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ABSTRACT
Efficient event scheduling and synchronization constitutes
an essential part of high-performance parallel discrete event
simulation. Traditional synchronization approaches like con-
servative and optimistic synchronization focus on a simple
scheduling paradigm based on a primitive set of rules. How-
ever, we argue that a sophisticated synchronization algo-
rithm considering event interactions can remarkably improve
the performance of the simulation. In this article, we discuss
three different heuristics which analyze those dependencies
online and speed up the simulation by a factor of up to 6.5.
Further, we analyze the ability of this paradigm to automat-
ically detect available parallelism by applying it to scenarios
featuring different degrees of available parallelism.

1. INTRODUCTION
The goal of parallel discrete event simulation is to obtain

the same results as the sequential equivalent in shorter time.
This is achieved by executing independent events in parallel.
However, if one event depends on the results computed by
another event, execution order matters. In order to avoid
parallel or out-of-order execution of those dependent events,
synchronization is necessary.

Traditionally, one out of two synchronization paradigms
is implemented: On the one hand, conservative synchro-
nization applies strict rules to permanently ensure correct
ordering of dependent events. On the other hand, overly op-
timistic synchronization allows any pair of events to be exe-
cuted in parallel and detects and corrects causal violations a
posteriori; this is usually done by creating checkpoints and
re-running the simulation from a previously stored state.
While both approaches are easy to understand and imple-
ment, and introduce little synchronization overhead, they
might severely waste performance due to the following dis-
advantages: The strict rules in conservative synchronization
might hamper fast progress due to the so called blocked wait-
ing problem [16]. This occurs when a CPU waits for an event
e1 to finish, because it cannot determine whether the next
event e2 depends on e1 or not. Optimistic synchronization
suffers from high rollback costs after erroneously executing
two interdependent events in parallel.

In the last decades, considerable efforts have been invested
to mitigate those problems. In order to speed up conser-
vatively synchronized simulations, lookahead maximization
techniques have been applied [3, 4, 12, 13, 14]. To de-
crease the number of rollbacks in optimistic event execution,
Turner and Xu introduced the time window approach [20].
However, those optimizations artificially limit parallel exe-

cution without considering the behavior of the simulation
itself.

Pioneering efforts towards probabilistic synchronization
[5, 6, 18] start analyzing the timing between events, but do
not consider event dependencies. In [11], we introduce our
approach to analyze both timing and scheduling dependen-
cies. We show that this approach achieves multiple speedup
over the traditional synchronization efforts.

In this article, we briefly describe our approach to proba-
bilistic synchronization, and re-introduce our three different
heuristics to analyze event interactions. In a case study we
show that this approach outperforms traditional synchro-
nization, and we analyze the quality of automatic parallelism
detection by varying the amount of parallelism included in
the simulation model.

The remainder of this article is structured as follows: In
Section 2 we describe our synchronization approach and the
three heuristics. In Section 3 we introduce our evaluation
methodology and discuss the results. We discuss related
efforts in this research field in Section 4 before we conclude
the article in Section 5.

2. PROBABILISTIC SYNCHRONIZATION
We created the proof-of-concept implementation of our

probabilistic synchronization scheme on top of our parallel
simulation framework Horizon [10]. Horizon is an exten-
sion for the discrete event simulator OMNeT++ [21] to en-
able efficient parallel simulation on small to medium scale
shared memory systems. It employs a centralized event
scheduling architecture, which eases the implementation of
sophisticated heuristics since all necessary information is lo-
cated in the shared memory. The central scheduler con-
tinuously picks the first event from the Future Event Set
(FES). By means of a simple barrier approach, it conserva-
tively determines whether this event depends on an earlier,
unfinished event. During this determination process we call
the first event in the FES the pending event ep since it is
pending between the waiting state and the execution state.
If the event is independent, the scheduler offloads it for par-
allel execution, and one of the worker threads handles the
event.

To enable probabilistic synchronization, we modify this
dependency determination process: The synchronization com-
ponent first applies the strict rules of conservative synchro-
nization. If those rules do not allow parallel execution, a
heuristic is consulted to determine the probability of a causal
violation to occur on optimistic execution. If this probability
is below a predefined threshold, the probabilistic scheduler
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Figure 1: Event sequences in a model consisting of
two senders and a receiver.

offloads the event for parallel execution immediately.
In the following, we describe the design of each of three

heuristics after discussing the general design goals and de-
riving the need for three different heuristics.

2.1 Design Goals
The primary goal of probabilistic synchronization is speed-

ing up parallel discrete event simulation. Therefore, the
simulation framework continuously collects data to guide a
heuristic in computing probabilities to predict the computa-
tionally cheaper option: either conservative synchronization
or speculative execution. In order to achieve the overall goal
of determining the correct simulation results as soon as pos-
sible, we define three distinct design goals in [11]:

i) guarantee causal correctness of the simulation, i. e., emend
inconsistencies induced by speculative event execution.

ii) maximize the number of correct predictions since incor-
rect predictions result either in blocked waiting or in a
rollback.

iii) minimize the prediction complexity since too much heuris-
tic overhead slows down the simulation.

Obviously, the two latter design goals conflict with each
other: A sophisticated heuristic can achieve accurate results,
but requires a lot of resources to come up with a decision. A
simpler heuristic computes the decision faster, but will err
more often.

We argue that a simulation with highly complex events
requires thoughtful heuristic decisions. Even the rollback of
a single event is an expensive task after a false heuristic pre-
diction. On the other hand, a simulation with simple events
cannot tolerate the overhead of a sophisticated heuristic. We
therefore designed three different heuristics of different de-
grees of complexity and accuracy. The synthetic benchmark
in [11] compares the decision quality and execution time of
those heuristics.

2.2 Arrival Pattern Heuristic
The Arrival Pattern Heuristic bases on the observation

that sequences of event types at a particular module re-
peat again and again. Figure 1 illustrates this for a network
node that periodically transmits packets and awaits the cor-
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Figure 2: The PDF is sampled from the delays be-
tween an event e and its earliest successor event es.
A histogram represents this distribution. The high-
lighted area denotes the probability that another
event e′s precedes the pending event ep.

responding acknowledgment. Figure 1(a) shows all events
in the simulation while Figure 1(b) focuses on the event
arrival pattern at “sender 1”. The idea of the Arrival Pat-
tern Heuristic is to observe this pattern (i. e., “send packet”-
events are followed by “receive ACK”-events and vice versa)
in order to be able to predict the type of the next event to
occur at this module. This heuristic is similar to related
work in probabilistic synchronization [5, 6, 18].

In order to store the event pattern, the learning compo-
nent of the heuristic tracks at each module

i) the type τ of the event that arrived last,
ii) for every event type υ, its number of occurrences nυ,
iii) for every pair (τ, υ), the number nτυ, indicating how

often an event of type υ followed an event of type τ .
The predictor utilizes this knowledge to determine the

probability pτυ that the type υ := υep of the pending event
ep occurs next after a preceding event of type τ as

pτυ :=

{ nτ
nτυ

, if nτυ 6= 0

0 , else.

We allow offloading an event of type υ if and only if the
complementary probability 1 − pτυ (i. e., υ does not follow
τ) is below a given threshold.

Applied to the discussed example, this yields a high prob-
ability for the next event to be a “receive ACK”-event (after
the last one being a“send packet”-event), i. e., the next“send
packet”-event is hold back until another“receive ACK”-event
occurs. Nevertheless, this heuristic reaches its limitations as
soon as situations get more complicated and arrival patterns
cannot be observed anymore. For a more detailed discussion
on the limitations and complexity, see [11].

2.3 Global Order Heuristic
The Global Order Heuristic analyzes the event interac-

tions from a global perspective, and determines the“scheduled-
by” relationship among events. We observe that a causal
violation occurs at module m only if:

i) two events e1, e2 execute speculatively in parallel, and
ii) e1 with t(e1) < t(e2) creates an event e3 with t(e3) <

t(e2),
where t(e) denotes the timestamp of event e.

This means, on deciding whether or not to offload a pend-
ing event ep, the heuristic needs to determine the probability
that any currently offloaded event creates a successor event
es with t(es) < t(ep). Therefore the learning component
tracks the minimum time difference (i. e., delay) between
an event e and all events scheduled by e. Aggregating this
information over all events of the same type yields the (em-
pirical) Probability Density Function (PDF), which we store



(a) Causal violation. (b) No causal violation.

Figure 3: A causal violation can only occur if an
event is scheduled to take place at the same module
as the pending event ep, i. e., causal correctness is a
local property of each module.

in a histogram.
The predictor can easily derive the probability p(τe, de)

that an event e of type τe schedules another event within
a delay of de := t(ep) − t(e) from the histogram (see Fig-
ure 2). Aggregating this probability over the set of all off-
loaded events O ⊆ E yields the probability for a causal
violation as:

pv := 1−
∏
e∈O

(
1− p(τe, de)

)
.

Again, the heuristic compares this result to a threshold to
determine the offloading decision.

This heuristic is more complex than the Arrival Pattern
Heuristic, but is also able to handle more complicated situ-
ations. Nevertheless, the main limitation of this heuristic is
the fact that it does not consider the locality of events. Fig-
ure 3 shows two situations that are handled indifferently by
the Global Order Heuristic although the situation in Fig-
ure 3(a) exhibits a causal violation while the situation in
Figure 3(b) does not. To reduce complexity the Global Or-
der Heuristic only considers the time of the next event, but
not the module it occurs on. A more detailed discussion on
the limitations and a formal analysis of the complexity can
be found in [11].

2.4 Local Order Heuristic
Motivated by the central limitation of the Global Order

Heuristic we developed a Local Order Heuristic that consid-
ers both timing and locality of events as well as the transitive
scheduling relationship. Therefore, the learning component
tracks not only the delays between events, but also the mod-
ules they take place on. That means, at a given module m
we track for each event e and its successor events es

i) the target module ms on which es takes place,
ii) the difference in simulated time between e and es.
Upon request the predictor spans the dependency tree (see

Figure 4), i. e., for every event in the set O of offloaded events
it determines the successor events and their corresponding
PDFs. In order to calculate the resulting PDF over mul-
tiple hops on a path through the tree, the heuristic needs
to convolve the underlying PDFs. We need to determine
the probability that an event occurs on the same module
as the pending event ep occurs on. Therefore, we denote
the nodes that point to the same module as ep as conflict-
ing nodes. Children of conflicting nodes are not included in
the tree since a causal violation would already occur at the
conflicting node.
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Figure 4: The heuristic constructs the successor tree
to generate the prediction. A delay distribution on
an edge in the tree denotes the PDF between con-
secutive event types. The delay distribution in a
node N is constructed by adding (convoluting) the
PDFs on the edges from the root to N . This reflects
the cumulative delay distribution from the offloaded
event to an event represented by that node. The fi-
nal conflict probability is computed by aggregating
the probabilities for the given delay in all conflicting
nodes.

Since the tree might get arbitrarily large, we avoid span-
ning the whole tree, but instead build the tree while travers-
ing it in a breadth-first manner. During that process, we cal-
culate a lower bound and an upper bound for the probability
for a causal violation to occur if ep is offloaded. Since the
PDF always shifts to the right by performing the convolution
operation (no delays smaller than 0 exist), the probability
always decreases. This means, we can calculate an upper
bound pu by aggregating the probabilities over all current
leafs L ⊆ V in the tree T = (V,E):

pu = 1−
∏

τ∈L,e∈O,
path(e,τ)

(
1− p(τ, de)

)
,

where path(e, τ) denotes the existence of a unique path in
the tree from an event e in the root to the leaf node τ , and
p(τ, de) is the convoluted probability over the path from e
to τ . A lower bound can be determined analogously by
considering only conflicting nodes in the leaf set. Note that
a conflicting node is always a leaf since the tree traversal is
stopped at a conflicting node.

As soon as both boundaries are smaller (larger) than the
threshold, we conclude that the sought probability is smaller
(larger) than the threshold, such that we can derive the off-
loading decision.

This approach determines highly accurate predictions, but
building the tree and convoluting the histograms comes with
high computational complexity. For a detailed complexity
analysis and a discussion on implemented optimizations we
refer to [11].

3. EVALUATION
In [11] we describe our synthetic benchmark analyzing the

quality and efficiency of the heuristics. Further, a case study
shows the overall runtime performance achieved by applying
the heuristics. In this article, to ease the application of
theoretical analyses, we simplify the model underlying the



(a) Network nodes used in
the case study.
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Figure 5: Performance of the traditional synchronization techniques and our heuristics in the simplified case
study.

case study and show that the results are similar. We then
analyze the degree of parallelism included in the model and
compare this to the degree of parallelism detected by the
Local Order Heuristic. We show that the heuristic is able
to detect an increasing degree of parallelism and speeds up
the simulation.

We performed all measurements on a dedicated simula-
tion server, equipped with two six-core AMD Opteron 2431
CPUs and 32 GB of RAM. The server runs our Horizon-
based proof-of-concept implementation of the heuristics on
OMNeT++ [21] on a 64-bit Ubuntu 10.04 LTS server OS.
For every data point we ran 30 independent simulations and
computed the 99 % confidence intervals.

3.1 Simplified Case Study
We base our case study on the model we used in the case

study in [11]. This is a wireless mesh network consisting
of 57 nodes focusing on the detailed simulation of a wire-
less OFDM channel. In this scenario, the channel performs
the complex OFDM fading calculations. Since this model
abstracts from many network stack details, the main task
of the other network layers is to forward the packets from
layer to layer. To aid theoretical analyses, we merge the
three lower layer modules into one network stack module
performing all network based operations. This results in
one application module and one network module per node
as depicted in Figure 5(a).

We train the heuristics once for every configuration of
threshold and checkpoint interval until 40,000 samples of
each distribution have been collected. We then run the
steady state 30 times in order to compute reliable values for
the simulation performance. The results are qualitatively
similar to the results presented in [11]. However, we observe
that the simplified model is better suited for optimistic syn-
chronization than the model consisting of more layers. We
attribute this to the fact that the high amount of fast pro-
cessed events increases the risk of rollbacks.

We do not discuss the results in close detail, but refer to
the detailed analysis of the similar case study in [11]. All
in all, from Figure 5(b) to Figure 5(e) we observe that all
heuristics outperform the conservative synchronization, and
that the Local Order Heuristic reaches the highest perfor-
mance of all described heuristics if configured appropriately.

This is the expected result since the simulation contains
highly complex fading calculations such that a sophisticated
heuristic has a high potential for speeding up the simulation.

However, we see that the Local Order Heuristic achieves a
speedup of only 3.5 although we have 12 cores available. In
the following, we analyze the underlying simulation model
in closer detail in order to investigate if
a) a more sophisticated heuristic could perform better, or
b) the model does not allow the execution of more events in

parallel.

3.2 Parallelism Analysis
We first take an analytical approach to investigating the

parallelism available in the model. The network consists of
57 nodes, and every packet is broadcast to the set of neigh-
boring nodes. As a consequence of the broadcast, every
receiver needs to calculate the fading coefficients. This re-
sults in a series of events that can be processed in parallel.
Since the modules of the concurrent events are physically
close together, we denote this as local parallelism. Further,
we observe that two events can be processed in parallel if
they belong to independent data streams, e. g., one commu-
nication at the “west” end, and one at the “east” end of the
network. As opposed to the local parallelism, we call this
global parallelism. Note that two independent data streams
that can be executed in parallel are still referred to as global
parallelism if they are close together in the network.

Calculating the available local parallelism can be easily
performed by analyzing the node degree of the nodes in the
network graph. We compute the theoretically achievable
speedup by exploiting all available local parallelism (and no
global parallelism) on a varying number of worker threads,
and compare this to the speedup achieved by the Local Or-
der Heuristic with a threshold of 0.01 % and a checkpoint
interval of 1 s (see Figure 6).

We conclude from the plot that the heuristic is able to (al-
most) completely exploit local parallelism, but beyond that,
it only exploits a small amount of global parallelism. This
might have two causes: Either the heuristic is not smart
enough to detect global parallelism, or the model simply
does not provide enough global parallelism to allow signifi-
cant speedup. We investigate this in the following.
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Figure 6: Comparison of the measured speedup
achieved by the Local Order Heuristic and the theo-
retically possible speedup by (only) exploiting local
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Figure 7: Speedup achieved by the Local Order
Heuristic on varying the degree of global parallelism
with two different threshold configurations.

3.3 Increasing Available Parallelism
A theoretic approach to analyzing the amount of global

parallelism available in the simulation model is more com-
plicated than for the local parallelism since, in this case, re-
ceivers, transmitters, and routes need to be considered. In-
stead, we take a practical approach to investigating whether
the heuristic is able to detect global parallelism or not. While
the amount of local parallelism remains constant (it de-
pends only on the node degree), the amount of global par-
allelism grows when increasing the number of concurrent
data streams. In the case of an average delay of 1 s between
two packet generation events (as in the case study so far),
the first multi-hop transmission from source to destination
and back finishes with high probability before the next one
starts. However, if we decrease the inter-arrival time of the
packet-generation-events, we increase the probability of two
data streams running in parallel in the physical network.

We claim that a smart heuristic must be able to detect this
increase of global parallelism. Figure 7 depicts the speedup
achieved by the Local Order Heuristic for arrival rates of
1 packet/s to 100 packets/s. We observe an increase of the
speedup from about 3 up to 6.5. Since it is not possible to
achieve a speedup of 6.5 only by exploiting local parallelism,
we conclude that our heuristic is indeed able to detect and
exploit both local and global parallelism if both are present
in the model.

We further observe that the optimal threshold for the
heuristic shifts to a higher value. We attribute this to the
fact that more available parallelism allows for more opti-
mistic heuristic setups.

4. RELATED WORK
Although there were extensive research efforts in the past

to optimize parallel simulations, it is still an ongoing re-

search topic. Perumalla created an elaborate survey on the
traditional techniques of conservative and optimistic syn-
chronization as well as recent advances [16]. Due to space
constraints we do not include such a detailed analysis, but
shortly describe the most relevant advances.

Probabilistic Synchronization.
Probabilistic synchronization has been considered in prior

approaches. The pioneering effort originates from Ferscha
et al. [5, 6]. Like our Arrival Pattern Heuristic, this ap-
proach analyzes the arrival pattern of events. However, as
opposed to our heuristic, they apply statistical methods on
the arrival times, neglecting the different types of events.
Based on these observations the heuristic predicts the time
stamp of the next incoming event. Since this heuristic is
also limited to local observations, it cannot accurately pre-
dict the next event in more complicated situations, like the
Arrival Pattern Heuristic.

A similar approach was proposed by Som et al. [18]. This
approach utilizes PDFs to sample the time differences be-
tween events. Nevertheless, they still ignore event types,
such that they inherit the drawbacks from the approach by
Ferscha et al.

Optimizing Traditional Approaches.
Orthogonal approaches focus on optimizing either conser-

vative or optimistic synchronization. Since the main chal-
lenge of conservative synchronization is the blocked waiting
problem, dynamic lookahead extraction was proposed to re-
duce the effects of this drawback. Several research papers
discuss different techniques in this area. For instance, Cota
et al. [4] analyze the internal behavior of a simulation model
component to compute a lower bound on the time of the
next event being generated. The advances of Meyer et al.
[13, 14] analyze the data flow between components from a
manually provided graph to compute longer, but still con-
servative lookaheads. Other approaches deal with domain
specific lookahead extraction, for example in the wireless
domain (Liu et al. [12]), or the domain of multi-processor
systems (Chung et al. [3]).

In the area of optimistic synchronization, approaches to
reduce the rollback costs were proposed by the research com-
munity. For example, Carothers et al. [2] introduced reverse
computation as a scheme to avoid state saving, but instead
undo events by additional routines to roll back to a previ-
ous state. An efficient checkpoint-and-rollback scheme was
introduced by Toccaceli et al. [19].

Combined Synchronization.
While probabilistic synchronization dynamically combines

conservative and optimistic synchronization based on a heuris-
tic result, previous approaches had already combined those
techniques statically. The pioneering efforts were performed
in the early 90s [1, 9, 17]. More recent frameworks allowing
the use of combined synchronization are µsik [15] and the
High Level Architecture (HLA) [7]. An orthogonal approach
to combining optimistic and conservative synchronization is
relaxed synchronization [8] relaxing the constraint of causal
correctness and allowing causal inconsistencies as long as two
events being executed out-of-order are not too far apart in
simulated time. This approach bases on the idea that also
in reality it can often not be guaranteed that two events
close together in time happen in the specified order. How-



ever, while this approach might allow fast execution, it does
not guarantee equality to the results computed by sequential
execution and defeats reproducibility of simulation results.

5. CONCLUSION
In this article, we described our probabilistic synchroniza-

tion scheme for parallel discrete event simulations. In [11] we
already showed that a sophisticated heuristic can speed up
a parallel simulation by a factor of 3.2. This article further
analyzes the underlying model and the degree of parallelism
available in the model. We showed that our heuristic au-
tomatically exploits more parallelism if the model supports
this. In a model with increased degree of inherent paral-
lelism we can achieve a speedup factor of 6.5. However,
a sophisticated heuristic always introduces a lot of over-
head, such that not every model will perform fast with every
heuristic.

All in all, we conclude that automatic analysis of event
interactions and interdependencies can remarkably speed up
parallel discrete event simulations.
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