further depletes the
energy resources of the forwarding and the target nodes.

Due to the complexity of dealing with duplicate fragments,
the 6LoWPAN standard suggests to drop corrupt IPv6 pack-
ets. This, however, allows Eve to force her target to drop
fragmented packets by sending a single duplicate FRAGN.

Upper layer information of the reassembled packet (e.g.,
message authentication codes) could be used to identify the
correct fragment combination for packets with duplicate frag-
ments. However, such an approach shows significant short-
comings. Most importantly, it requires the recipient to store
all received fragments and to reassemble them after each
fragment has been received at least once. Spoofed duplicates
thus cannot be detected early during fragment reception and
may overload the scarce buffer space at the receiver.
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Figure 4: Packet diagram illustrating the buffer
reservation attack. After the attack, the reassem-
bly buffer of the target node is occupied by attacker
fragments until the reassembly timeout expires.

3.4 Buffer Reservation Attack
The buffer reservation attack targets the scarce memory

of resource-constrained nodes and leverages the fact that
the recipient of a fragmented packet cannot determine a-
priori if all fragments will be received correctly. Hence, a
receiving node must optimistically reserve buffer space for
the reassembly of the complete packet as indicated in the
6LoWPAN header. Other fragmented packets are dropped
by the recipient if the reassembly buffer is already occu-
pied. As the buffer reservation attack affects an individual
reassembly buffer, the effort for an attacker to mount this at-
tack grows linearly with the number of buffers at the target
node. For our discussion of the buffer reservation attack, we
assume that the target node operates with a single reassem-
bly buffer as is the case for the Contiki operating system.

6LoWPAN defines a reassembly timeout of up to 60 sec-
onds in order to handle fragment loss on the communication
path. This timeout aims to prevent the reassembly buffer
from being occupied by an incomplete packet indefinitely.
Hence, when this timeout expires on a reassembling node, it
must drop an incomplete packet from its reassembly buffer
in order to free memory for new fragmented packets. Eve
can exploit this mechanism to mount a DoS attack against
memory-constrained nodes by maliciously reserving the re-
assembly buffer with incomplete packets.

To mount a buffer reservation attack, Eve generates a sin-
gle FRAG1 with arbitrary payload and sends it towards her
target as shown in Figure 4. If the buffer of the target is
not yet occupied by another fragmented packet, the received
FRAG1 reserves the buffer for the reassembly of Eve’s frag-
mented packet. Eve now either does not send the remaining
FRAGNs or releases them sporadically in order to occupy
the buffer resources until the reassembly timeout expires.
During this time, no additional fragmented packets can be
processed by the target node. Furthermore, the target node
cannot distinguish Eve’s attack fragments from fragments
of benign senders with intermittent delays induced by the
low-power characteristics of 6LoWPAN networks.

To continuously mount the buffer reservation attack, Eve
either needs to constantly send FRAG1 fragments or she
has to time her attack according to the reassembly timeout
value of the target node. In case of a timing attack, the
next FRAG1 must be received by the target immediately
after the timeout of the previous attack has expired. To
learn the exact reassembly timeout value, Eve first has to
probe the target’s timeout in preparation of her attack.

When probing the target, Eve sends an attack FRAG1
followed by a sequence of complete fragmented packets that
trigger a response from the target. For example, she may

send ICMP echo requests with a large data field that causes
packet fragmentation. If the reservation attack succeeds,
Eve only receives replies from the target node for fragmented
packets that arrived after the reassembly timeout expired.
Hence, Eve can estimate the reassembly timeout of the tar-
get node by measuring the time between the FRAG1 and the
first reply. Eve is then able to mount a continuous reserva-
tion attack by sending single FRAG1s and possibly sporadic
FRAGNs according to the probed timeout value.

3.5 Susceptibility of the Routing Schemes
The prerequisite for the identified fragment duplication

and the buffer reservation attacks is that the target node re-
assembles fragmented packets for forwarding purposes or as
the 6LoWPAN destination. Hence, the routing mechanism
used in the 6LoWPAN network determines which resource-
constrained nodes Eve can target with her attacks.

For route-over, Eve can interfere with the fragment pro-
cessing of her one-hop neighborhood. This is because each
node reassembles fragmented packets to derive routing deci-
sions at the network layer. Thus, both attacks enable Eve to
block all fragmentation-based communication that traverses
the target nodes. However, Eve cannot target the reassem-
bly of nodes that are located topologically farther away as
her immediate neighbors do not forward attack packets.

In case of enhanced route-over or mesh-under routing, for-
warding nodes do not reassemble fragmented packets, but
directly forward attack fragments towards the destination.
This enables Eve to mount the identified attacks against ar-
bitrary 6LoWPAN destinations without topological restric-
tions. Hence, she can target every node in the 6LoWPAN
network instead of only her one-hop neighborhood.

4. SECURE 6LoWPAN FRAGMENTATION
In this section, we propose lightweight security mecha-

nisms that protect resource-constrained nodes against the
fragmentation-based attacks we identified in Section 3. We
note that nodes could protect themselves against the frag-
ment duplication attack if the 6LoWPAN layer allowed them
to distinguish legitimate and spoofed attack fragments on
a per-fragment basis. We achieve this property with our
content-chaining scheme that cryptographically binds the
content of a fragmented packet to its FRAG1.

We also introduce a split buffer approach with fragment-
sized buffer slots in order to enable processing of legitimate
fragmented packets in spite of malicious nodes that pre-
tend to require reassembly buffer resources during the buffer
reservation attack. We combine this split buffer approach
with a packet discard strategy that disposes of fragmented
packets with suspicious sending behavior in case of a buffer
overload situation. We now present a detailed description of
our proposed mechanisms and refer the reader to Section 6
for the discussion of the specific trade-offs.

4.1 Content Chaining Scheme
Resource-constrained nodes could defend against the frag-

ment duplication attack if they were able to identify the
sender on a per-fragment basis. However, even networks
with link layer security based on network-wide keys only
offer group authentication. Hence, a network-internal at-
tacker can still spoof fragments. In contrast, pairwise keys
at the link layer would prevent spoofing of link layer ad-
dresses. As route-over-based routing mechanisms use the
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Figure 5: Example of a content chain for a packet
consisting of three fragments.

link layer source address in combination with the datagram
tag to identify the original packet of a fragment, this would
help mitigating the fragment duplication attack. However,
the necessary key management is non-trivial and would re-
quire central coordination [4], public key cryptography, e.g.,
a Diffie-Hellman key exchange, or alternative approaches
such as probabilistic key pre-distribution [16, 6]. Further-
more, pairwise keys would be required on an end-to-end ba-
sis for mesh-under routing as here the mesh header source
address is used to identify the original packet of a fragment.

To avoid the overhead of a pairwise-key management, we
propose a content-chaining scheme that binds the content of
a fragmented packet to its FRAG1 instead of binding frag-
ments to cryptographic sender identities. To this end, the
legitimate sender adds an authentication token to each frag-
ment during the 6LoWPAN fragmentation procedure. This
allows the recipient to cryptographically verify the link be-
tween fragments at the time of reception and to discard ma-
liciously duplicated fragments early on the forwarding path.

4.1.1 Content Chain Construction
While the 6LoWPAN standard does not define the sending

order of a fragmented packet, in-order transmission starting
from the FRAG1 has recently been recognized as highly ad-
visable, especially in networks employing (enhanced) route-
over [2]. The design of our content chaining scheme takes
advantage of this new development. Specifically, the legiti-
mate sender cryptographically commits to the content of a
fragmented packet in the corresponding FRAG1 by means of
a content chain. Content chains are based on the concept of
hash chains [17, 5], a lightweight, efficient mechanism to au-
thenticate the sender of a data stream of finite length. Thus,
they naturally fit the properties of fragmented packets when
treating each packet as a fragment stream.

The elements hi of a hash chain are generated by iter-
atively applying a cryptographic hash function H(·) to the
output of the previous iteration: hi = H(hi−1). For the first
iteration, a (random) seed value h0 is used as input. The
last token hn = Hn(h0) = H(H(. . . H(h0))) is referred to as
the anchor element of the hash chain. Hash chains are used
in reverse order of their generation, i.e. starting with hn,
as the one-way property of the hash function then prevents
others from computing undisclosed tokens that are closer to
the seed value. Thus, a token represents a cryptographic
commitment to all previous tokens of the hash chain.

However, simply appending the hash chain elements hi to
6LoWPAN fragments as one-time tokens does not suffice to
bind these fragments to the legitimate sender as FRAGNs
may be received out-of-order on the forwarding path. Specif-
ically, if an attacker received an out-of-order fragment con-
taining token hj−k (k > 0), she could compute the token
hj of a previous fragment that has not yet been received on
the forwarding path. The attacker could then use this to-
ken to create a valid duplicate fragment. Hence, we extend
the general structure of a hash chain and include the actual

fragment content in the hash chain generation in order to
enable the secure verification of out-of-order fragments.

When generating a content chain, the legitimate sender
uses the payload of the last FRAGN as the seed value for
the hash chain. He then appends the resulting content to-
ken to the previous FRAGN and computes the hash digest
over the fragment content including the appended token (see
Figure 5). After iteratively performing this procedure over
all packet fragments, the FRAG1 contains a token that com-
mits to the overall packet content. Once the content chain
construction has finished, the legitimate sender transmits
each fragment with its respective content token.

4.1.2 Content Chain Verification
When a node receives a FRAG1 with a content token, it

processes the packet normally and stores the contained token
for verification purposes of subsequent FRAGNs. For each
received FRAGN, it then validates the current fragment by
computing the hash over the received packet content. If the
computed hash digest matches the stored token, the verifi-
cation has been successful and the stored token is replaced
by the currently verified one. Otherwise, the fragment is
regarded as spoofed and can be dropped immediately.

As the FRAG1 transitively commits to the subsequent
fragments, target nodes are able to detect spoofed fragments
after receiving the FRAG1. This prevents an attacker from
interfering with the packet reassembly by sending duplicates.

4.1.3 Processing Out-of-order Fragments
Content chaining enables a verifying node to cryptograph-

ically determine a single valid 6LoWPAN fragment combi-
nation for an IPv6 packet despite the reception of malicious
duplicate fragments. Notably, our content chaining scheme
is not required to be robust against token loss because a
lost fragment invalidates the entire packet according to the
6LoWPAN standard. However, a verifying node may not
be able to verify out-of-order FRAGNs directly on reception
because the previous fragment, and thus the commitment to
the content of the current fragment, may still be missing.

Hence, when processing out-of-order FRAGNs, a verify-
ing node follows a simple policy. First, it only forwards
fragments that have been verified successfully. Second, it
stores out-of-order FRAGNs without prior verification until
all previous FRAGNs have been received and verified.

This simple policy enables a malicious node to fill the
reassembly buffer of a verifying node with fragments that
appear to be out-of-order fragments of a legitimate packet.
To counter such an attack, the verifying node discards the
fragment with the largest datagram offset when reaching
a buffer overload situation. This fragment has the largest
distance from the last correctly verified fragment. Since a
node only forwards already verified fragments, this fragment
is least likely to be the result of one-hop reordering.

4.1.4 Implementation Considerations
The hash function used in our content chaining scheme

requires memory resources for its implementation as well
as computational resources per token generation and veri-
fication. To decrease these overheads, we propose to con-
struct the hash function based on a block cipher-based one-
way compression function [3] with a length-padded Merkle-
Damg̊ard construction [30, 10]. This allows us to use the
hardware acceleration support for the AES block cipher that



many embedded platforms provide due to built-in security
functionality of the IEEE 802.15.4 radio interface.

Content tokens generate storage and transmission over-
heads. We propose to decrease these overheads by truncat-
ing tokens to 8 bytes. Due to the short validity period of
a token, i.e., the reassembly timeout, the remaining cryp-
tographic strength prevents an attacker from calculating a
valid pre-image for a given token. Moreover, each hash op-
eration is salted with the actual fragment content. This and
the relative shortness of content chains (an IPv6 packet of
1280 bytes requires less than 20 tokens) makes our construc-
tion more robust against cycles, i.e., re-occurring elements,
than the simple hash chain structure described above [5].

4.2 Split Buffer Approach
The buffer reservation attack allows to block the reassem-

bly buffer of a target node for the timespan of the reassembly
timeout at exceptionally low cost, i.e., with a single well-
timed fragment. In this section, we propose mechanisms to
increase these costs for an attacker such that she has to con-
tinuously send complete fragmented packets in short bursts
in order to prevent legitimate packets from being processed
at the target node. In this case, the buffer reservation attack
resembles a flooding attack. Hence, the attacker does not
benefit significantly from sending fragmented packets over
unfragmented packets and must have sufficient resources to
mount a flooding-based DoS attack against the target node.

4.2.1 Fragment-sized Buffer Slots
We observe that a single reassembly buffer forces a node to

make a decision whether to replace fragments of a partially
received packet with a new fragmented packet as soon as
the first new fragment arrives. This prevents the node from
optimistically storing fragments from multiple senders and
deferring the decision which packet to discard to a point
when an actual buffer overload situation is reached. Instead,
it suffices for an attacker to pretend that she will use the
available buffer resources by sending a single fragment.

Even with multiple reassembly buffers, the reassembling
node would allocate memory resources as indicated in the
6LoWPAN header for each buffer. Thus, an attacker could
occupy all buffer resources by sending multiple incomplete
packets with an indicated high packet size. However, if a
node stored individual fragments of multiple packets in its
reassembly buffer, legitimate and malicious packets would
compete for the available buffer resources based on the ac-
tually used buffer space. An attacker would then have to
follow up on her pretense by transmitting further fragments.

To enable direct competition for the buffer resources be-
tween legitimate nodes and an attacker, we propose to split
the reassembly buffer into fragment-sized buffer slots. Each
slot has the maximum size of a 6LoWPAN fragment for a
given link layer. Buffer slots are filled until either a packet
has been fully received or an overload situation is reached. In
case of a complete packet, the reassembling node assembles
the packet in-order in the buffer and processes the packet
normally. In case of a buffer overload situation, the node
has to decide which packet to discard. To this end, the re-
assembling node can base its decision on the observed send-
ing behavior for packets located in the split buffer.

4.2.2 Packet Discard Strategy
We propose a discard strategy for packets in the split

buffer that is based on per-packet scores, capturing the ex-
tent to which a packet is completed along with the continuity
in the sending behavior. In case of a buffer overload situa-
tion, the node then discards the packet with the lowest score.
If two or more packets share the lowest score, the selection
is performed randomly between these packets.

We identify three fundamentally different sending behav-
iors that an attacker may show during the buffer reservation
attack. First, the attacker may send only the first fragment
and skip the remaining ones. This sending behavior requires
the least commitment of energy resources from an attacker.
However, a long gap after the first fragment would indicate
a loss of the remaining fragments in case of normal sending
behavior. Thus, a reassembling node should preferably pro-
cess other fragmented packets in an overload situation even
before the reassembly timeout expires.

An attacker may also choose between two more sophisti-
cated sending patterns. On the one hand, an attacker may
immediately send all but a few fragments in a short burst in
order to occupy as many buffer resources at the target node
as possible. She may then transmit the remaining fragments
shortly before the reassembly timeout expires. However, the
long gap after the first fragment burst again indicates a loss
of the remaining fragments. On the other hand, an attacker
may stretch fragment transmission across the timespan of
the reassembly timeout. With this pattern, an attacker ap-
pears most legitimate compared to the other behaviors, but
only fills the buffer resources of the target node slowly.

Our discard strategy for the split buffer takes advantage
of these observations. It forces an attacker to send complete
packets in short bursts during the buffer reservation attack.

Percentage of Completion. We first show how to prior-
itize packets, that are sent in a short burst, during a buffer
overload situation. To this end, a node scores each packet in
the split buffer based on the percentage of completion. Short
packet bursts increase this score quickly. Likewise, small
packets that only require few buffer resources promptly get a
high score as each received fragment contributes significantly
to the packet completion. In contrast, attack fragments that
are received at a low rate increase the score slowly and only
add little to the score as an attacker must send large packets
to cover (a substantial portion of) the reassembly timeout.
Hence, in an overload situation, short packets as well as large
packets that are sent in bursts are likely to have a higher
score than slowly arriving attack packets. This renders low
sending rates unattractive for an attacker.

Sending Behavior. An attacker may also change her send-
ing behavior after she occupies buffer resources at the target
with a high score. She may, e.g., stop transmitting after an
incomplete burst of fragments. To penalize such a change
in sending behavior, we additionally incorporate the time
domain in the discard strategy. Specifically, we consider the
average elapsed time between two consecutive fragments (a)
of a packet and the elapsed time since the last fragment (l).
Reassembling nodes penalize senders by reducing the score
of a packet if the currently elapsed time l differs significantly
from the expected time a. Nodes therefore store and update
the time values l and a after each fragment reception.

To reflect a change in sending behavior in the packet score
computation, we introduce a window w around the expected
fragment reception time a. As long as the sending behavior
does not change considerably (a−w < l < a+w), the score
is calculated as before. However, if the reassembling node



receives a fragment earlier than expected (l <= a − w), it
decreases the packet score by half. Likewise, if the fragment
arrives later than expected (l >= a+w), the score is halved
for each presumably missing fragment (bl/ac):

scorei+1 =


fragment bytes

total bytes
if i = 0

scorei + fragment bytes
total bytes

if a− w < l < a+ w
scorei

2max{1;bl/ac} else

The score of a packet in the split buffer increases propor-
tionally to the contribution of each fragment to the over-
all packet completion. If the sending behavior for a packet
changes significantly, the score decreases depending on the
intensity of this change. The window parameter w thereby
allows to calibrate the maximum tolerated change in sending
behavior to the specific network characteristics.

When a buffer overload situation occurs, the reassembling
node has to compare the score of the packets in the split
buffer at the time of the discard decision. To consider the
elapsed time since the last fragment reception, the node com-
putes the current score similarly as described above:

scorecompare =

{
score if a− w < l < a+ w

score

2max{1;bl/ac} else

The node then discards the packet with the lowest score
or randomly chooses between packets with the lowest score.

With our proposed split buffer approach, a reassembling
node prioritizes competing fragmented packets that are sent
in short bursts. Furthermore, significant changes in sending
behavior are severely penalized. This forces an attacker to
effectively flood the target node with short fragment bursts
and considerably limits the practicality of the attack.

At the same time, our split buffer approach allows for a
more efficient use of the reassembly buffer resources for legit-
imate communication than a single or multiple reassembly
buffers of the same size. As buffer resources are assigned
on a per-fragment basis, this even allows a node to process
interleaved packets that, combined, would otherwise exceed
the overall buffer resources. We note that legitimate nodes
that slowly send large fragmented packets may be at a disad-
vantage in network scenarios that rely heavily on the trans-
mission of large fragmented packets and where interleaved
packet reception occurs often. This is a trade-off of our split
buffer approach for the gained robustness against the buffer
reservation attack. Still, our split buffer approach effects a
considerable, network-wide throughput increase in such net-
work scenarios as a slowly sending node would block nodes
with high sending rates for a notable amount of time.

5. SECURITY CONSIDERATIONS
We now identify and briefly discuss attacks that adver-

saries Eve and Mallory can mount against our proposed ap-
proaches. As noted earlier, the capabilities of Mallory allow
her to mount at least the attacks that Eve can mount.

Impact of an on-path attacker. Mallory may buffer legit-
imate fragments before forwarding them towards the 6LoW-
PAN destination. This would allow her to replace the le-
gitimate fragment payload and to compute a valid content
chain for the altered packet content. However, the token
included in the FRAG1 only commits to a single fragment
combination. Hence, her attack does not result in duplicate
fragments. Instead, it resembles dropping of the entire orig-
inal packet and creating a new one. These, however, are

inherent capabilities of an on-path attacker. Furthermore,
we consider the integrity protection of the overall packet a
task for upper layer protocols.

Likewise, Mallory may forward legitimate fragmented pack-
ets with varying artificial delays between the individual frag-
ments during a buffer reservation attack. As a result, the
forwarded packets would have a lower score than her attack
packets. However, she would achieve the same result if she
dropped the legitimate packets instead of forwarding them.

Content chaining and FRAG1 spoofing. Eve may over-
hear a legitimate FRAG1 with a valid token and gener-
ate spoofed FRAG1s that include this token. Eve may
then inject these spoofed FRAG1s on the forwarding path.
To enforce a decision for a single FRAG1 in case of du-
plicates, a node only considers the first received FRAG1.
Other FRAG1s with a matching source address and data-
gram tag are dropped immediately. As the direct trans-
mission between two (legitimate) nodes is typically faster
than through the off-path attacker Eve, this prevents her
from attacking the recipient of the overheard FRAG1 with
spoofed FRAG1s. However, Eve may be able to attack the
6LoWPAN destination in a mesh-under-based network if she
knows a faster forwarding path to the destination node. No-
tably, in case of (enhanced) route-over, Eve must be in direct
communication range of a next hop on the forwarding path
and transmit her FRAG1s prior to the legitimate forwarder.
Especially for enhanced route-over routing, this considerably
limits Eve’s capability to mount an attack as nodes imme-
diately forward the legitimate FRAG1s after reception.

Content chaining and a reordering attacker. Eve may
take advantage of the fact that out-of-order fragments can-
not be validated immediately at a verifying node. To this
end, she may send fragments with a large offset in order
to occupy buffer resources until all previous fragments have
been received and the fragment is discarded due to an invalid
content chaining token. However, the discard policy of the
content chaining scheme would cause such fragments to be
dropped first in case of a buffer overload situation. Hence,
Eve may send fragments that are close to the current frag-
ment offset of the legitimate packet. Still, these fragments
are discarded upon reception of the legitimate fragments.

Split buffer and unfair competition. Eve may try to
maintain a high packet score at the target node by sending
large fragments at a low rate. As soon as she detects that
another node sends a fragmented packet, she may change
her sending behavior to a high sending rate for the remain-
ing fragments in order to block the majority of the target’s
buffer slots. We account for such behavior in our packet
discard strategy by penalizing senders that suddenly change
the sending rate. As the packet score is halved for each
fragment that is received early, Eve’s score would decrease
significantly. This makes newly received legitimate packets
competitive despite the lack of an initial score.

6. EVALUATION
For our evaluation, we implemented our proposed defense

mechanisms for the Contiki operating system version 2.5.
We used Tmote Sky motes that are equipped with an 8 MHz
MSP430 microcontroller, 10 kB of RAM, 48 kB of ROM, and
an IEEE 802.15.4 radio interface as our evaluation platform.
As the network setup depends on the evaluated property, we
describe the network topology in each section individually.



Regarding Contiki, we used the standard configuration
where possible. We only decreased the number of neighbors
in the RPL neighborhood table from 20 to 6 in order to have
sufficient memory resources to evaluate the behavior and
overheads of our proposed mechanisms for IPv6 packets of
up to 1280 bytes1. While this change allowed us to increase
the reassembly buffer from 240 to 1280 bytes, it limits the
maximum connectivity of a node. As we expect deployment
scenarios to require tailored trade-offs, we highlight the re-
sults for the default size in the discussion of our results.

As the hash function for the content chaining scheme,
we implemented a Davies-Meyer one-way compression func-
tion [3] with a length-padded Merkle-Damg̊ard construction.
Hence, we could leverage the AES hardware support of the
CC2420 radio interface when computing hash digests.

For our evaluation, we did not consider explicit overheads
due to link layer security operations such as encryption and
decryption. However, we considered implicit overheads re-
sulting from the maximum length of the security header at
the link layer by decreasing the available 6LoWPAN pay-
load size by 21 bytes. As a result, FRAG1s contained up to
88 bytes of IPv6 header information and payload, whereas
FRAGNs contained between 1 and 72 bytes of payload. Hence,
our results indicate worst case overheads for our proposed
mechanisms due to an increased number of fragments.

6.1 Defense Against the Identified Attacks
We now show the practical existence of our identified at-

tacks and the effectiveness of our defense mechanisms.

Fragment Duplication Attack. As a proof of concept for
the fragment duplication attack, we implemented a simple
sender that transmits a constant stream of fragmented UDP
packets. To simulate the behavior of a spoofing attacker Eve,
this node additionally sends one fragment of each legitimate
packet with an altered 6LoWPAN payload. A second node
receives packets and counts the correctly received packets.

During our evaluation, we ran two different configurations
on both nodes: one with an unmodified Contiki implementa-
tion and the other one additionally using our content chain-
ing scheme. The sender periodically transmitted 100 frag-
mented packets of 240 bytes, each consisting of 4 legitimate
fragments and 1 duplicate attack fragment.

With an unmodified Contiki, the receiver experienced com-
plete packet loss with a packet delivery rate (PDR) of 0 %
at the UDP layer. For each received packet, the receiver de-
tected an invalid UDP checksum as legitimate packet con-
tent was overwritten during the attack. In contrast, our
content chaining scheme achieves a PDR of 100 %. Each re-
ceived fragment was verified correctly. The number and the
order of spoofed fragments do not influence these results as
our content chaining scheme discards unverified fragments
first if a buffer overload situation arises. Hence, we con-
clude that the content chaining scheme effectively mitigates
the otherwise viable fragment duplication attack.

Buffer Reservation Attack. To confirm the existence of
the buffer reservation attack and the effectiveness of our split
buffer approach, we consider a network setup consisting of
three nodes: a sender, an attacker Eve, and a target node
that also denotes the destination of the legitimate packets.

The buffer reservation attack only succeeds if the attacker

1The IPv6 standard [11] requires every link to have a max-
imum transmission unit of 1280 bytes or greater.
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Figure 6: PDR for legitimate packets at the target
node during the buffer reservation attack depending
on the sending behavior and the sending offset.

reserves buffer resources at the target node before or while
the legitimate packet is received. Hence, we evaluated the
attack for different relative reception times of legitimate
and attack packets at the target node. We analyzed the
PDR at the UDP layer for a sender who transmits packets
500 ms before, simultaneous to, or 500 ms after the first at-
tack fragment is sent. While the -500 ms offset allows for le-
gitimate transmissions without malicious buffer reservation,
the 500 ms offset represents a situation where the attacker
successfully occupies the desired resources of the reassembly
buffer. For simultaneous transmissions, the order of recep-
tion for legitimate and attack packets is not pre-determined.

We also analyzed the following three sending behaviors of
an attacker: i) exclusive transmissions of FRAG1s (F1),
ii) fragment bursts excluding the last FRAGN (N-1), and
iii) fragment spreading across the reassembly timeout (FS).
Moreover, we considered packet sizes of 240 and 1280 bytes
for the sender. However, as the differences in the results are
negligible in case of no protection and further improve for
240 byte packets when using our split buffer approach, we
only discuss the results for packets of 1280 bytes.

To compare an unmodified Contiki and the split buffer
approach, the target node was configured with these two
functionalities respectively. For the split buffer approach,
the window value w was set to 250 ms. We measured the
PDR at the target node for 10 runs with 25 legitimate pack-
ets for each combination of the above configurations.

With an unmodified Contiki, the attack succeeds for all
attack behaviors if the first attack fragment is received be-
fore the legitimate packet. In these cases, the PDR dropped
as low as 0 % (see F1 for 500 ms case in Figure 6). In con-
trast, with our split buffer, the PDR increased up to 98 %
depending on the attack behavior. Notably, the attacker has
to send packets with a large number of fragments in short
bursts in order to decrease the PDR with our split buffer ap-
proach (see N-1 cases in Figure 6). However, in these cases,
our packet discard strategy significantly decreases the score
of the attack packet once the delayed last fragment is de-
tected as a deviation from the previously observed sending
behavior. As a result, attack fragments are purged quickly
from the split buffer when a new packet is received.

From these results, we conclude that the buffer reserva-
tion attack is viable against an unprotected 6LoWPAN layer
even for a tightly resource-constrained attacker. In contrast,
our split buffer approach forces an attacker to send short
successions of large numbers of fragments during the attack.

6.2 Run-time Performance
To evaluate the run-time performance of our proposed ap-

proaches, we first analyzed the cryptographic per-fragment
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Mechanism ROM RAM

Contiki 37788 8478

Content
chaining

41108
(+8.79%)

9402
(+10.90%)

Split buffer 40052
(+5.99%)

9014
(+6.32%)

All combined 41750
(+10.48%)

9502
(+12.08%)

Table 1: ROM and RAM require-
ments for our proposed approaches
in byte. Numbers in brackets de-
note added overhead to Contiki.

Figure 7: Processing time at the 6LoWPAN layer. The error bars denote
the standard deviation.

overhead of the content chaining scheme on a single node.
We then examined the computational per-packet overheads
of the content chaining scheme and the split buffer approach.

For the analysis of the per-fragment overhead, we ran 1000
measurements for fragment payload sizes ranging from 8 to
72 bytes respectively. The average computation time for a
single content token, i.e., generation or verification, increases
from 0.87 ms to 5.22 ms for growing payload sizes (see Ap-
pendix Figure 8). Notably, the processing time for 16 byte
inputs increases step-wise compared to 8 byte inputs, al-
though the hash function operates on 16 byte blocks. This is
because the hash input has to be extended by an additional
block if the length padding information does not fit into the
last input block. Moreover, we observed outlier hash opera-
tions with run-times above 30 ms and faulty hash digests in
about 2 % of our measurements. The number of erroneous
operations increased with a growing payload size and thus
a rising number of iterative AES operations. During these
erroneous operations the hardware interface constantly re-
ported as busy via the ENC BUSY flag.

To evaluate the content chaining and the split buffer over-
heads, we measured the packet processing time at the 6LoW-
PAN layer on a sending and on a receiving node. As we were
interested in the expected results without hardware errors,
we only considered measurements without erroneous tokens.
Specifically, we analyzed the first 10 error-free measurements
for each IPv6 packet size ranging up to 1280 bytes.

As shown by the largely overlapping results for the split
buffer approach and for the unmodified Contiki in Figure 7(a),
the split buffer approach does not impact the performance
of a sending node. However, it adds a small overhead of
up to 13.19 ms to the packet processing on a receiving node
compared to an unmodified Contiki (see Figure 7(b)). The
overhead of the content chaining scheme mainly stems from
the construction of the content chain at the sending node
and the aggregated token verification for all fragments of a
packet at the receiving node. As a result, content chaining
adds a maximum of 64.22 ms at the sender and of 95.23 ms at
the receiver to the packet processing for packets of 1280 bytes.
The performance overhead for the content chaining scheme
on the receiver side is higher than on the sender side because
content chaining also uses the buffer management function-
ality of the split buffer approach for handling out-of-order
packets. Thus, the overall content chaining overhead also
includes the majority of the performance overhead of the
split buffer approach. Furthermore, the receiving node ad-
ditionally has to search for unverified out-of-order fragments
in the split buffer in case of fragment reordering.

The computational overhead of a forwarder is similar to

the overhead on a receiver in case of enhanced route-over
routing, and largely resembles the sum of a sender and a
receiver for a route-over-based forwarder. A mesh-under-
based forwarder is oblivious to packet fragmentation.

To avoid the overhead of the content chaining scheme in
network scenarios without a misbehaving node, our scheme
can also be implemented with a default-off policy and be
switched on on-demand as described in Appendix A.

6.3 Packet Overhead
The split buffer approach is a purely local mechanism and,

thus, does not require the transmission of additional in-
formation. In contrast, the content chaining scheme adds
8 bytes per fragment to the overall packet transmission.

To evaluate the packet overhead, we inspected a FRAG1
and a FRAGN with maximum length for standard 6LoW-
PAN fragments as well as for fragments containing content
tokens with the wireshark tool. We then extrapolated the
gathered information for higher IPv6 packet sizes.

Notably, unfragmented packets do not contain content to-
ken information. Likewise, packets of only 2 fragments result
in a token overhead that is as low as 8 bytes because the last
FRAGN does not carry token information. Protecting the
6LoWPAN fragmentation of an IPv6 packet of 1280 bytes
requires additional 254 bytes. This overhead results from
the content tokens and from additional fragments caused
by the decreased per-fragment payload space. To put these
numbers into perspective, this overhead denotes 11.65 % of
the overall packet transmission. This is because an IPv6
packet of 1280 bytes already requires a total transmission of
2180 bytes due to link layer and 6LoWPAN overheads, even
without the content chaining scheme.

Overall, the moderate packet overhead increases linearly
with the number of fragments in attack scenarios and can
otherwise be avoided as described in Appendix A.

6.4 RAM and ROM Overhead
To derive RAM and ROM estimates for our proposed ap-

proaches, we analyzed the binary of a simple 6LoWPAN-
enabled UDP application for four different configurations
with the msp430-size tool. While the first binary contains
an unmodified 6LoWPAN stack, the other three binaries
additionally include i) the content chaining scheme, ii) the
split buffer approach, and iii) a combination of both mech-
anisms.

As shown in Table 1, the ROM overhead of the split buffer
amounts to 5.99 % of the Contiki base overhead, whereas
content chaining generates 8.79 % overhead. About 530 bytes
of the latter result from the implementation of our crypto-



graphic primitive. Content chaining and the split buffer ap-
proach use the same buffer management functionality. This
is reflected by the low additional overhead for the combined
mechanisms compared to the individual overheads. Notably,
while not optimized for minimum ROM overhead, our im-
plementation results in less than 4 kB of code.

With respect to RAM, our content chaining scheme and
the split buffer approach require 10.90 % and 6.32 % addi-
tional memory, respectively, when compared to the Contiki
base overhead. For the split buffer approach, this overhead
stems from the need to over-provision each buffer slot such
that it can hold a 6LoWPAN fragment of maximum length
including 6LoWPAN header information, i.e., 81 bytes. As
a result, the memory overhead for a reassembly buffer that
supports IPv6 packets of 1280 bytes increases by 18.13 %.
The remaining overhead results from additional per-packet
management information required for our packet discard
strategy and for maintenance of the individual buffer slots.
This overhead, however, is not only a trade-off for a gain
of security. It additionally enables a node to process inter-
leaved legitimate packets during normal operation. Content
chaining primarily adds an overhead of 8 bytes for the last
verified token to this per-packet management information.

7. RELATED WORK
For our discussion of related work, we distinguish the

following two research directions: i) previously identified
fragmentation-based attacks and proposed protection mech-
anisms and ii) existing hash chain schemes.

Packet fragmentation has previously been identify as a po-
tential security risk for today’s IP-based communication as
well as for 6LoWPAN-enabled networks. Regarding today’s
IP communication, a large number of fragmentation-based
attacks have been identified [39, 7, 8]. However, these at-
tacks commonly focus on deficiencies of the respective IP
protocol implementation, e.g., for IDS or firewall evasion,
or for DoS purposes [34]. Our work, on the contrary, fo-
cuses on inherent design-related issues of the 6LoWPAN
layer that emerge when using the 6LoWPAN fragmentation
mechanism in resource-constrained network environments.

Recently, Gilad et al. [18] discovered an IP design vulner-
ability that is based on spoofed fragments with a correctly
guessed IP-ID field. While this attack is similar to our iden-
tified fragment duplication attack, the authors focus on the
exposure of legitimate IP-IDs in today’s network environ-
ments and do not propose countermeasures like we do.

Incomplete packets have been found to cause vulnerabil-
ities in commodity operation systems and security appli-
ances [22]. We additionally showed that the transmission of
large packets stretched over the reassembly timeout allows
to maliciously occupy scarce buffer resources. We counter
such attacks with our split buffer approach that is inspired
by early queueing strategies for congested ATM switches in
case of packet-based communication [35, 9].

With regard to 6LoWPAN, the author in [?] claims that
implementation deficiencies may enable fragmentation at-
tacks similar to the ones found in IP implementations and
that replayed fragmented packets may be a potential se-
curity risk. However, in contrast to our work, neither a
concrete description of the attacks nor a practical proof is
given. Furthermore, the author proposes timestamps or non-
cryptographic nonces to mitigate replay attacks. None of
these approaches help protecting resource-constrained nodes

against our identified attacks as an attacker can simply spoof
such information. In [29], the authors analyze the vulnera-
bility of the RPL routing protocol and propose IDS-based
countermeasures. Their work is complementary to ours.

Hash chain schemes based on the delayed disclosure of to-
ken information such as µTESLA [33] have been proposed
for the authentication of broadcast messages in resource-
constrained environments. While these schemes could also
be used to authenticate the sender of fragmented packets,
verifying nodes would only be able to authenticate fragments
after the delayed token disclosure. Hence, in contrast to our
content chaining scheme, verifying nodes would invariably
be required to store unauthenticated fragments, even for in-
order fragment reception. Moreover, these schemes typically
require central coordination or public-key cryptography for
hash chain bootstrapping and use long, pre-created hash
chains at the sender to compensate the high bootstrapping
costs. In contrast, our content chaining scheme does not re-
quire special infrastructure or additional cryptography, and
keeps the memory overhead at the sender low.

In [28, 15], the authors propose constructions similar to
our content chaining scheme for the purpose of secure net-
work programming. However, their approaches require ex-
pensive public-key-based operations for the bootstrapping of
the hash-chain anchor element, whereas we forgo the RAM,
ROM, and CPU overheads of a bootstrapping mechanism.
In [12, 25] the above schemes are extended in order to handle
packet reordering by employing hash tree-based construc-
tions. These schemes result in considerable token storage
requirements at a verifying node for large packets compared
to our content chaining scheme.

8. CONCLUSION
In this paper, we analyzed the 6LoWPAN fragmentation

mechanism for vulnerabilities at the design level. We fo-
cused our analysis on network-internal attackers and an ab-
stract 6LoWPAN network scenario that involves resource-
constrained nodes. We revealed two design-level attacks
against the 6LoWPAN fragmentation mechanism, the frag-
ment duplication attack and the buffer reservation attack,
and showed the susceptibility of 6LoWPAN-enabled nodes
with respect to the supported routing mechanisms. The
identified attacks are notably cheap allowing an attacker to
use tightly resource-constrained nodes for her attacks.

To mitigate these attacks, we propose the content chain-
ing scheme and the split buffer approach with a tailored
packet discard strategy. The content chaining scheme allows
a node to cryptographically verify that received fragments
belong to the same packet on a per-fragment basis. Our
split buffer approach fosters direct competition between le-
gitimate senders and an attacker for scarce reassembly buffer
resources. In combination with our proposed packet discard
strategy, this forces an attacker to invest similar resources for
the buffer reservation attack as for a flooding-based attack.
Our evaluation confirms the practical existence of the iden-
tified attacks and shows that our proposed mechanisms mit-
igate these at moderate memory and computational costs.

Our work shows that the limited capabilities of resource-
constrained nodes and the potentially highly heterogenous
resources of IP-enabled devices open new attack vectors for
network-internal and network-external attackers. We con-
sider the analysis and the design of secure protocols accord-
ing to these factors important future work.
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APPENDIX
A. ATTACK NOTIFICATION

To enable a default-off policy for our content chaining
scheme, we propose a simple detection and notification mech-
anism for the fragment duplication attack. This mechanism
enables the recipient of a packet with duplicate fragments
to request the legitimate sender to apply our content chain-
ing scheme to subsequent fragmented packets. This reactive
approach allows for a minimal overhead under normal oper-
ation, while protecting the network in case of an attack.

A reassembling node can efficiently detect duplicate frag-
ments by comparing the collected payload in the reassembly
buffer to the received fragment. If the payload matches,
the received fragment can be silently dropped and the re-
assembly of the packet can proceed normally. However, if
the payload differs, the reassembling node sends an ICMP
message with a new, dedicated message type to the packet
source notifying about the impending attack. Additionally,
the node drops the packet with the duplicate fragments.

When the sender of a fragmented packet receives an ICMP
message notifying about a fragment duplication attack, it
immediately turns on our content chaining scheme for all
further fragmented packets it sends. However, it may turn
off the content chaining scheme again after a pre-configured
timeout (e.g., after 15 minutes). Hence, during the time-
span with active content chaining, an attacker is unable to
perform the fragment duplication attack. If the attacker
still proceeds with the fragment duplication attack after
the timeout expired, the recipient of packets with duplicate
fragments triggers another ICMP message and the content
chaining scheme is activated again.

Spoofing or dropping of a notification message. As
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Figure 9: Energy estimation for the computations
(CPU) and transmissions (TX) resulting from our
proposed defense mechanisms on a sending node.
The estimated power consumption for an unmodi-
fied Contiki implementation is given as a baseline.

the ICMP message that is used to notify the sender about an
impending fragment duplication attack is unauthenticated,
an off-path attacker Eve could force the resource-constrained
nodes in the 6LoWPAN network to turn on the content
chaining scheme by sending a spoofed ICMP message. How-
ever, the computation and the packet space overheads she
generates this way at the legitimate nodes is equal to the
overheads of the content chaining scheme without the notifi-
cation mechanism. Furthermore, the notification mechanism
is designed to turn on the content chaining scheme when an
attacker is present in the network. If Eve transmits packets
for malicious purposes, this clearly is the case.

Likewise, an on-path attacker Mallory could drop legiti-
mate notification messages in order to prevent the content
chaining scheme from being activated. However, if her aim is
to block legitimate packets by sending duplicate fragments,
dropping of traversing packets is a more effective attack.

B. ENERGY EVALUATION
To get an impression of the energy consumption of our

proposed mechanisms, we estimated the power required by
the CPU during packet processing and by the radio inter-
face during packet transmission on a sending node. For our
estimations, we used the energy estimation utility provided
by Contiki [13]. We assume the CPU to require 1.8 mA and
the radio interface 19.5 mA per second at a supply voltage
of 3 V as indicated in the Tmote Sky data sheet.

As shown by the overlapping CPU energy estimates for
the split buffer and an unmodified Contiki implementation
(see in Figure 9), the computations involved in the split
buffer do not impact the energy consumption. The content
chaining scheme, however, increases the energy consumption
to a maximum of 0.43 mJ for packets of 1280 byte. These
results directly correlate to our run-time performance mea-
surements in Section 6.2.

The steps for the energy estimates of the fragment trans-
missions in Figure 9 depict the additional transmission over-
head resulting from further fragments. The slightly shorter
step length of the content chaining scheme results from the
fact that less IPv6 packet content can be carried per frag-
ment as 8 byte of fragment payload are taken by the content
chaining token. As a result, the sending node has to split the
IPv6 packet content into additional 6LoWPAN fragments
compared to the 6LoWPAN fragmentation procedure with-
out token information.


