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Abstract—On-path network elements, such as NATs and fire-
walls, are an accepted commonality in today’s networks. They
are essential when extending network functionality and providing
additional security. However, these so called middleboxes are
not explicitly considered in the original TCP/IP-based network
architecture. As a result, the protocols of the TCP/IP suite provide
middleboxes with the same information about data flows as
packet-forwarding routers. Yet, middleboxes typically perform
complex functions within the network that require additional
knowledge. Inferring this knowledge from observing the sparse
information available in network packets requires these devices
to base their decisions on ambiguous or forgeable data. In
this paper, we first discuss problems arising from insufficient
information and identify the resulting informational requirements
of middleboxes. We then propose SEAMS, a signaling layer that
provides middleboxes with descriptive and verifiable data flow
contexts in addition to the IP address and port information
that many middleboxes use today. Specifically, SEAMS enables
middleboxes to request and use detailed information about the
host, application, and user that is accessible at the communicating
end hosts. This information can then be used to provide more
secure and richer middlebox functions in home and enterprise
network scenarios. Our evaluation shows that SEAMS is a
feasible addition to TCP/IP-based networks and that it scales
well in the presence of multiple on-path middleboxes.

I. INTRODUCTION

Middleboxes are special purpose network elements that
“perform functions other than the normal, standard functions
of an IP router on the datagram path between a source host
and destination host” [1]. Middleboxes implement increas-
ingly complex functions within the network that cannot be
implemented in end hosts for technical or security reasons.
Firewalling, network admission control, tunneling, and address
translation are examples of such functions. These middlebox
functions frequently require information about the origin, the
destination, or the purpose of a data flow. However, the
protocols of the TCP/IP suite offer middleboxes only the
bare information required for forwarding packets towards the
destination host and application. This information is neither
cryptographically secured, nor does it answer important high-
level questions, such as: i) “Which user is accessing a network
resource?”, ii) “Which application is causing the current data
flow?”, and iii) “Which host is using the network?”.

In many cases, inferring this context of a data flow by
observing end-point addresses and port numbers is either im-
possible or inaccurate. For example, viruses and malware often

use well-known port numbers and communication patterns of
benign applications to avoid detection. Thus, middleboxes,
such as firewalls, have to resort to costly mechanisms (e.g.,
deep packet inspection) to identify communication of ma-
licious software. Approaches such as 802.1X [2] and VPN
tunneling [3] aim at providing a part of the missing context to
the network by tying network admission to user authentication.
However, actions of different users on a multi-user system still
remain difficult to distinguish within the network.

The gap between the required and the available informa-
tion for the intended middlebox functions severely limits the
potential of today’s middleboxes. In contrast, the end hosts
possess detailed information about the application and the user
as the origin of network traffic. However, the TCP/IP network
stack does not provide end hosts with the means to reveal this
information to on-path middleboxes. Even if this information
was revealed to middleboxes, verifying its authenticity inside
the network remains challenging.

In this paper, we first analyze the availability of information
about the origin of data flows as required by middleboxes
such as firewalls and QoS systems. We then propose SEAMS,
a signaling layer that provides middleboxes with expres-
sive information about traffic origin. In contrast to related
work [4], [5], our approach focuses on the question how end
hosts can make descriptive end-point information available to
middleboxes in a verifiable way. Furthermore, our signaling
layer enables the dynamic negotiation of the required end-
point information between end hosts and middleboxes for
reasons of accountability and efficiency. Notably, in SEAMS,
hosts do not need to signal end-point information to each
middlebox on the communication path individually. Instead,
middleboxes request and obtain end-point information within
a single end-to-end handshake that is performed between the
two communicating end hosts. These properties of SEAMS
enable multiple middleboxes to efficiently acquire and use
fine-granular information about the communicating end-points.

II. MIDDLEBOXES: ISSUES AND REQUIREMENTS

Today, many middleboxes, on the one hand, serve security-
related purposes as firewalls, tunnel end-points and proxies.
On the other hand, they extend the capabilities of a network
as Network Address Translators (NATs) or Quality of Ser-
vice (QoS) systems. Due to their important role in today’s



networks, one would expect middleboxes to work on detailed
and precise information when performing their functions. Fire-
walls, for example, need to unambiguously identify end hosts,
applications, and services as the origin of a data flow in order
to decide which flows to permit and which to block. Likewise,
QoS middleboxes require information about applications and
users, their preferences and requirements to treat their traf-
fic accordingly. However, the protocols of the TCP/IP suite
provide middleboxes with little more than IP addresses, port
numbers, and protocol IDs as easily accessible information. As
a result, middleboxes must either approximate the required
from the available information (e.g., guess applications and
QoS requirements based on port numbers) or must violate
layer boundaries by inspecting packet contents [6]. Neither
of both options presents a clean, reliable, and efficient way to
acquire detailed information about i) hosts, ii) applications and
their requirements, as well as iii) users and their privileges.

A. Inadequate host context

Due to the lack of more meaningful host identifiers within
the network, middleboxes use IP addresses to refer to hosts.
Yet, as discussed by many locator/identifier-split approaches
(e.g., HIP [7] and LISP [8]), IP addresses primarily refer to
routable network locations rather than to hosts. As locators, IP
addresses may be assigned dynamically or change depending
on the location of the host in the network. In addition,
middleboxes such as NATs or proxies modify IP addresses on
the communication path. Thus, middleboxes cannot use these
addresses as stable and global references to hosts.

Furthermore, IP addresses carry little semantic meaning.
The ownership of an IP address typically conveys no additional
information about a host. However, for middleboxes, the role
of the host, its type (e.g., notebook or server), its owner, its
administrator, or its privileges (e.g., authorized to use a specific
network application) are important additional information.
Inferring these properties from bare IP addresses makes the
configuration of middleboxes complex and error-prone.

Finally, IP addresses have no built-in defense mechanisms
against spoofing as they are not cryptographically verifiable.
Hence, the security of IP-address-based rules at middleboxes
largely depends on the underlying network topology. Host
identification based on IP addresses should, therefore, only
be used within small-scale networks (e.g., at home) or within
tightly controlled environments (e.g., in data centers) where
IP address spoofing or hijacking are improbable.

As IP addresses only provide a crude way to identify hosts,
a useful host context should have the following properties:
Stability: It should be stable over time and independent from
the location of the host and middleboxes within the network.
Expressiveness: It should simplify the process of providing
meaningful host-specific information to middleboxes.
Verifiability: It should be hard to forge and enable middle-
boxes to authenticate the context information.

A host context with these properties would enable middle-
boxes to simply, securely, and unambiguously identify hosts as

sources or destinations of data flows. However, since hosts are
controlled by users and applications, middleboxes may need
to further differentiate the cause and purpose of such flows.

B. Local scope of the application context

A networked host consists of the device hardware, the
operating system, and running applications. The operating
system has detailed information about which local application
triggered which data flow in the network. However, once the
data flow leaves the end host, this detailed information is re-
duced to IP addresses, port numbers, and a protocol ID. While
certain well-defined ports hint at application types (e.g., port
21 for FTP), many port numbers do not convey meaningful
information about the actual application and the purpose of
a data flow. Many network operators meet this fact by using
firewalls to restrict network traffic to WWW flows due to the
lack of better classification mechanisms. However, more and
more applications circumvent such restrictive firewall policies
by using HTTP over TCP with port 80 in order to disguise as
web-traffic [9], [10].

To determine the application context of a data flow despite
the lack of meaningful packet header information, middle-
boxes may inspect the payload data of forwarded packets.
However, such deep packet inspection requires middleboxes
to understand the higher-layer protocols. While decoding the
standard protocols of the TCP/IP suite may still be feasible,
trying to parse the many transport and application layer
protocols becomes impracticable and error-prone [6]. Hence,
an application context should have the following properties:
Expressiveness: It should enable middleboxes to unambigu-

ously identify applications based on information such as their
application name.
Verifiability: It should allow to verify the authenticity of the

application information.
Application contexts with these properties may serve as a

basis for better traffic classification and can lead to improved
and more efficient QoS treatment. Moreover, access control
lists (ACLs) that restrict or permit the use of specific applica-
tions become easier to specify and more efficient to enforce.
Hence, such application contexts can support administrators in
controlling the network in a more fine-granular way.

C. Missing user context

Unlike host and application, the user who triggered a data
flow (e.g., by opening a web page) does not have a repre-
sentation in the TCP/IP protocol suite. Hence, middleboxes
must assume that the user and the host (represented by the
IP address) are the same. However, this assumption often is
not valid, as most modern operating systems are multi-user
systems that allow different users to operate a host. Parallel
use of a system is more common than one might expect as
remote login capabilities exist for most operating systems.
Furthermore, processes initiated by one user may continue
to run in the background after she logged out and another
user logged in. Thus, data flows from a single host may have



different users as their origin. This leaves middleboxes with
no means to unambiguously map flows to the responsible user.

The need for a user identity within the network has led to
widespread standard solutions such as 802.1X [2] authenti-
cation and VPN tunnels [3], which authenticate users before
granting access to the network. However, the established user
context is not sufficient for two reasons. Firstly, the design
of these mechanisms may not allow for a distinction between
different users on the same host. For example, 802.1X opens a
(virtual) port at a switch and, thus, admits traffic on a per-host
basis. Secondly, the established user identity is not passed on
to middleboxes further along the communication path. Even
if the user identity could be communicated to subsequent
middleboxes, it might not be valid in different administrative
domains that use different representations (e.g., user names)
or different credentials (e.g., passwords) for the same user.
Hence, a user context should have the following properties:
Granularity: It should enable middleboxes to determine the

user at a per-flow instead of a per-host granularity.
Scope: It should allow a user to be authenticated in different

administrative domains.
Visibility: It should be visible to middleboxes along the

communication path.
A user context with these properties enables middleboxes

to base decisions on information about the user rather than
deriving possible user contexts based on application or host
information. This is especially valuable in scenarios where the
user who triggered a data flow is of special interest within the
network. Access control, accounting, and logging are examples
for middlebox functions that may benefit from meaningful user
identities instead of technical identifiers (i.e., IP addresses or
ports of a switch) that merely hint at the identity of a user.

III. DESIGN OF SEAMS

We now propose our Signaling layer for End-host-Assisted
Middlebox Services: SEAMS. The goal of SEAMS is to pro-
vide middleboxes with host, user, and application contexts that
fulfill the properties discussed in Section II. To this end, we
introduce an end-to-end handshake that SEAMS-enabled end
hosts perform between each other prior to the establishment
of a new application connection. Middleboxes can actively
participate in this handshake by requesting missing context
information for the new connection from the communicating
end hosts. End hosts locally look up the requested end-point
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Fig. 1. Example network scenario with two administrative domains X and
Y. Middleboxes are located on-path between the communicating end hosts.
Firewall (FW) rules are based on the host context HX and the user context
UX in domain X as well as the application A, whereas the NAT only requires
a stable host identifier HX . The QoS system prioritizes data connections based
on the user context UY in domain Y and the application A.

contexts and signal these within the handshake. The signaled
contexts are cryptographically bound to the end points, allow-
ing middleboxes to verify and use the requested information
for the provisioning of their respective function. Fig. 1 de-
picts an example network scenario, highlighting the context
information SEAMS-aware on-path middleboxes could request
from end hosts in order to improve their functions.

We now give a high-level overview of the SEAMS signaling
architecture and the signaling handshake. We then discuss the
proposed host, user, and application contexts and show how
SEAMS integrates in the existing network infrastructure.

A. High-level architectural description

The SEAMS architecture consists of two components: i) an
inspection layer that monitors and controls all network con-
nections at an end host or a middlebox, and ii) a signaling
layer that allows middleboxes to request the context of a
network connection and end hosts to answer these requests.
As shown in Fig. 2, the inspection layer is located below the
IP layer. Hence, all IP-based application traffic passes through
our inspection layer. The signaling protocol runs on top of
the transport layer. Thus, the signaling protocol appears like a
regular application layer protocol to middleboxes that do not
support SEAMS. Note that consumer-grade operating systems
provide APIs that our inspection and signaling layers can use
for packet inspection and transmission. Hence, SEAMS does
not require modifications to the operating system of end hosts
and can be installed and executed as a privileged user-space
application. We now describe how the SEAMS layers interact
on the different devices in our architecture.

On an end host, the inspection layer monitors the network
stack for new outbound application connections. When detect-
ing a new connection attempt (e.g., a TCP SYN), it delays the
connection, i.e., the data channel, and notifies the signaling
layer about the connection attempt. The signaling layer triggers
a SEAMS handshake with the destination host of the data
channel. Furthermore, it gathers the host, user, and application
contexts (e.g., the user and application name) associated with
the data channel at the operating system. For the sake of
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Fig. 2. SEAMS architecture. The inspection layer of SEAMS at the end
host detects new application connections and triggers the SEAMS signaling
layer. The signaling layer gathers connection information and signals them to
the peer host. The inspection layer at an on-path middlebox passes SEAMS
signaling messages to the signaling layer. The signaling layer then sets up the
data channel at the inspection layer according to the exchanged information.
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Fig. 3. SEAMS protocol handshake. Middleboxes add MBOX REQUEST
parameters to the HIP handshake in order to request context information. End
hosts acknowledge or reject these requests and provide requested end-point
contexts encapsulated in EP CTX parameters.

clarity, we defer the detailed discussion about the signaling
protocol and the context information to the following sections.

On-path middleboxes overhear the signaling handshake be-
tween the two end hosts and match the context information
contained in the signaling messages against their local context
policies. A firewall, for example, may check its ACL for a
matching host identifier. If the available context information
does not satisfy the configured policies, the middlebox sig-
naling layer queries the missing contexts from the end host
by appending a middlebox context request to the overheard
handshake message. At the destination, the signaling layer
processes the context requests and looks up the corresponding
end-point contexts. Moreover, the signaling layer adds the
requested contexts to the response message and sends it
towards the initiator of the handshake. Back at the middlebox,
the signaling layer processes the replied end-point contexts
and uses them as a basis for the provided middlebox function.
In case of a firewall, this means that it allows or denies
the application connection according to the matching rule. To
this end, the signaling layer instructs the inspection layer to
forward or drop packets belonging to the corresponding data
channel. As the inspection and the signaling layer reside on
the same device, we require the paths of signaling messages
and data packets to be the same for the network segments
that use SEAMS (path-coupled signaling). After a successful
handshake, the signaling layer at the initiating end host notifies
the inspection layer to resumes the application connection.

B. SEAMS protocol overview

The SEAMS handshake is based on the Host Identity
Protocol (HIP) [7], because it provides SEAMS with three
key elements of our design. First, HIP introduces a new
cryptographic namespace in the network stack that offers
a stable and verifiable host identity. Second, it is an end-
to-end signaling protocol with a signed message exchange
affording verification by middleboxes. Third, on-path mid-
dleboxes can inspect HIP signaling messages and obtain the
transferred signaling information in the message content. In
previous work [11], we introduced a HIP protocol extension
that protects middleboxes from replay attacks and allows
them to securely verify HIP signaling messages. We now use
these mechanisms in our SEAMS architecture as a building
block to securely negotiate and provide the required context
information between end hosts and on-path middleboxes.

In SEAMS, a new application connection triggers a HIP

handshake between the two end hosts, the initiator and the
responder. As shown in Fig. 3, we extend the last three
messages of the four-way HIP handshake. Each on-path mid-
dlebox with missing initiator-side context information appends
an MBOX REQUEST parameter, i.e. a middlebox context
request, to the first responder message R1. Specifically, it
adds the parameter to the unsigned part of this message.
The MBOX REQUEST parameter contains a request ID in
order to enable the middlebox to map the end host response
to its own request. Hence, the middlebox must choose a
unique request ID with respect to the possibly already included
MBOX REQUEST parameters in the message. Furthermore,
the MBOX REQUEST parameter consists of request values
that indicate specific requests for end-point information needed
by the middlebox function.

We distinguish between two request priorities, which are
encoded in the last bit of a request value: critical and uncritical
requests. Critical requests denote the minimal end-point con-
texts required for the provisioning of the middlebox function.
Hence, an end host must satisfy these requests in order to
successfully complete the handshake. Contrarily, uncritical
requests query the end host for context information that may
be beneficial in providing the respective middlebox function.
For example, a QoS system may provide minimal service
guarantees according to the needs of the signaled application
and reserve additional link capacity for the connection if it
also learns the identity of a high-privileged user.

When the initiator receives the R1 message, it first processes
the message as an unmodified HIP message. It then checks
for the existence of MBOX REQUEST parameters. If the
message contains parameters of this type, the initiator gathers
the context requests of the on-path middleboxes (e.g., for
the host and user identities). It may consult a local policy
database in order to determine whether to signal the requested
contexts or not. Depending on this policy decision and the
priorities of context requests, the initiator adds MBOX ACK
or MBOX NACK parameters to the second initiator message
I2. Both parameter types contain the request ID of the cor-
responding MBOX REQUEST parameter for identification at
the middleboxes. MBOX NACK parameters may optionally
include the reason for the negative acknowledgment. This
information can, e.g., be used by a network administrator to
analyze and resolve failing handshakes. Finally, the initiator
looks up the allowed contexts and adds each end-point context
(EP CTX) in a separate parameter to the I2. MBOX (N)ACK
and EP CTX parameters are included in the signed part of the
message. Hence, no on-path or off-path attacker can modify
the signaled information. On receipt of the I2 message, an on-
path middlebox inspects the message for an MBOX (N)ACK
parameter, that contains the echoed request ID, and the re-
quested EP CTX parameters. In case of an MBOX ACK, it
uses the acquired context information for the provisioning of
the respective middlebox function. Our extensions to the HIP
protocol handshake are symmetric for the context information
negotiation between middleboxes and the responder.



C. Verifiable end-point information

A key requirement of SEAMS is the ability for middleboxes
to verify the context information signaled by the end hosts. To
provide this verifiability, we use public key cryptography in
the design of SEAMS. Most importantly, a host or a user is
represented by the public key of a public/private key pair,
i.e., a cryptographic identity, as proposed by HIP [7] and
UNA [12]. Each end-host system is assigned a cryptographic
identity by its administrator, whereas users are responsible for
their own key pairs (similar to SSH keys). Middleboxes can
request the host and user public keys from end hosts in order to
authenticate these communication end points. To allow middle-
boxes to verify the requested identities, the SEAMS signaling
layer of the end host adds the requested identities to the
response message and uses the identities to sign the message.
The signature additionally allows middleboxes to attribute the
content of the handshake messages to the signaled identities.
Moreover, the public key signatures afford non-repudiation,
allowing middleboxes to prove that certain communication has
taken place, e.g., for accounting purposes.

In contrast to hosts and users, applications are digital entities
that are executed on account of a user and processed by
the operating system of a host. Specifically, the operating
system controls their execution and can, for example, inspect
the allocated memory of running applications and the files
accessed by them. Due to these abilities, applications cannot
ensure that a secret, such as a private key, stays disclosed from
the operating system at all times. As a result, the application
context is as trustworthy to middleboxes as the context of the
host that the application is running on or the user who started
the application. In the design of SEAMS, we account for this
fact by modeling the context information of an application as
statements that the end host makes about the application. We
discuss such statements in the following section.

D. Descriptive end-point information

Besides presenting middleboxes with verifiable identities
for hosts and users, end hosts in SEAMS can also provide
middleboxes with descriptive end-point information about a
data flow. Regarding descriptive contexts, we differentiate
between i) properties stated by a third party and ii) properties
stated by an end host. Third party context enables entities such
as the network administrator to make statements about a host
(e.g., type=“file-server”), a user (e.g., privileges=“lan-only”),
and an application (e.g., name=“firefox”). Third party contexts
are encoded in certificates, which are signed by the third party.
Middleboxes can acquire host and user certificates from a
public key infrastructure, that may be located in the local
network. Alternatively, middleboxes can request certificates
as additional end-point context from end hosts during the
SEAMS handshake. End hosts signal the requested certificates
along the communication path subsequent to the signaling
handshake. If the public key of the third party is set as
trusted at a middlebox, the middlebox can verify the certificate
signature and validate the host or user identity against it.

Afterwards the middlebox adds the conveyed context to the
context information gathered during the handshake.

Descriptive end host contexts are properties that are directly
retrievable from the operating system. Examples for such
properties include the name and the version of the operating
system, the average bandwidth used by a user, and the number
of open connections for an application. If these contexts are
requested by an on-path middlebox, the signaling layer of
SEAMS uses standard APIs provided by the operating system
to look up such information. It then adds the contexts as
EP CTX parameters to the signed part of the handshake
messages. As a result, descriptive contexts of an end host
are cryptographically bound to the host or user identity. This
binding enables on-path middleboxes to verify the signaled
contexts by validating the signature contained in the signaling
messages. A requesting middlebox may then use this verified
information along with the cryptographic host and user iden-
tities for the provisioning of its function.

E. Integration of SEAMS

We now discuss how SEAMS integrates in today’s end
host systems and network infrastructures. First, we describe
a typical usage scenario based on a SEAMS-aware firewall.
Here, we assume that the communicating end hosts are already
SEAMS-enabled. We then explain how SEAMS can be en-
abled on present end hosts and show how to equip for today’s
middleboxes that are legacy devices with respect to SEAMS.

Using SEAMS: To enable the use of cryptographic host
identities in the network, the administrator needs to generate
and store the cryptographic host identity when configuring the
host system. Likewise, users generate their own identities and
use them on the end host, where they are currently logged
in. Hence, our proposed identities are generated and used in
analogy to the server and user key-pairs employed in SSH.

In a basic usage scenario of SEAMS, the identity of a host
can be registered with the network administrator similarly to
the procedure of providing the MAC address for static DHCP
configurations. User identities can be registered by performing
a SEAMS handshake with a registration service in the network,
supplying the username and password in order to bind the two
identities. The network administrator then uses the registered
identities in the rules of a SEAMS-enabled firewall to specify
allowed host and user identities, while dropping all non-
matching traffic. In contrast to IP and port-based firewalling,
such a setup enables the firewall to distinguish users on a
multi-user system. Furthermore, identity-based rules allow the
firewall to permit data connections for specific hosts or users
independent from their current point of network attachment
(e.g., within company premises or at home).

In a more advanced scenario, the network administrator may
additionally equip hosts and users with certificates that bind
privileges to them. Furthermore, the rules of the SEAMS-
enabled firewall are not restricted to identities, but rather
define a verifiable identity in combination with descriptive
host, user, and application contexts as properties of allowed
data flows. Hence, a rule might state detailed contexts such



as (host-ID, application-name=“skype”) or (certificate-issuer,
user-privilege=“lan-only”, application-type=“jabber”). As a
result of the first rule, the Skype application can only access
the network when executed on the host identified by the public
key host-ID. The second rule, on the other hand, restricts
Jabber communication for users with the “lan-only” property
to the local network. Such expressive rules enable more fine-
granular network access configurations than possible today,
while making the configuration of middleboxes less error-
prone than IP and port-based policies. This makes SEAMS
a valuable approach for home and enterprise networks.
Deployment of SEAMS: Our design affords an installation

of the SEAMS inspection and signaling layers on end-hosts as
privileged user-space applications. Since SEAMS makes use
of certificates and standard operating system APIs for context
information lookups and packet inspection, no modification
of the operating system is required. Furthermore, the use of
HIP enables the integration of SEAMS in the network stack
of a host that is transparent to other applications. As a result,
no additional configuration or modification of applications are
required. However, SEAMS may not be as easily installed
on present middleboxes. Hence, these middleboxes are legacy
devices that do not benefit from the additional end-point in-
formation and may prevent the correct forwarding of SEAMS
messages. To enable the traversal of SEAMS signaling mes-
sages through on-path legacy middleboxes, we employ UDP-
encapsulation for these messages. Thus, legacy middleboxes
can continue to process packets based on IP addresses and
ports and are not required to support the SEAMS signaling
exchange. However, port-based policies may be needed to
allow forwarding of SEAMS signaling messages.

SEAMS requires support at both communicating end hosts.
However, when an end host in a SEAMS-enabled network
aims to communicate with an end host located outside the
local network, it may find that the peer host does not support
SEAMS. To foster isolated or incremental deployments, the
network may set up SEAMS proxies at the network borders
that take over the role of such SEAMS-unaware end hosts in
the signaling handshake, while forwarding packets on the data
channel to the destination host. Consequently, these proxies
allow SEAMS-enabled end hosts to provide SEAMS-aware
middleboxes in the local network with additional context infor-
mation despite the lack of support of the peer host. Likewise,
SEAMS-aware middleboxes may provide SEAMS-unaware
end hosts, which do not signal additional context information,
with the same restrictive IP and port-based functions as legacy
middleboxes. Hence, SEAMS is also applicable in scenarios
that do not provide full support for our signaling approach.

IV. EVALUATION

Our SEAMS prototype is based on the HIP for Linux
(HIPL) [13] implementation and extends it with functionality
for requesting and signaling our proposed context information.
The prototype consists of the end-host components and a
firewall implementation for middleboxes. The firewall grants
or blocks traffic based on the content and validity of the
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signaled information. The inspection layer uses iptables for
monitoring in- and outbound connections. When a new con-
nection is detected on an end host, our implementation uses
netstat to look up the application and user corresponding to
the connection. We use this information to further look up user
identities and end-point contexts (e.g., from certificates) and
selectively provide this information to on-path middleboxes.

Our test setup consists of two end hosts and two firewalls
that are connected by a Gigabit switch. The end hosts are
Intel Core i7-870 desktop computers and the firewalls are 500
MHz AMD Geode ALIX boards with 100 MBit/s Ethernet.
All measurements are the means of 100 runs and show a
maximum standard deviation of 5.0 ms. The four-way SEAMS
handshake includes a network delay of two roundtrip times.
As this delay is situation-dependent and network-specific, we
do not consider it in our measurements.

Performance evaluation: Notably, SEAMS does not add
a delay to the data channel once the signaling handshake
is complete. However, the SEAMS handshake creates an
additional delay when end hosts establish a new application
connection. This delay depends on the number of on-path
SEAMS-aware middleboxes as well as the type of context in-
formation that they request. Fig. 4 shows this delay for zero to
two middleboxes that were configured to query both end hosts
for the host identities (1024-bit RSA) and application names.
To answer these middlebox requests, both end hosts combined
introduce a total overhead of 37.88 ms. This overhead is
composed of i) the host signature generation and processing
on both end hosts (2.47 ms), ii) the lookup of the application
contexts (11.41 ms), iii) the end-to-end security measures of
HIP, namely the DH key-exchange and HMACs (22.41 ms),
and iv) general HIP packet processing (1.59 ms). As a primary
advantage of the end-to-end signaling in SEAMS, the end
hosts only have to gather context information and perform
cryptographic operations once per connection for all on-path
middleboxes. Hence, the end-host overhead stays constant with
an increasing number of on-path middleboxes (see “EH” bars
in Fig. 4). Furthermore, the delay caused by SEAMS decreases
to the overhead of the underlying HIP implementation (left
bar), if the end hosts do not receive any context requests
or if they are only queried for the host identity. Apart from
context signaling, the use of HIP additionally enables end
hosts to roam between networks and communicate securely.
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Fig. 5. High-level overhead comparison of the integrated and the cascading
handshake. Keys represent cryptographic operations. The dashed line denotes
an additional message to trigger a new connection on the responder side.

In such cases, the overhead of otherwise required signaling
mechanisms (e.g., Mobile IP and IKE) can be omitted.

Each middlebox introduces an additional delay of approx-
imately 8.7 ms on the signaling channel. This delay results
from i) the signature verification of both host identities (5.58
ms), ii) end-point context processing (0.60 ms), and iii) general
packet processing (2.51 ms). Hence, the total delay increases
from 46.57 ms with one requesting middlebox to 53.42 ms
for two requesting middleboxes. Notably, the per-middlebox
overhead in SEAMS only occurs for the four-way end-to-end
signaling exchange between the end hosts. As our signaling
approach does not require direct signaling between an end host
and a middlebox, the middlebox-related signaling delay is in-
dependent of the round-trip times encountered in the network.
Hence, our prototype allows for several on-path middleboxes
at a modestly perceivable per-middlebox overhead.

Certain on-path middleboxes may require knowledge about
the user as the origin of a data flow. In this case, the verifica-
tion of the users’ identities for both end points requires 3.99
ms. A middlebox may further require third party host or user
context. The corresponding certificate verification requires
approximately 2.80 ms for a certificate that is directly issued
by the third party (i.e., without intermediate certificates).

SEAMS allows for different levels of bit security by sup-
porting a range of public key algorithms and key lengths. For
2048 bit RSA keys, the cryptographic costs increase from 2.47
to 11.22 ms at end hosts and from 5.58 to 15.86 ms at mid-
dleboxes. ECDSA (NIST P-256) offers shorter identities and
signatures at a similar bit security, but it increases the delay
at end hosts to 10.56 ms and to 88.03 ms for middleboxes.

In the design of SEAMS, we opted for an integrated hand-
shake that consists of a total amount of four messages indepen-
dent of the number of on-path middleboxes (see Fig. 5(a)). As
a benefit, the signaling delay discussed above only occurs once
during the connection establishment. However, the integrated
handshake is affected by message space limitations when
signaling extensive context information.

In an alternative approach to SEAMS, end hosts would
exchange context information individually with on-path mid-
dleboxes in a cascading handshake (see Fig. 5(b)). Context
information could be transferred on the (secured) data channel
between the end host and the middlebox. However, while this
approach does not exhibit the same message space limitations
as SEAMS, the signaling overhead increases linearly with the
number of on path middleboxes. Hence, the design of SEAMS

trades off signaling space for scalability. To reduce the effect
of the per-message space limitation, we could further extend
the integrated SEAMS handshake with subsequent handshake
messages similar to the signaling of certificates.

V. SECURITY CONSIDERATIONS

In the following, we identify and briefly discuss attacks that
an adversary Mallory can mount against SEAMS:
Impersonating a host or a user: Mallory could aim at misus-
ing resources in a network with SEAMS-aware middleboxes.
To this end, she needs cryptographic identities that authenticate
her to on-path middleboxes. Generating her own identities
does not suffice for in-network authentication because mid-
dlebox policies would only permit traffic from legitimate (i.e.,
registered) identities. Thus, Mallory may try to impersonate
another legitimate host or user towards middleboxes. To
succeed, she needs access to the respective private keys. If she
were successful, Mallory could use the stolen identities on a
host of her choice (e.g., a host with a compromised SEAMS
implementation) to signal wrong flow contexts.

Hosts and users can effectively protect their identities
against theft by using well-known measures such as encryption
of their private keys or secure storage (e.g., in a smart card or
a trusted platform module). Concealing the private keys from
Mallory frustrates the aforementioned impersonation attacks.
Tampering with the end host: Mallory could try to tamper
with the SEAMS layers at a compromised host in order to hide
unauthorized traffic by signaling wrong context information.
However, this would require Mallory to alter the behavior
of kernel- or user-space components that are executed in
privileged system contexts. Furthermore, the signaled host
identity would allow a network administrator to identify the
compromised host when a malicious action is detected.
Misusing an established data channel: Mallory could aim
at using the data channels, that other hosts have established,
for her own purposes. However, a data channel is bound to
a SEAMS signaling channel by means of IP addresses, port
numbers, and a protocol ID. Hence, her data packets would
have to imitate these properties of the victim data channel. As
a result, Mallory cannot communicate freely because her traffic
is limited to the established source and destination addresses
used in the legitimate data channel. This considerably reduces
the usefulness of exploiting an established channel.
Full end-host context disclosure: MBOX REQUEST param-
eters are transmitted in the unsigned part of SEAMS messages
and do not contain end host verifiable information about
the middleboxes. This enables Mallory to request all obtain-
able context information from an end-host. As Mallory can
overhear EP CTX parameters for legitimate context requests,
SEAMS-aware end hosts should set up signaling policies to
ensure that they do not provide more information to Mallory
than they would signal to benign middleboxes.
DoS attacks against middleboxes: SEAMS requires mid-
dleboxes to perform cryptographic operations on signaling
messages and to allocate additional state compared to today’s



middleboxes. Thus, Mallory may try to force middleboxes
into excessive cryptographic operations or state allocations by
opening multiple connections or by replaying legitimate sig-
naling messages. We counter these attacks by using middlebox
puzzles and nonces that we proposed for HIP [11].

VI. RELATED WORK

Several other architectures aim for overcoming the short-
comings of today’s networks with respect to middleboxes.
NUTSS [4] and Pedigree [5] enhance middleboxes by pro-
viding them with additional end-point information.

NUTSS identifies communicating end-points by (user, do-
main, service) 3-tuples and makes this information available
in the network. The key differentiation between SEAMS
and NUTSS are the characteristics of the signaled end-
point information. While cryptographic host and user iden-
tities in SEAMS afford verification of end-point contexts at
middleboxes, all end-point information in NUTSS is non-
cryptographic in nature. The authors of NUTSS mention that
standard authentication protocols may be used on the signaling
path, hinting at an authentication overhead that is similar to
the cascading approach discussed above. Furthermore, NUTSS
does not enable middleboxes to distinguish between hosts and
users and does not provide them with the descriptive context
information offered by SEAMS. Thus, NUTSS does not allow
for similarly fine-grained middlebox policies. Finally, NUTSS
performs name-based routing on the signaling channel and
address-based routing on the data channel. As a result, the
paths of both channels may diverge. Hence, NUTSS requires
additional signaling on the data path to supply middleboxes
with authorization information.

Pedigree is a system that provides middleboxes with host
and application identifiers as well as a history of application
level interactions across multiple end hosts (i.e., data prove-
nance). As identified by the authors, Pedigree does not employ
sufficient cryptographic protection for the signaled information
to mitigate replay, forgery, and impersonation attacks. As
SEAMS provides such protection, it could serve as a secure
signaling channel for Pedigree’s provenance information.

AIP [14], DOA [15], and UNA [12] are architectures that
explicitly name hosts or users and expose this information
on the communication path. However, in contrast to SEAMS,
they only offer limited verifiable end-point information and no
descriptive contexts to on-path middleboxes.

UPnP [16], NSIS [17], and Midcom [18] are frameworks
that enable end hosts to set up state for a data channel at
a middlebox. However, these approaches are limited to the
authentication of a single end point (i.e., either user or host).
Furthermore, their cascading signaling and authentication ap-
proach results in higher computational overhead and additional
network delay compared to SEAMS.

VII. CONCLUSION AND FUTURE WORK

In this paper, we showed that middlebox functions can
be improved effectively by making expressive and secure
end-point information available in the network. To this end,

we introduced a signaling layer, SEAMS, that enables mid-
dleboxes to request missing end-point information within a
signaling handshake between the end hosts. In response to
these requests, end hosts signal cryptographic host and user
identities as well as cryptographically bound host, user, and
application contexts towards the network. This signaled infor-
mation enables middlebox policies (e.g., ACLs and QoS rules)
that are more meaningful, simpler, and more fine-granular than
today’s rules that are based on packet headers and packet
content. Moreover, the SEAMS signaling handshake only takes
place during the initial establishment of a new connection and
scales well with multiple on-path middleboxes.

While we discussed desirable properties of end-host con-
texts for middleboxes, we did not focus on end-host-related
aspects in this paper. As one such aspect, the use of our
signaling layer may lead to privacy issues when revealing
sensitive context information. Although our proposed context
negotiation mechanism affords minimal context disclosure for
end hosts with benign middleboxes, it only represents a first
step towards a privacy-aware solution. We consider the design
of mechanisms that enable the selective disclosure of privacy-
sensitive context information to authenticated middleboxes and
context blinding for unauthorized parties future work.
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