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ABSTRACT
High bit error rates reduce the performance of wireless net-
works. This is exacerbated by the enforcement of bit-by-bit
correct transmissions and the resulting retransmission over-
head. Recently, research has focused on more efficient link
layer mechanisms and on tolerating payload errors. Header
errors, however, still cause today’s network and transport
protocols to drop the erroneous packets.

Instead of retransmitting such packets, we investigate a
novel concept (called Refector ) of heuristically repairing
header bit errors. Refector accepts erroneous packets on end
hosts and exploits protocol knowledge and protocol state to
assign packets to their correct destination applications. It
operates on layers 3 and 4, is independent of the underly-
ing MAC and PHY, and requires no changes to hardware,
firmware, and communication behavior.

We evaluate the Refector concept via a prototype imple-
mentation deployed in an 802.11 network. Our results show
that Refector reduces packet loss in the network by more
than 25% when compared to payload-error-tolerant proto-
cols such as UDP-Lite.

1. INTRODUCTION
A steady increase in the number of error-tolerant ap-

plications, for example, streaming audio and video, is
playing a pivotal role in how the packet-switched net-
works have been evolving recently. For a long time
both the (TCP/IP) network stack and the radio ac-
cess catered to the demands for perfect data integrity
of error-sensitive applications, for example, file transfers
and SSH. However, error-tolerant applications, which
are more sensitive to network delays and packet loss
than to erroneous packets, have induced the following
seriated evolution in packet-switched networking:
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Everything error-sensitive: The (TCP/IP) network
stack and the medium access are error-sensitive. Pack-
ets need to be retransmitted if not acknowledged at the
link layer. Protocols such as UDP are used to fasten the
delivery of out-of-order yet error-free packets to stream-
ing applications.
Error-aware medium access: While the medium ac-
cess gains improved error handling, the network stack
remains error-sensitive and can only handle error-free
packets. It thus needs to recover erroneous packets
transmitted over a medium, such as wireless, that is
highly susceptible to frequent transmission errors. This
has led to a wide array of low-level error handling mech-
anisms such as partial packet recovery [10, 14] and re-
construction from retransmissions [8]. The majority
of these mechanisms requires significant modifications
in medium access technologies, i.e., in the protocols
and/or hardware at the link and physical layers.
Payload error-tolerant protocols: Finally, proto-
cols themselves become partially error-tolerant: They
only care about the integrity of packet headers, but the
errors in the data are ignored, assuming they are ac-
ceptable for error-tolerant applications. UDP-Lite [19]
is a prime example that leads this phase of evolution in
packet-switched networking.

Considering this evolutionary pedigree, a logical next
question should be whether we can make the network
stack also tolerant to header errors—if even packets
with those errors can be accepted. This paper explores
the feasibility and limits of this novel approach in the
form of Refector (lat.: repairer, mender): a system that
accepts erroneous packets, even if the errors are within
the protocol headers, and heuristically repairs these er-
rors and identifies the correct communication end-point.

The utility of this approach depends on two key ques-
tions: (1) How many packets in a wireless network are
lost due to header errors? Previous measurements tar-
geted at 802.11 [26] have shown that bit errors, while
bursty in nature, can appear anywhere in a packet,
and that furthermore, a header bit is at least as likely
to be corrupted as a payload bit. Therefore, a sub-
stantial amount of sent packets is lost at the receiver



due to header errors even when payload errors are ig-
nored. This is particularly true for applications with
small packets, such as VoIP, which have more header
bits than payload bits. (2) Is delivering partially er-
roneous data to the receiver beneficial? Error-tolerant
applications, such as VoIP, certainly benefit from par-
tially corrupt packets [9]. We have also shown before in
a simplified simulation [3] that, if header error tolerance
and repair are feasible, there can be considerable gains
to speech quality.

Refector runs on end-hosts and transparently inte-
grates with the header processing of protocols, primar-
ily at the network and transport layer. Thus, its main
task is to assign erroneous packets to their correct ap-
plications even in the presence of header errors. This is
based on two simple primitives: (1) Not all the header
fields of a packet are required by the network stack to
identify the target application at end-hosts. For exam-
ple, an error in the TTL field at the end-host is im-
material as far as the delivery of a packet to the right
application is concerned. Hence, at end-hosts, we can
classify different header fields based on their importance
in identifying the target application. This classifica-
tion enables Refector to ignore errors in certain header
fields. (2) Refector exploits the dynamic state of the
network stack to repair header errors. For example,
two packets with the same UDP source-port and dif-
ferent destination-port numbers, possibly due to errors,
can be assigned to the same application if one of the
destination ports is either invalid or not open.

While the concept of Refector is a very general one,
in this paper we primarily focus on the network and
transport layer and thereby stay independent of the un-
derlying MAC and PHY layers. Our Refector prototype
targets IEEE 802.11 based wireless LANs. In such se-
tups, the wireless connection between the end host and
the access point (i.e., the last hop over the Internet)
is a major bottleneck for Internet communications. In
Section 4.1 we show that Refector, when using NoAck
schemes, reduces the average packet loss by more than
25%, rendering it highly valuable for error-tolerant ap-
plications in widespread 802.11 WLAN setups.

The rest of this paper is structured as follows. We
briefly describe Refector and discuss our design goals
in Section 2. The design of Refector is discussed in de-
tail in Section 3. We evaluate Refector in an 802.11
WLAN setup in Section 4. Finally, we discuss limita-
tions in Section 5 and related work in Section 6 before
concluding the paper in Section 7.

2. SYSTEM OVERVIEW
Before exploring the details of how to repair header

errors, we present the basic operational ingredients of
Refector to facilitate a smooth sailing into the technical
concepts discussed in Section 3. We further highlight
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Figure 1: A simple example of port matching
via Hamming distances. An incoming packet
is matched against the expected values for two
flows. Flow 2 is chosen in this example because
of the lower Hamming distance (2 vs. 4).

our goals that justify our design decisions, explain the
reasoning behind different design trade-offs, and com-
prehend the resulting limitations of Refector.

2.1 Concept
The Refector approach follows a plain analogy with

how a local postman delivers a postal package with a
wrong address. Because of his experience in serving a
locality, he can tolerate errors in the recipient’s name
or street address. Moreover, errors in certain fields of
a postal address, e.g., the country code, do not concern
a local delivery. Similarly, Refector makes use of what
we call domain knowledge, which comes in two forms.

Time-independent domain knowledge is the knowl-
edge of a person familiar with a certain protocol about
how important the different header fields are, on the end
host, to deduce the correct communication end-point.
This knowledge can then be used to design a system
that can tolerate header errors. We defer a detailed
discussion on different fields to Section 3. One simple
example is the TTL field in IP header. It is decre-
mented at every intermediate hop, and the packet is
dropped when the TTL reaches zero. However, on the
end-host, this field is irrelevant, because the packet has
already reached its destination. Despite the fact that a
wrong TTL field has no effect on the header or payload
processing, an error in any of the 8 TTL bits will result
in the packet being dropped because the checksum did
not match.

Time-dependent domain knowledge also takes into ac-
count the current state of the system. On the end-host,
we know which connections are open at any given point
in time. For each of these connections, a state is main-
tained that tells how a header for this connection should
look like. The operating system needs this information
to match a packet to a specific connection. As a result,
we can match even an erroneous incoming packet to an
ongoing connection by knowing which connections are
currently open and which it most likely matches. A



simple example is given in Figure 1: A small header
excerpt (for the sake of clarity), e.g. the port field, is
matched against two ongoing communication flows at
the end host. It does not perfectly match either of the
two flows. However, since two bit flips are sufficient
to match it to flow 2, as opposed to four bit flips to
match it to flow 1, the decision is to assign the packet
to connection 2.

As a similarity metric, we employ Hamming distances,
i.e., the number of differing bits between two bit strings.
It is a computationally inexpensive metric that com-
putes bit similarity independent of the location of errors
in the string.

2.2 Design Goals
The design of Refector leverages the following four

primary goals.
Improving NoAck feasibility: NoAck schemes signifi-

cantly improve application throughput by avoiding ex-
pensive acknowledgments and retransmission of highly
time-critical data, as demonstrated in Figure 2. NoAck
schemes eliminate the need for per frame Ack which, be-
sides inducing additional communication overhead, has
to honor the inter-frame timing constraints of 802.11.
However, NoAck schemes suffer from high loss rates in
lossy networks, and are barely usable when combined
with full-coverage link-layer checksums. We want to
enable NoAck schemes by introducing error-tolerance
in the network stack. Unlike approaches such as UDP-
Lite, we want to tolerate errors in packet headers, which
means more packets are successfully delivered to the
right communication end-point. Consequently, we can
achieve the envisioned advantages of these schemes such
as saving timeouts and retransmissions, reducing la-
tency at the receiver’s side, and improving the over-
all network performance by freeing air time for other
transmissions.

MAC and PHY compatibility: We do not want to in-
troduce specialized MAC and PHY layers. This is be-
cause changes in hardware or the overall infrastructure,
such as WLAN, are expensive. Refector only imposes
two requirements on the underlying layers: (i) the abil-
ity to pass through damaged packets, and (ii) the abil-
ity to disable MAC acknowledgments, that is, NoAck
support. These features are commonly available in the
IEEE 802.11e extension for quality of service supported
by a wide range of commodity hardware. This exten-
sion defines access categories—flows with different QoS
criteria—and also supports disabling acknowledgments
on a per-packet basis via a flag in the MAC header.
Thus, error-tolerant and error-sensitive flows can coex-
ist by only disabling acknowledgments for packets be-
longing to error-tolerant flows.

Protocol compatibility: We want to confine the changes
introduced by Refector to pure software changes. More-
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Figure 2: Application-level throughput on
802.11 with and without acknowledgments. Un-
der good channel conditions, disabling acknowl-
edgments can considerably improve throughput,
especially at high bit rates.

over, the behavior of a Refector host to its communi-
cation partners or an outside observer should remain
standard-compliant. This design goal enables Refec-
tor to integrate well with existing IP based networks
because it neither changes the communication related
behavior of protocols (i.e., UDP and IP) nor the trans-
mitted data (both headers and payload).

Supporting heterogeneous application requirements:

We want Refector to be an optional, rather than manda-
tory, feature for all applications running on an end
host. Applications such as VoIP shall be able to opt-in
to error-tolerant communication with Refector support,
which leaves the standard case at completely error-free
communication (e.g., FTP, but also control information
such as ARP). Thus, the integration of Refector with
the protocol-stack does not adversely affect the perfor-
mance of concurrent applications.

Concluding, all our design goals favor accommodat-
ing common requirements—such as compliance to the
existing standards, low deployment effort, and seam-
less integration into existing systems—over potentially
more effective optimization efforts that require disrup-
tive changes in existing networked systems.

3. REFECTOR
This section illustrates the design details of Refec-

tor. Approaches such as UDP-Lite filter out all packets
with errors in UDP headers. Packets with errors in IP
headers are also dropped before they reach UDP-Lite.



In contrast, the very purpose of Refector is to accept
packets with errors in the UDP and the IP headers.

We particularly focus on the transport and network
layers (i.e., UDP and IP) for two reasons. First, the
network stack is a highly standardized design with the
goal of interoperability between many heterogeneous
systems. It is neither dependent on the underlying
hardware, firmware, or driver, nor on the applications
that use its functionality. This makes changes in this
part, as long as they do not impair compatibility, effec-
tive and widely usable. Second, a plethora of solutions
has already been proposed on the application layer, for
example, streaming codecs to cope with partially erro-
neous data [7, 12], and on the MAC layer with [10] and
without [20] hardware/firmware changes.

Over the 30 years since the original specification of
UDP/IP protocols, their setup has remained unchanged.
This is both a testament to the good design of the In-
ternet protocol suite and to the issue that compatibility
between hosts is vital for the functioning of the Internet.
Changing specifications or introducing new protocols
proves exceedingly difficult. The monotonousness of
this Internet protocol specification, however, has lead to
inefficiencies. Some techniques and their corresponding
header fields have gradually fallen out of use, e.g., frag-
mentation and reassembly in the IPv4 protocol. Simi-
larly, many fields are designed to contain a wide range
of values, while in practice, at least on end hosts, only
few of these values are used at any given point in time.
Refector leverages these inefficiencies both by ignoring
the contents of some fields, and by trying to introduce
additional redundancies in others where possible.

3.1 Header Fields Categorization
To manipulate erroneous packets, Refector divides

header fields of a packet into two categories, don’t-care

and vital. Don’t-care fields are not required for identi-
fying the right communication endpoint of a packet and
are simply ignored by Refector. Vital fields however, if
erroneous, have to be repaired.

In the following we show that each header field of IP
and UDP protocols can either be categorized as don’t-
care or as vital (cf. Figure 3). Furthermore, we show
how errors in vital header fields can be recognized and
repaired.

3.1.1 Internet Protocol
The IPv4 header has a size of at least 20 bytes divided

into the following fields.
Version and IHL: The first byte is split into a version
identifier and the header length. We categorized both
of these fields as don’t care: The version field is redun-
dant with information in the underlying MAC header
that identifies the encapsulated network protocol. We
also consider the header length static because header
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Figure 3: Classification of header fields in the
IP and UDP header.

options (at least in IPv4) are practically non-existent.
In a standard network, header options are rarely seen at
all, and some are even deprecated and filtered by gate-
ways (such as the originally defined routing headers).
Type of Service: The next byte contains DiffServ [24]
and ECN [25] information. We categorize DiffServ as
don’t-care because it is not required once the packet
has reached its destination. We also categorize ECN as
don’t-care because (i) it does not impact the behavior
of IP layer, and (ii) TCP is not the focus of our work
and will discard a corrupted packet in any case.
Total Length: Total length is a two-byte field that con-
tains the length in bytes of the complete packet at this
point in time. There is little practical use in this field
since the actual packet length can easily be derived from
other sources of information, such as the MAC layer
or the length of the packet in data memory. After a
packet is received by the network interface, it is copied
into the main computer memory and the operating sys-
tem is informed about the length of data in this packet.
Therefore, we categorize it as don’t care.
Identification, flag and fragment offset : The next four
bytes contain information for IP-level fragmentation and
reassembly. This feature has long fallen into obscurity
due to MTU discovery and MAC-level fragmentation
and is not even part of the basic IPv6 header any more.
Therefore, the three fields are considered as don’t-care
in our approach.
TTL: The TTL field is not required for protocol process-
ing at the receiving host and is therefore categorized as
don’t care.
Protocol : The protocol field identifies the next protocol
handler to be run once the packet leaves the IP handler.
This is one of the most important fields at the end host,
however, it is not easily repairable: For example, UDP
(encoded as 17; 00001001) and ICMP (encoded as 1;
00000001) are only separated by a single bit. Hence, a



single bit flip can result in the packet being forwarded
to the wrong handler. We categorize this field as vital.
Checksums: The IP header checksum only covers the IP
header itself. We categorized it as don’t-care because
(i) it depends on a large number of fields that we cat-
egorized as don’t-care, and (ii) the checksum in itself
does not provide us any information about the correct
communication end-point.
Source and Destination Address: Finally, the last 8
bytes contain the sender and receiver IP address. These
fields contain important information about the correct
communication end-point and we mark them as vital.
To repair these fields, we consider time-variant informa-
tion about the currently ongoing communication flows:
Refector maintains a list of IP addresses retrieved from
packets that are received without any errors.

After receiving a packet with errors, Refector matches
the source address of the packet against the list of IP
addresses to find the best match in terms of the Ham-
ming distance. We define a maximum Hamming dis-
tance threshold to avoid attributing packets to wrong
flows. Practical tests have shown that a threshold of
3 effectively prevents misattributions (see Section 4.4)
because other factors, such as UDP ports, are also con-
sidered before the packet is delivered to an application.

Refector performs a similar matching between the
destination address in the header and valid addresses for
the receiving host. This approach may seem less effec-
tive for numerically close destination addresses as might
occur where several hosts in the same sub-network use
Refector. Here, the small Hamming distance between
addresses might increase the risk of misattributions and
acceptance of packets that were destined for another
host. However, before the packet reaches the IP layer,
it has already passed another step of identification de-
pending on the underlying medium access control tech-
niques: A time or code division system or MAC address
ensures that the packet was destined for the host. Com-
pared to IP addresses, MAC addresses show a consid-
erably higher randomness. Under the typical Ethernet
MAC addressing scheme, even in a network of machines
of the same type, three of the six bytes of the address do
not show any noticeable correlation between the differ-
ent hosts (the first three being a manufacturer prefix).
Note that Refector, while it requires the MAC layer not
to discard packets with CRC mismatches, does not ap-
ply repair techniques to the MAC layer.

3.1.2 User Datagram Protocol
The UDP header contains four fields of two bytes

each. In effect, the only functionality it adds on top of
IP are port numbers to allow demultiplexing of several
flows on one host.
Source and Destination Ports: The first two fields con-
tain the source and destination port of the flow the

packet belongs to. These fields contain the most im-
portant piece of information to identify the right com-
munication endpoint of a packet, and hence, we mark
them as vital. Similar to IP addresses, Refector main-
tains a list of port numbers derived from packets that
were received without any errors. For packets with erro-
neous port fields, Refector finds the best match from the
list in terms of the Hamming distance. Again, to pre-
vent misattribution, it is necessary to find a Hamming
distance limit that facilitates effective repair without
creating packet misattribution. However, unlike IP ad-
dresses, which are assigned to hosts in a fixed manner,
port numbers can be actively chosen within a limited
range, as discussed in the next section.
Length and Checksums: The remaining two fields be-
long to the don’t-care category. This is because the
length of the packet can be derived from the size of the
data structure containing the packet data. The check-
sum covers the UDP header and payload, and is ignored
by Refector.

3.2 Port Allocation
As discussed in the previous section, the destination

port is the most important field in the UDP header with
regard to identifying the communication endpoint at the
receiving host. By carefully allocating ports to applica-
tions at the receiving host, we can make the port num-
ber fields more resilient to bit errors. Therefore, Refec-
tor modifies the kernel’s port assignment algorithm to
increase the Hamming distance between the ports num-
bers1. This reduces the risk of attributing a packet to
a wrong application.

3.2.1 Selection Mechanism
The IANA defined “private ports” are in the range

between 49152 and 65535, but many operating systems
use a larger range typically starting from 32768. This
is the range readily available for our custom port al-
location scheme. Refector employs BCH codes [2] to
select ports for error-tolerant applications. BCH codes
construct “codewords”—port numbers in this case—that
have a predefined minimum Hamming distance between
each other.

A BCH code is a polynomial error-correcting code
over a finite field GF (qm) defined by a generator poly-
nomial. With UDP ports, we have a binary field of 16
bits. However, as all the port numbers with the most
significant bit set to 0 are reserved, we need a BCH code
that operates on codewords of 15 bit length. Therefore,
Refector uses a BCH code over GF (215). The port num-
bers are then created from these codewords by prepend-
ing a most-significant bit 1.
1
Note that applications still can request specific ports, over-

riding the kernel’s allocation. However, they lose the advan-

tage of a guaranteed minimum Hamming distance.



generator polynomial no. data bits no. code bits min. distance corrects errors no. ports
x4 + x+ 1 11 4 3 1 2048

x8 + x7 + x6 + x4 + 1 7 8 5 2 128
x10 + x9 + x8 + x6 + x5 + x2 + 1 5 10 7 3 32

Table 1: Example generator polynomials for BCH codes. We used their property to create codewords
of a given length and minimal Hamming distance to choose port numbers that are distant enough
from each other to be resilient to a certain number of bit errors.

The choice of the generator polynomial influences the
number of data bits and parity bits; a trade-off between
its resilience to errors, and the number of ports we can
choose with that resilience. A collection of example
polynomials and their properties are shown in Table 1.
We use the generator polynomial x8+x7+x6+x4+1 for
our implementation, giving us 128 ports for the range
starting at 32768 (or 64 ports for 49152) at a minimum
Hamming distance of 5, and therefore, the ability to
correct up to two bit errors.

We consider 128 ports sufficient because Refector is
designed for end hosts, and the number of open connec-
tions at any time is low on such machines. We moni-
tored the number of open sockets on a student lab ma-
chine during a normal workload of browsing, e-mail,
instant messaging, etc., and never witnessed more than
65 simultaneously open ports. Furthermore, if our allo-
cation scheme runs out of ports, it will fall back to the
original scheme.

3.2.2 Analytic Approximation
After presenting our port assignment strategy, we

now analytically compare this strategy with the stan-
dard case, that is, any port number in the private port
range can be assigned if the application does not choose
a specific one. We focus on the case of less than 128 con-
current connections and assume the worst case scenario
under this condition: The minimum Hamming distance
between two port numbers is 5 in the case of Refector
and 1 in the standard case.

A Hamming distance of 1 means that two ports share
all but one bit, and this bit is the deciding factor in
the correct assignment (attribution) of a packet to the
target application. The number of misattributions is
therefore equal to the bit error rate (BER) assuming
independent distribution of errors. With an increasing
number of ports with 1-bit Hamming distance between
them, the misattribution rate increases. This is because
several bits in the 16-bit port field become deciding fac-
tors. For n ports with 1-bit Hamming distance, the
misattribution rate therefore can be approximated as:

1−
�
(1−BER)n

�
(1)

In the case of Refector, the minimum Hamming dis-
tance is always 5, that is, at least 3 of those 5 distance
bits have to be flipped to cause misattribution. For two
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Figure 4: Packet misattribution rate: Refec-
tor’s port selection algorithm creates a higher
resilience to misattribution. Even at a BER of
10−2, the worst-case misattribution rate is still
below 0.05%, compared to 14% in worst-case
standard assignment.

ports with 5-bit Hamming distance, the misattribution
rate therefore becomes:

1−
5�

k=3

�
5

k

�
BERk (1−BER)5−k (2)

For several ports with 5-bit Hamming distance be-
tween them, the exact misattribution rate depends on
how many of the differing bits are overlapping between
these ports. The absolute worst case, in which every
port with a 5-bit distance is active, has a misattribu-
tion rate of2:

1−
15�

k=3

�
15

k

�
BERk (1−BER)15−k (3)

Figure 4 summarizes the worst case misattribution
of Refector when compared with the standard case. As
pointed out, this analysis assumes that bit errors are in-
dependent of each other. However, as in practice errors
in 802.11 tend to occur in bursts [26], we will compare
this analysis with our real-world evaluation results in
Section 4.4.
2
This is actually strictly worse than what is defined by the

chosen BCH code, because no port will have all 5-bit neigh-

bors as valid choices.
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Figure 5: Influence of payload size on packet loss: As opposed to UDP with checksum coverage of
header and payload, where payload size influences the reception rate, UDP-Lite with a header-only
checksum coverage, and Refector, which tolerates errors in headers and payload, have a reception
rate independent of payload size. (The graphs show results collected from one of our test machines.)

3.3 User-Kernel Interface
One of our design goals is to allow both error-tolerant

applications (e.g., VoIP) and error-sensitive applications
(e.g., FTP) to coexist on a Refector host. Refector ex-
tends the socket interface between the kernel and the
applications with the additional option SO_BROKENOK
which is set by the application when it creates the socket.
This option allows Refector to determine whether or not
to deliver erroneous payloads, that is, payloads con-
tained in packets with checksum mismatches on any
layer, to the application.

Refector also creates a signaling path in the oppo-
site direction. The idea is to inform the application
whether or not the delivered payload is error-free. This
can be beneficial for an application even if it is ready
to cope with erroneous data. When an application uses
the recvmsg system call to receive incoming data, it also
receives additional information in the form of a set of
flags, such as whether the data fit the provided receive-
buffer. Refector adds the flag MSG_HASERRORS, which
is set when a CRC check failed on any layer, and thus
indicates that the delivered data may contain errors.

4. EVALUATING REFECTOR
The evaluation of Refector is based on IEEE 802.11

based WLAN technology. Our evaluation focuses on
three key parameters: packet delivery rate, packet mis-
attribution, and the influence of encryption on the per-
formance of Refector. We conclude this section by dis-
cussing the overhead introduced by Refector’s heuristic
matching.

In the following, we briefly describe our experimental
setup before going into the details of our results.

4.1 Experimental Setup
Throughout our evaluation, we compare Refector

with UDP-Lite, a standardized connectionless protocol
that allows partial checksums which only cover part

of a datagram, that is, header and an application-
specified amount of the beginning of the payload. For
our evaluation, we set UDP-Lite’s checksum coverage
to header-only for two reasons: (a) Including parts of
the payload in the checksum negatively impacts the
performance of UDP-Lite in terms of the number of
packets delivered to the application at the end host,
and, (b) securing the header clearly shows the effect
of header error-tolerance—the key difference between
the two techniques—introduced by Refector. Note that
UDP-Lite has the same usage requirements as Refector:
Both approaches require support to receive erroneous
packets and disable MAC acknowledgments.

We implemented Refector for Linux kernel 2.6.32.27.
Our experimental setup consisted of one AP and four
hosts. All the machines used network cards with an
ath5k [1] chipset. The AP machine provided AP func-
tionality via hostapd [11]. To identify error-tolerant
streams, the sender application sets the IP header’s
Type-of-Service field to a value that is mapped to the
802.11 access category “voice”, which was configured at
the AP to be sent out without acknowledgments.

We performed our experiments in an indoor setting
at the computer science building of the RWTH Aachen
University. The building has a very dense deployment of
APs from the university network. We used 802.11 chan-
nel 5 which is the same channel used by a neighboring
AP of the university network. Hence, the ongoing traf-
fic on these neighboring APs served as background and
competing traffic. Because we did not have direct influ-
ence on this traffic, we performed our experiments over
the course of several days and nights. Our experiments
for this analysis have two key characteristics: (1) Each
experimental run comprised one UDP-Lite flow and one
or several Refector flows per receiving host. (2) In each
experimental run, the AP sent 10 000 packets per flow.
Packets of all flows were sent concurrently; hence, slow
changes in the channel quality did not influence the
comparability of the results. We combined the results of
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Figure 6: Lower Graph: Comparison of UDP-
Lite and Refector by packet delivery rate over
400 runs from different stations. Upper graph:
relative improvement (packet loss using UDP-
Lite divided by packet loss using Refector) of
Refector over UDP-Lite. On average, we wit-
nessed an improvement of about 27%.

200 experimental runs on each machine to leverage the
different reception qualities caused by their positioning
and timing of the experiments. Thus, we received re-
sults for different error and packet loss rates.

4.2 Influence of payload size on packet loss
Before presenting detailed results on our key perfor-

mance parameters, we need to answer one question:
Does the payload size impact the performance of Re-
fector and UDP-Lite? It is important to answer this
question here because a negative answer will alleviate
the need to use payload size as a defining parameter in
the evaluation of Refector.

Figure 5 clearly shows that for UDP the size of the
payload impacts the overall packet loss in the network.
However, packet loss rates of UDP-Lite and Refector
remain unaffected by varying payload sizes. This is be-
cause UDP creates a checksum that secures its header
and the payload. For a fixed bit error rate, the num-
ber of non-matching checksums therefore increases with
packet size. For our UDP-Lite setup, however, the cov-
erage is fixed at 8 bytes. The number of non-matching
checksums for a fixed bit error rate is now independent
of payload size.

The same holds true for Refector because checksum
mismatches are ignored, so the checksum coverage is ef-
fectively zero. This means that no erroneous packets are
dropped because of checksum mismatches: The packet
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Figure 7: CDF of the relative improvement
achieved by Refector over UDP-Lite (as defined
in Figure 6).

is only dropped if no communication end-point can be
derived after applying Refector’s heuristic matching.
Based on these results, for the rest of this evaluation
section, we will not use payload size as a factor in eval-
uating Refector.

4.3 Packet Delivery Rate
Packet delivery rate, that is, the percentage of sent

packets that are delivered by the receiver to the ap-
plication layer, is one of our key performance metrics.
Figure 6 shows our results. The lower graph compares
the packet delivery rate of Refector with UDP-Lite. We
exclude results with less than 20% and more than 99%
delivery rate, because due to the very small and random
amount of packets received or lost, respectively, these
experiments showed severe variation in results, even af-
ter several days and nights of measurements. Each data
point in the graph compares a UDP-Lite flow with a
simultaneous Refector flow. Although varying channel
conditions lead to diverse packet delivery rates, Refector
outperforms UDP-Lite, which already tolerates errors in
the payload, in more than 99% of the experiments.

The upper graph in Figure 6 summarizes the results
by presenting the relative improvement achieved by Re-
fector, computed by dividing the number of packets lost
using UDP-Lite by the number of packets lost using
Refector. We use this metric for measuring relative im-
provement because the difference between a packet loss
of 1% and 2% can be significant for some error-tolerant
applications: They will show their most noticeable qual-
ity degradation early on, that is, during the first few
packet losses.

On average, Refector reduces the packet loss by 27%
in the network when compared with UDP-Lite. Please
note that this average improvement is sensitive to how
many results at which delivery rate contribute to the
average: Including an overwhelmingly large number of
experiments at a very high or very low quality will skew



the average. Therefore, our experimental results pre-
sented here are evenly spread over the whole range of
packet delivery rates. Note that the relative improve-
ment typically increases with the channel condition,
that is, at more practical packet loss rates of less than
10%, Refector tends to give a higher relative benefit.
Finally, Figure 7 shows the CDF of relative improve-
ment achieved by Refector in all the experimental runs.
These results show the feasibility of Refector as a system
that can improve the quality of error-tolerant applica-
tions, such as voice and video, by reducing packet loss
in the network.

4.4 Packet Misattribution
Another important factor is packet misattribution:

Because of the heuristic nature of Refector’s header er-
ror tolerance, it is possible that packets are assigned to
the wrong application. Although we analytically proved
in Section 3.2.2 that packet misattribution is negligible
when using Refector’s port selection mechanism, these
results were based on the assumption that bit error rates
are independent from each other. This assumption con-
tradicts the bursty errors rates observed in 802.11 based
networks [26]. Hence, we investigate whether the ana-
lytical approximation holds true in a real world deploy-
ment.

There are two misattribution scenarios to distinguish:
(1) misattribution between applications running on the
same end host, and (2) misattribution between appli-
cations running on different hosts in the network. In
all our experiments, we did not see a single instance of
the second case. This is due to a packet’s MAC address
comparison with the destination’s MAC address at the
link layer.

To evaluate packet misattribution, we used two con-
current Refector applications running on each host in
the network. We filled the application payloads with
bit patterns specific to each flow and examined the re-
ceived data to recognize misattributed packets. Fig-
ure 8 compares our empirical result with the analyti-
cal approximation (cf. Equation 2) from Section 3.2.2.
Each data point is the result of 100 000 transmissions.
It clearly shows that the packet misattribution rate is
negligible: Except for rare outliers, the misattribution
rate remains below 0.1% until the payload bit error
rate increases above 3%, at which point packets are
severely corrupted, and loss rate even with Refector ex-
ceeds 80%. Although these results are derived from two
concurrent applications, we strongly believe that even in
the case of multiple applications the misattribution rate
will remain close to its respective analytical approxima-
tion as long as the Refector port selection mechanism
is used to assign port numbers to applications.

It is also important to note that misattribution can
only occur for error-tolerant applications that use Re-
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Figure 8: Packet misattribution rates for two
concurrent Refector applications.

fector. Error-sensitive applications require correct pack-
ets (as indicated by correct checksums). Only erro-
neous packets are processed by Refector’s heuristics,
and those heuristics only take into account sockets of er-
ror-tolerant applications. Therefore, Refector will never
assign an erroneous packet to an error-sensitive appli-
cation.

4.5 Influence of Encryption
Our evaluation results so far were based on unen-

crypted communications. However, to enhance the pri-
vacy of a wireless network’s users, encryption is often
applied on the MAC layer. Hence, we also measure the
influence of encryption on the performance of Refector.

The 802.11 security subsystem provides two features:
data integrity via a message identity code (MIC) and
the actual encryption of data. Enforced data integrity
protection is not possible with any error-tolerant trans-
mission scheme because the two concept are mutually
exclusive: either a receiver accepts errors in the received
data, or it imposes strong integrity check via MIC.

The influence of encryption on error-tolerant trans-
missions primarily depends on the cipher’s error prop-
agation, that is, the number of additional bits that will
be corrupted during decryption for each bit that was
received incorrectly. 802.11 provides two encryption al-
ternatives: CCMP uses AES and TKIP uses RC4. AES
can corrupt up to 64 additional bits per bit error. How-
ever, the stream cipher RC4 does not corrupt any ad-
ditional bits during decryption. For this evaluation, we
therefore focus on TKIP/RC4 as the natural choice for
error-tolerant transmissions.

For this part of our evaluation, we introduced two
changes into the MAC layer implementation of the re-
ceiver. (1) We ignored decryption errors, that is, mis-
matches of the MIC, similar to accepting CRC mis-
matches. As with any checksum mismatch, error-sen-
sitive applications will not receive payloads that could
not be checked via the MIC, upholding data integrity



20%

30%

40%

50%

60%

70%

80%

90%

20% 30% 40% 50% 60% 70% 80% 90%

Pa
ck

et
 D

el
iv

er
y 

R
at

e 
en

cr
yp

te
d

Packet Delivery Rate unencrypted

(a) Comparison of an unencrypted and an encrypted

stream using Refector for error tolerance and repair.
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(b) Comparison of an encrypted Refector stream with an

encrypted UDP-Lite stream.

Figure 9: Influence of RC4 encryption on Refector’s error tolerance: While more packets are unsal-
vageable, Refector still performs well under encryption, and still noticeably outperforms UDP-Lite.

protection for them. (2) We disabled countermea-
sures (against potential attacks on the encryption) that
are taken by the MAC implementation if it witnesses
too many MIC mismatches. These changes only re-
quired small modifications in the hardware-independent
mac80211 [21] implementation inside the Linux kernel.
It is important to note that these changes reduce the se-
curity because it opens possibilities for additional crypt-
analytic attacks. Therefore, these changes are merely
introduced (i) to measure the influence of encryption
on the performance of Refector, and (ii) to support easy
deployment of Refector in a network that encrypts all
its frames on the MAC layer.

Figure 9(a) compares two concurrent UDP streams
using Refector, one encrypted and one unencrypted. It
clearly shows that Refector achieves higher packet de-
livery rate with unencrypted streams. This is because
TKIP uses per-frame initialization vectors (IVs) to cre-
ate a new key for every frame. If the IV, which is trans-
mitted within the MAC header, is corrupted, the frame
cannot be decrypted at all. However, at delivery rates
above 80%, the performance differences are small.

To show the advantage of Refector over UDP-Lite in
an encrypted network, Figure 9(b) compares a Refector
stream with a UDP-Lite stream. This setup is directly
comparable to Figure 6 for the unencrypted case. The
results are very similar: Refector’s advantage holds in
the encrypted scenario. Note that UDP-Lite also bene-
fits from our changes to the MAC encryption implemen-
tation. Without these changes, every bit error leads to
dropping the frame, rendering UDP-Lite’s payload error
tolerance useless.

4.6 Overhead
Refector’s heuristic matching introduces computa-

tional overhead in the network stack. However, this
overhead is very small because:

1. Most header fields are categorized as don’t-care,
and therefore do not require any repair effort.

2. For the remaining fields (i.e., IP addresses and
ports), Refector only computes their Hamming dis-
tance—a computationally inexpensive operation—
to members of a list of previously encountered ad-
dresses and ports.

3. The number of these comparisons only linearly in-
creases with the size of these lists. End hosts typ-
ically do not have many IP addresses, and port
comparisons are only performed among ports of
Refector-enabled applications. Hence, these lists
remain small, introducing very low memory re-
quirements and also keeping the number of Ham-
ming distance calculations very small.

Consequently, this low computational overhead of Re-
fector was not even measurable on our test machines.

5. DISCUSSION
In this section we highlight three major limitations

of Refector and shed light on how these limitations can
be dealt with.

Acknowledgment policies: Currently, the utility
of Refector is limited to NoAck schemes. This is pri-
marily because our initial design goal is the seamless
integration of Refector with existing MAC standards.

It is due to the strict timing constraints of existing
MAC acknowledgment schemes, such as in 802.11, that
Refector is unable to coexist with such schemes. For
example, the receiver has to decide within a short time-
frame (the SIFS, typically between 10µs and 16µs)
whether to acknowledge a frame or not. This time is
insufficient even to hand over the frame from the net-
work card to the operating system. Relaxing the timing
constraints of acknowledgments at the MAC layer is a
simple solution to overcome this problem and to extend



the benefits of Refector beyond NoAck schemes. This
way, the receiver should be able to deliver the packet
to the network stack and decide if the packet could be
assigned to an application before sending out a positive
or negative acknowledgment for that packet.

Rate Adaptation: While Refector’s error-tolerant
approach can significantly improve packet delivery rates
at the application level, many rate adaptation schemes,
such as the still widely used ARF [17] or the current
Linux default Minstrel [22], do not work out of the box
with NoAck schemes. These rate adaptation schemes
rely on acknowledgments as feedback for future rate
adaptation decisions.

If Refector’s error-tolerant NoAck traffic constitutes
a substantial portion of the traffic between a station
and an access-point, the rate adaptation performs sub-
optimally. We are currently investigating a rate adap-
tation scheme that will work without explicit per-frame
notifications via acknowledgments. To this end, we are
working on a receiver-initiated rate adaptation that can
integrate with existing rate adaptation approaches, up-
holding the principle of Refector being easily deployable
in existing network infrastructures.

Multi-hop scenarios: A substantial amount of Re-
fector’s improvement stems from the local knowledge
that can be leveraged at the receiving end-host. This
does not necessarily hold true for relaying gateways.
For example, unlike UDP ports, an IP address cannot
simply be matched against the locally used address(es),
because the packet may needed to be relayed to a differ-
ent host that we know nothing about. It is therefore an
open question how well Refector would perform in wire-
less multi-hop scenarios, and how it could be adapted
to such scenarios. However, this question is of minor
importance and beyond the scope of discussion in this
paper because we specifically focused on WLAN setup,
that is, a host directly connected to an access point.

6. RELATED WORK
Error tolerance within a communication system has

fostered a great deal of research effort in recent years.
However, the majority of these efforts has focused on
PHY and MAC layer solutions. Figure 10 depicts the
prominent techniques that deal with recovering erro-
neous packets.

Hybrid-ARQ [5] combines forward error correction
and retransmissions: additional FEC information is sent
instead of a simple retransmission. PPR [14] uses soft
information to recognize errors and only retransmit er-
roneous parts. Similarly, SOFT [27] uses soft infor-
mation received by several nodes, which then exchange
this information via Ethernet to reconstruct a correct
copy. ZigZag [8] uses the symbols received at the phys-
ical layer from retransmissions of the same packet to
recover erroneous packets. These solutions require spe-

Figure 10: Current approaches to achieve more
error tolerance within a communication system.

cial hardware that gives access to soft information or
the PHY symbols.

In ZipTx [20], the receiver is required to send neg-
ative acknowledgments to the sender to request parity
information for recovering the packet. While it runs on
commodity 802.11 hardware, it changes the MAC layer
behavior. Maranello [10] creates multiple checksums
over blocks of the transmitted packet. The receiver
only requests the retransmission of erroneous blocks.
It changes the 802.11 MAC protocol behavior in a way
that does not interfere with standard nodes in the same
network. MRD [23] combines information from mul-
tiple receptions of a packet, either by multiple nodes
or through retransmissions. All these solutions aim at
creating a correct copy of the packet to hand over to
the network stack. The goal of EEC [4] is to estimate
the BER and provide this information to sender and re-
ceiver. The estimation introduces additional sampling
data into the packets and changes the MAC protocol.

Similar to Refector, Jiang [15] proposes to use redun-
dancy in MAC addresses to heuristically correct errors
at the MAC layer of 802.11. However, it is not clear how
the system would perform in a real network, especially
since it does not consider the inherent timing problems
of such a solution in 802.11. UDP-Lite [19] is among the
rare solutions that tackle erroneous packets at higher
layers of the protocol stack. It has prominently fea-
tured in this paper as a benchmark and for comparative
evaluation of Refector. UDP-Liter [18] introduces com-
patibility between UDP and UDP-Lite and presents an
application-kernel interface similar to Refector.

Header compression schemes [13, 6, 16], while origi-
nally aimed at reducing overhead, support error-tolerant
communications: By reducing the header size, they de-
crease the chance of bit errors in vital portions of the
packet. One of the most advanced schemes, robust
header compression (ROHC) [16], can reduce headers to
about 10% of their original size, and is planned for use
in LTE cellular networks. However, header compres-
sion needs to be deployed on all participating nodes on
both sides of the wireless connection as it changes com-
munication behavior via compressed headers. Also, to
remove all redundancies, each sender needs to maintain



the current state of connections of all its communication
partners. In contrast, Refector only needs local knowl-
edge about connection, resides on the receiver side, and
does not change the communicated data.

7. CONCLUSION
We presented Refector, a novel scheme that assigns

erroneous packets to their correct applications even in
the presence of header errors. Employing Refector in
an 802.11 network without acknowledgments improves
packet delivery rate by more than 25% using negligible
computational resources. We also showed that the used
heuristics produce very little error, and that it is possi-
ble to use Refector with encryption, depending on the
used cipher.

We identify the following aspects as future work.
(1) Analyze the wide applicability of Refector by evalu-
ating it using other MAC protocols and physical layers.
In fact, 802.11 is a rather unforgiving system for er-
ror tolerance because of its strict acknowledgment tim-
ing policies. We are currently investigating the effects
of Refector in other scenarios. (2) Extend the use of
Refector towards multi-hop wireless network scenarios
such as wireless mesh networks and sensor nets. (3) In-
tegrate Refector with error-aware medium access tech-
nologies, such as Maranello [10], to see if these ap-
proaches compliment each other to improve packet de-
livery and reduce retransmissions in a lossy wireless
network. (4) Combine Refector with soft-information
based schemes such as PPR’s SoftPHY [14] for 802.11
networks.

Overall, this paper shows the applicability of Refec-
tor as a solution to enhance packet delivery in lossy
wireless networks. Our evaluation under different net-
working conditions shows that Refector can realize its
advantages in real world deployments.
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