
FootPath: Accurate Map-based Indoor Navigation
Using Smartphones

Jó Ágila Bitsch Link, Paul Smith, Nicolai Viol, and Klaus Wehrle
RWTH Aachen University/ComSys, Aachen, Germany.

Email: {jo.bitsch,paul.smith,nicolai.viol,klaus.wehrle}@rwth-aachen.de

Abstract—We present FootPath, a self-contained, map-based
indoor navigation system. Using only the accelerometer and the
compass readily available in modern smartphones we accurately
localize a user on her route, and provide her with turn-by-turn
instructions to her destination. To compensate for inaccuracies
in step detection and heading estimation, we match the de-
tected steps onto the expected route using sequence alignment
algorithms from the field of bioinformatics. As our solution
integrates well with OpenStreetMap, it allows painless and cost-
efficient collaborative deployment, without the need for additional
infrastructure.

I. INTRODUCTION

While navigation systems for outdoor environments are
readily available, navigation within buildings still poses a
challenge. The main reason for this lies in the difficulty to
obtain accurate position information in an easy to set-up way
with minimal infrastructure and to create indoor maps.

Our approach to this problem is twofold: (1) We use simple
step detection and step heading estimation. (2) We match
detected steps onto the expected route from the source to the
destination using sequence alignment algorithms. Instead of a
more general localization problem, we solve the localization
problem on a specified route. This allows us to compensate for
inaccuracies and give the user accurate turn-by-turn directions.

To allow easy incremental deployment of our system, we
integrate our system with OpenStreetMap [1], which already
has rudimentary indoor support [2]. GPS, Pseudolites, UWB,
WiFi access points, and RFID is avoided, making the system
useful for protected environments like historical buildings and
archaeological sites as well as hospitals, where additional RF
gear might interfere with medical equipment.

A. Contributions

The main contributions of this paper are:
1) Infrastructureless indoor navigation: We use simple

step detection and step heading detection, which we then
map onto a route using sequence alignment algorithms.
Additional infrastructure, like GPS, Pseudolites, UWB,
WiFi access points, and RFID can be avoided.

2) Localization on a route: We know the route, the
user intends to take. Using this knowledge, we reduce
inaccuracy at corners opposed to further accumulating

This research was funded in part by the DFG Cluster of Excellence on
Ultra High-Speed Mob. Inf. and Comm. (UMIC), DFG grant DFG EXC 89.

errors. Path matching is precise enough to allow for
accurate indoor turn-by-turn directions.

3) Easy incremental deployment: Deploying the system
for a new building simply consists of entering the floor
plan into OpenStreetMap.

II. RELATED WORK

The localization method is the core component of an accu-
rate navigation system. There exists a multitude of methods,
but they can be categorized into the following three categories:
Localization based on (1) lateration (or angulation), localiza-
tion based on (2) fingerprinting, and localization based on (3)
dead reckoning. However, in general, none of these methods
make assumptions about the actual route of a user.

A. Lateration

In general, lateration (or angulation) techniques make use
of the distance (or angle) of a user to a set of beacons,
calculating the relative position with respect to those beacons.
The accuracy of the distance (or angle) measurement directly
influences the localization accuracy. The most prominent ex-
ample used for outdoor localization is GPS. To realize a
precise lateration based indoor localization, we need a dense
infrastructure of beacons, called GPS pseudolites. Systems
based on GPS pseudolites, e.g. [3], allow for a precision of
0.01m and better. However, they require very carefully placed
transmitters and an exact calibration, making wide public
deployment impractical and unfeasible for the time being.

B. Fingerprinting

Similarly, localization systems based on WiFi fingerprints,
such as [4], [5], collect the identities and signal strengths
of the WiFi access points in the vicinity at various points
in the covered area. This calibration—war driving—is time
consuming, and easily becomes invalidated when physical
conditions change, e.g. the number of people in the vicinity
or new office equipment, thereby requiring new measurements
to keep the database up to date. While efforts to reduce the
required fingerprint positions are promising, they still depend
on exact 3D-models and are rather labor-intensive to set up.
However, a systematic drawback remains: There needs to be an
adequate number of access points in the vicinity. This may be
problematic in protected environments like historic buildings,
archaeological sites or hospitals. In comparison, our approach978-1-4577-1804-5/11$26.00 c© 2011 IEEE

1

2

3

4

5

6

A

B

A

B

Fig. 1. Flow of information during navigation. (1) The application obtains
map material from OSM. (2) The user selects her current position and her
destination. The phone calculates the best route. (3) The mobile phone detects
steps and directions. (4) The route is transformed into expected steps. (5) The
detected steps are mapped onto the expected steps. (6) The user gets feedback
about her position and her next way-points.

neither depends on war driving nor on additional RF infras-
tructure. Our OpenStreetMap integration makes incremental
deployment possible and painless.

C. Dead Reckoning

Dead reckoning approaches, such as [6], are based on
detecting steps and step headings, integrating over them to
estimate the current user position. Adaptive Kalman filters and
activity based map matching—e.g. resetting the user position
to the nearest elevator, if elevator like patterns are detected—
improve the position estimate. However, errors accumulate
quickly. Our approach can reset these errors by matching the
steps using sequence alignment. Thereby, it actually benefits
from turns, commonly found in indoor environments.

Constandache et al. [7] estimate outdoor user location
with a precision of up to 11m using only a compass, an
accelerometer, and AGPS for the initial position. Detected
steps are matched onto the currently closest path derived from
Google Maps, returning the best match as the user’s position.
In case of mismatch, AGPS resets the position. Our approach
differs in that we neither need AGPS, nor are we restricted to
outdoor navigation. Also, our path matching through sequence
alignment algorithms, see Section III-C2, is more robust by
handling source to destination routes in their entirety, instead
of per segment.

III. SYSTEM DESIGN

Figure 1 presents an overview of our system. We obtain
map material from OpenStreetMap, this allows easy updating
and incremental deployment on a global scale, see Section
III-A. After the user selects her route, the accelerometer and
compass of the user’s phone are used to detect steps and step
headings, see Section III-B. We then match these steps onto
the map using a first fit and a sequence matching scheme,
see Section III-C. Finally, we present the estimated position
back to the user, together with turn-by-turn directions towards
the destination, see Figure 14 for screen shots of our current
prototype.

> p

33

timeoutwindow

Fig. 2. Step detection with FootPath. A step is detected if there is a difference
of at least p = 2m

s2
on the low pass filtered z axis of the accelerometer. The

difference has to occur during a window w of 5 consecutive readings, or
165ms. After each detected step a timeout t = 333ms is used to avoid false
detection. The user can calibrate p and t to improve performance.

A. Generating Maps

OpenStreetMap [1] is an effort to create and distribute free
geographic data, such as street maps, but also indoor maps
of public buildings, albeit indoor support is still rudimentary
[2]. OpenStreetMap allows wiki-style editing, thereby enabling
everyone to contribute easily.

Map data from OpenStreetMap can be accessed as an
XML structure consisting of nodes, ways, areas, and relations,
which can be annotated with arbitrary key value pairs. Indoor
nodes can be annotated using a combination of the following
keywords:

• indoor=yes marks an object as being indoors.
• level=* designates the associated level or floor of an

object.
• wheelchair=yes indicates accessibility by wheelchairs.
• highway=steps denotes steps with the additional key-

word stepcount=* providing its length.
• highway=elevator labels elevators, connecting different

floors.
• highway=door specifies a node to be a door. build-

ing=entrance as a special case denotes the entrance door
to a building.

• name=* is used to give an object a common name.

The popularity of OpenStreetMap allows us to make use of
a variety of tools—e.g. JOSM [8]—to create and extend maps
incrementally. The OpenStreetMap community has already
mapped the vicinity of our building in great detail, easing
our task to integrate our indoor maps, which we derived from
floor plans with outdoor footpaths and streets.

Editing paths lying on top of each other, i.e., in different
floors, is still cumbersome. We alleviated this by creating one
distinct map file per floor, and annotating nodes to be merged
with a node in another layer with the keyword merge id=*.
This can easily be mitigated by extending JOSM with a better
indoor support plugin.

Fig. 3. Exemplary accelerometer raw data and detected steps. The upper plot
depicts the raw data recorded from the phone’s sensor, while a user first stands
still for 2 seconds and then starts walking. The values display characteristic
jiggling pattern. In the lower plot, we perform step detection on the low pass
filtered z axis values.

B. Step Detection

Modern smartphones are typically equipped with an ac-
celerometer and a compass. We make use of this fact and
directly use them for our step detection and step heading
estimation. The accelerometer values display a characteristic
regular pattern, see Figure 2. Therefore, we can detect a step,
by matching the values to a sharp drop in the acceleration,
attributed to the jiggling of the phone in the hand of the
user while she is balancing out her steps. To further improve
detection, we initially apply a low pass filter.

Formally, we detect a step whenever the acceleration value
falls by at least p = 2m

s2 within a window w of 5 consecutive
samples, or 165ms. Additionally, we define a timeout t =
333ms within which no new step is detected. The parameters
p, t, and the low pass filter parameter l can be calibrated to
further improve step detection performance on a per user basis.

Figure 3 shows an exemplary data set where a user first
stands still for 2s and then starts walking, while holding her
phone screen facing up in front of her in her hand. We repeated
this experiment with 15 users and found the parameters to be
robust against body heights and walking styles.

As soon as a step is detected, the phone also records the
current azimuth from the compass and passes the detected
step and step heading to the path matching algorithms. For a
correct step heading it is importand for the user to hold the
device, such that the left-right axis (x-axis) of the device is
perpendicular to the walking direction. Minor deviations can
be compensated by our algorithms.

C. Path Matching

Upon detection of a step, we trigger path matching. We pro-
pose two strategies for matching detected steps onto expected
steps from a map: (1) First Fit and (2) Best Fit, see Figure 4
and 5. Both algorithms respond with a position on the route,
which is in turn used for user feedback, see Figure 14. In the
following, we describe the path matching strategies.

M

S

Direct Matching

Lookahead Matching

M Step Headings expected from Map

S Detected Step Headings

First Fit Algorithm

1 2 ... |S|

Map:

Fig. 4. Matching sequences of detected steps onto sequences of expected
steps using First Fit. We detect direction changes and find the next possible
match in a lookahead. We see that S(5) does not match M(5) and is thus
collected for further evaluation. The same happens with the following detected
step headings S(6) to S(9). In this example, lookahead matching mode is
triggered after k = 4 consecutive unmatched steps and the new location is
M(13) after step S(9). The matching segment from steps S(5) to S(9) is
located from M(9) to M(13). Steps S(11), S(12) are handled as errors and
the algorithm resumes with direct matching mode. Steps S(18), S(19) still
match to the previous edge, thus First Fit waits for the user to resume with
the next edge.

1) First Fit: This algorithm—similar to CompAcc [7]—
makes use of the assumption that the user’s detected step head-
ing corresponds directly to the direction of the expected edge.
Upon each detected step and step heading, we try to match
this heading to the direction of the current edge and move
along this edge. If this is the case the algorithm is working in
direct matching mode. If the step heading and the direction of
the current edge do not match for k = 5 consecutive detected
steps, the algorithm switches to a lookahead matching mode,
to find a position further ahead on the path.

A heading αi and an edge direction βj are defined to be
matching, if the angle between them �(αi, βj) ≤ 42◦. In
direct matching mode the position is moved along the route
by increments of the initial step length estimation l, with each
directly matching step.

As we progress along an edge, there are two cases:
(1) The step length l was overestimated, and the real user

position is not yet at the end of this edge. This is due to
the algorithm progressing faster along an edge than the user
does in reality. In this case the location is corrected by the
algorithm by waiting at the beginning of a new edge as long
as the detected headings match the previous edge, on which
the user is still located. If step headings match the new edge,
we continue with direct matching mode along the new edge.
If the step headings match neither the current edge nor the
previous edge after k = 5 consecutive steps the algorithm
switches into lookahead matching mode.

(2) However, if the step length l was underestimated, we
obtain values not matching the current edge, because the user
already walks into a different direction. This can also occur
if we have consecutive headings which do not directly match
the current edge, but remain in direct matching mode due to
a directly matching step after j ≤ k steps. In this case, values

M

S

Direct MatchingM Step Headings expected from Map

S Detected Step Headings

Best Fit Traceback

1 2 ... |S|

Map:

Fig. 5. Matching sequences of detected steps onto sequences of expected
steps using Best Fit. We use sequence alignment to find the best match
between the sequences. Unmatched parts correspond to overestimated and
underestimated step lengths.

corresponding to the next edge are regarded as errors and the
lookahead matching mode corrects the position to a location
along the next edge.

If steps do not match expected steps they are collected for
further processing in lookahead matching mode. If, within k
steps, a matching heading αi is detected, direct matching op-
eration resumes. However, if no such step heading is detected,
the algorithm will try to find a maximum amount of at least
k = 5 steps consecutively matching to a segment on the path.

We remain in lookahead matching mode until we find
a segment on the path which machtes to at least k = 5
consecutive steps of unmachted steps, going backwards from
the latest unmatched step heading. If no such segment is found,
more steps are collected to repeat this process.

A matching segment is found by finding the first edge
along the path with direction βj which matches the latest
step heading αi, then move the end of the segment along this
edge for all previous headings α<i which match this edge,
and then establish the start of the segment by matching more
previous unmatched steps backwards along the path to the
edge directions β<j . The location returned by this lookahead
is the end of the matching segment which matches the latest
unmatched steps.

2) Best Fit: Inspired from sequence alignment algorithms
[9], widely used in bioinformatics and related fields [10]–
[12], we model the matching of detected steps onto expected
steps extracted from a map as a string matching problem. The
matching process is formalized as a dynamic programming
problem, where we punish mismatches with a penalty. The
best match is therefore the one with the smallest penalty.
Underestimated and overestimated step lengths are modeled
as gaps.

We define M as an array of all step headings M(i) : 1 ≤
i ≤ |M | on the route subdivided into virtual steps according
to the information in the given map. Then, we define S as the
string of all detected step headings S(j) : 1 ≤ j ≤ |S|.

As discussed in Section III-B, each step is associated with
an azimuth. Comparing the azimuth of a detected step with
the azimuth of a point on the expected route, we define a
score depending on the angle between them. The closer the

Fig. 6. Recurrence plot of detected steps and exptected steps. The darker
parts signify regions where the alignment between the detected real step and
the expected step from the map is very close. The lighter regions denote
regions, where such an alignment is not possible. The line with the markers
from the upper left corner, to the lower right corner, represents the best overall
matching for this particular run.

two directions match, the smaller this value:

score(α, β) =


0.0 if �(α, β) ≤ 45◦

1.0 if 45◦ < �(α, β) ≤ 90◦

2.0 if 90◦ < �(α, β) ≤ 120◦

10.0 else

As an example, Figure 6 shows in a recurrence plot, how
well detected steps line up with expected steps, using the
raw data from an indoor experiments and Figure 12 depicts
expected compass directions versus measured bearings on that
path, see Section IV-B.

Further following the dynamic programming approach, we
define a matrix D, with D(i, j) = di,j : 1 ≤ i ≤ |M |, 1 ≤
j ≤ |S|. We initialize this matrix with D(0, 0) = 0, D(i, 0) =
∞ : 1 ≤ i ≤ |M |, and D(0, j) =∞ : 1 ≤ j ≤ |S|. The other
elements are calculated using the following construction:

D(i, j) = min{D(i− 1, j − 1) + score(M(i), S(j)),

D(i− 1, j) + score(M(i), S(j − 1)) + 1.5,

D(i, j − 1) + score(M(i− 1), S(j)) + 1.5}

Figures 7 and 11 show a visual representation of this matrix
in the background. From this definition, we derive the expected
position along the path—map step posj—after j detected
steps, using this formula:

posj = argmin
i:1≤i≤|M |

(D(i, j))

As we are only interested in the current location posj , the
calculation of column D(, j) only depends on the previous

Fig. 7. Left-hand side: Displayed are the detected steps and their matched
position on the path. Best Fit and First Fit are our matching algorithms. Best
Fit Traceback is the best trace run on the matrix D, see Section III-C2, which
is visualized in the background. Right-hand side: The absolute differences of
our matching algorithms to the Best Fit Traceback match.

column D(, (j − 1)). This makes the implementation fast
and very space efficient.

IV. EVALUATION

We conducted three sets of experiments to show the feasi-
bility of our approach: (1) An outdoor experiment on a nearby
parking lot, in which we compare localization accuracy of First
Fit and Best Fit to GPS, and (2) an indoor experiment, in which
users use our system for navigating through our university
buildings. This second experiment also includes staircases
around elevators and doors, further showing the robustness
of FootPath. (3) To showcase the ease of map creation, we
also created indoor maps for a trade fair.

A. Comparison with GPS

An outdoor experiment, to be able to compare with GPS
data, was conducted with 15 test users to demonstrate the
functionality of FootPath. In the experiment, the same device
was used for each run. During the run the sensor data, as well
as the GPS location was traced.

An exemplary visualization can be seen in Figure 8 and
Figure 9. Our results show that our estimate of the step length
from the body height is not very accurate. Still, FootPath is
able to reset the location if it finds a better match of the user’s
position. The average accuracy of a detected step, defined as
the distance to the Best Fit Traceback, are 11.16m for First
Fit and 8.90m for Best Fit in our 15 test runs.

Considering First Fit, we see that if the directions can not
be matched along the path directly, due to a varying and/or
incorrect initial step size, it jumps ahead after finding at least
four matching steps along the path. If the step size is too large
it will wait for the user to catch up and continue when the user
changes the direction according to the path.

A problem is that this can lead to erroneous progress along
the path if there are faulty directions read which match to
the path. At this point we have to consider the trade-off to
detect the correct position during the lookahead phase and the
amount of steps we have to wait to obtain a new position.

In comparison, Best Fit matches each direction onto the path
to where it received the smallest penalty. Thus, it is possible

Fig. 8. During the experiment each of the 15 users walked along a predefined
path. In both figures we see the detected steps and their position corresponding
to the matching algorithms. GPS was tracked for comparison and is displayed
in both figures.

that Best Fit lags behind on an edge if the assumed step length
is smaller than the real one. It will respond to values which
correspond to the following edge with locations further along
the same edge, or remain at the same position. As soon as the
penalty for a location ahead on the path becomes smaller, it
will jump ahead. If the directions match better to a previous
position on the path it will fall back and continue from there.

B. Indoor Path

To evaluate the performance of our algorithms for indoor
environments, we selected a path containing staircases, several
doors and metal structures to have a distribution of error
sources along the path. For example, a user will have to
abandon walking directly along the path when opening doors.
We chose such a route to compare the design of our matching
algorithms and show that our proposition of providing an
accurate indoor navigation system is justified.

Looking at the distribution of the estimated locations for
Best Fit and First Fit in Figure 10, we see that Best Fit deals
better with inaccuaracies compared to First Fit. The latter
algorithm looses accuarcy especially around the elevator, as
the metal structures found in this staircase disturb the compass.
Here, the detected compass values are considered as noise as
the compass values change rapidly within few steps, whilst
walking around the elevator in the center of the staircase.

In Figure 10 we can see how First Fit uses the lookahead
matching mode to reestablish a location around corners of the
path. This works as intended, as corners are anchor points
which produce distinguishable compass headings which are
detectable by both algorithms. With more corners, i.e. with a
more complex route through an environment, our algorithms
have a higher accuracy, as there are more points to reset
location errors. Still, narrow staircases around metal structures,
pose a problem to First Fit, as the changes in the compass
directions happen too fast and are considered noise. This leads
to fewer established locations during navigation.

In this experiment, we have an average accuary of 1.6m
for Best Fit and 5.6m for First Fit. Due to the design of
Best Fit, which consists of constantly updating the penalty

1

2

3

4

5

6

7

8

9

10

11

12

13

(aborted) 14

15

16

1

2

3

4

5

6

7

8

9

10

11

12

13

15

16

B
e
st

 F
it

Fi
rs

t
Fi

t

Position on Path [m]

0 20 40 60 80 100 120 140

R
u
n
s

(aborted) 14

(comp. failure)

(comp. failure)

Fig. 9. The distribution of detected lcoations along the path for each run. We see steps matched consecutively as segments forming a horizontal connected
line along the graph. Each square is a step. Red slightly elevated squares depict segments starting with a backwards jump using Best Fit. We see each algorithm
jumping forwards along the path from the gaps between two segments. First Fit does this with the use of a lookahead, and Best Fit by choosing the position
with the smallest penalty. The compass failed during run 1, and during run 14 the application was accidentally closed.

for each location along the path, this algorithm performs
better and more stable than First Fit. The impact of noisy
compass values is tolerated and considered against all positions
along the whole route. Thus, this algorithm can recover a
location estimate after noisy compass headings, where First
Fit would regard these noisy compass values as errors, and
does not use these later along the path. Walking around the
elevator, produces more distinctive penalties, and thus a higher
accuracy, see Figure 6 and 11.

C. Map Creation for a Trade Fair

To support our claim of easy incremental deployability of
FootPath, we looked into possible use cases. While public
buildings, such as universities, are obvious use cases for indoor
navigation, we also consider trade fairs and conference venues.
Visitors attend these venues typically without extensive pre-
knowledge about the locality in cities they are unfamiliar with.
Also, the exact setup between specific trade shows changes,
even when they take place at the same exhibition center,
making easy and fast deployability all the more important.

As a proof of concept, we created a map for a trade fair in
a nearby city, see Figure 13. The trade fair organizer provided
reference floor plans covering over 20 000m2 on his website.
With those plans available, it took a single person less then
two hours to enter the plan into OpenStreetMap, including the
necessary labels by which users can look for an exhibitor. User
experience was good, but we were not able to run repeated

E

Door

Staircase
(1 floor up)
Staircase around Elevator
(2 floors up)

Indoor Path through University Building

E

20 m

E

20 m

Fig. 10. In this experiment, the user had to navigate our university building
using FootPath. We chose the path to pass by two staircases and several
doors to show the robustness of our approach. While both First Fit and Best
Fit work reasonably well, Best Fit deals with inaccuracies inherently arising
in human mobility more robustly. For both algorithms the calculated positions
are plotted along the path.

experiments for logistical reasons. Therefore, we have only
isolated measurements (not shown).

Thus we provide a fast deployable system which is ready to
be deployed depending only on the given map. Collaboratively
working on map creation can further scale this process such
that we obtain a fast deployment for even larger or complex
environments.

Fig. 11. Left-hand side: Displayed are the detected steps and their
matched position on the path. Right-hand side: The absolute differences of our
matching algorithms to the Best Fit Traceback match. The average location
error for Best Fit is 1.6m and 5.6m for First Fit.

D. Discussion

The previous results show FootPath performs accurate
enough to help the user find her way in indoor environments.
The closest related approach, CompAcc, depends heavily on
GPS for resynchronization and its difficult to create indoor
maps for use with it.

PDR on the other hand also works without the use of GPS,
but depends on escalators or elevators to reset an erroneous
position. Dead Reckoning also suffers from high sensitivity
with respect to compass inaccuracies and step length varia-
tions, which are very common in indoor navigation.

We summarize these characterizations in the following table
with respect to the aspects indoor deployability, outdoor de-
ployability, the need for additional infrastructure, initial setup
or maintenance, and how they reset errors and the source of
the map data:

Feature FootPath CompAcc PDR GPS
Indooor X −

(GPS needed)
X −

Outdoor X X X X

No Infrastructure X −
(GPS needed)

X −

No Initial Setup X X X −

No Maintenance X X X −

Error Resetting X
(route)

X
(route,GPS)

X
(elevators, stairs)

−

Map basis X
(OpenStreetMap)

−
(proprietary)

−
(proprietary)

−
(proprietary)

Comparing FootPath to the other localization systems, like
GPS Pseudolites, WiFi fingerprinting and Google Maps, we
see that they either depend on war-driving or significant
calibration effort. Furthermore, their use of additional infras-
tructure can limit their area of applicability.

For instance in hospitals, the use of mobile wireless equip-
ment is often forbidden, as it might interfere with medical
equipment. The prohibitive cost of GPS Pesudolites in terms
of equipment and calibration also make it feasible only for
very specific use cases. FootPath on the other hand can easily
deployed campus wide, in hospitals or on archeological sites,
where additional hardware may be damaging. We summarize
their characterizations in the following table:

Fig. 12. Visualization of the compass direction of the path and the measured
compass bearing along the path. Despite the flawed step heading we can see
the resemblance of both graphs. This is exploited by both First Fit and Best
Fit. The two consecutive staircases going around an elevator can be seen
starting at about 150m to 180m, with the expected and detected compass
values moving clockwise.

Feature Pseudolites WiFi F.print. Google Maps
Indooor X X −

Outdoor −
(GPS availiable)

X X

No Infrastructure − − −
(WiFi/GSM/GPS)

No Initial Setup −
(calibration)

−
(war-driving)

−
(war-driving)

No Maintenance −
(calibration)

−
(war-driving)

−
(war-driving)

Error Resetting − − −

Map basis −
(proprietary)

−
(proprietary)

−
(proprietary)

To the best of our knowledge, none of the discussed ap-
proaches properly address the task of creating indoor maps in a
generic way. Making use of OpenStreetMap and its associated
tools allowed us to create maps over the course of two hours
for a complete trade fair, making FootPath almost instantly
deployable.

We implemented our system designed for infrastructureless
indoor navigation as an Android application.1 Android is one
of the most popular mobile phone operating systems and
allows easy prototyping, while the devices typically feature all
sensors needed for our algorithms. Figure 14 shows screen-
shots of our prototype. However, porting FootPath to other
operating systems running on mobile devices, such as the
iPhone running iOS or other devices running Windows Phone,
is easily possible.

Finally, we currently do not deal with the user deviating
from the displayed route. The algorithms will always try
to map the user onto the calculated route. This leads to
undefined behavior, if a user wanders off. In the future, we

1Source code available at https://github.com/COMSYS/FootPath

https://github.com/COMSYS/FootPath

Exhibition stand

Fig. 13. We created a map to navigate in an indoor environment consisting of
two trade fair halls at an exhibition center covering 20 000m2. The process
of aligning reference pictures, drawing the paths and labeling nodes to be
selected by the user, took less than two hours.

plan to address this issue by matching the user to several
possible paths at the same time and opportunistically switching
between those using bioinformatics inspired multi-alignment.
Integrating other localization methods, our approach will fur-
ther enhance robustness of our approach.

V. CONCLUSIONS

We presented FootPath, a self-contained, map-based indoor
navigation system and demonstrated its feasibility in terms
of indoor localization accuracy and incremental global de-
ployability. We demonstrated this in three experiments: an
outdoor experiment to measure accuracy, an indoor run to
show robustness against typical indoor hazards, and a trade
fair scenario.

Furthermore, we showed the feasibility of sequence align-
ment for localization on a route in our Best Fit algorithm. This
scheme is easy to implement and has only minimal memory
requirements, making it appropriate for smart phones and other
highly embedded devices.

REFERENCES

[1] OpenStreetMap community, “OpenStreetMap, The Free Wiki World
Map,” March 2011. [Online]. Available: http://www.openstreetmap.org/

[2] ——, “Indoor Mapping – OpenStreetMap Wiki,” March 2011. [Online].
Available: http://wiki.openstreetmap.org/wiki/Indoor Mapping

[3] C. Kee, D. Yun, H. Jun, B. Parkinson, S. Pullen, and
T. Lagenstein, “Centimeter-accuracy indoor navigation using GPS-
like pseudolites,” GPS WORLD, vol. 12, no. 11, pp. 14–23,
2001. [Online]. Available: http://www.tik.ee.ethz.ch/∼beutel/projects/
picopositioning/gps pseudolites.pdf

Fig. 14. Screen shots of the calibration screen and during navigation.
While calibration parameters allow to tune step detection parameters, path
matching itself is robust enough, even without tweaking. The current Android
prototype during navigation displays background tiles from OpenStreetMap
with an overlay of the calculated path and the user position. In addition we
show internal status information, like the exact measured bearing, and the
currently assumed bearing.

[4] P. Prasithsangaree, P. Krishnamurthy, and P. Chrysanthis, “On indoor
position location with wireless LANs,” in Personal, Indoor and
Mobile Radio Communications, 2002. The 13th IEEE International
Symposium on, vol. 2. IEEE, 2002, pp. 720–724. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1047316&tag=1

[5] Y.-C. Cheng, Y. Chawathe, A. LaMarca, and J. Krumm,
“Accuracy characterization for metropolitan-scale wi-fi localization,”
in Proceedings of the 3rd international conference on Mobile
systems, applications, and services, ser. MobiSys ’05. New
York, NY, USA: ACM, 2005, pp. 233–245. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1067195

[6] D. Gusenbauer, C. Isert, and J. Krösche, “Self-contained indoor
positioning on off-the-shelf mobile devices,” in Indoor Positioning and
Indoor Navigation (IPIN), 2010 International Conference on, 2010,
pp. 1 –9. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?
arnumber=5646681

[7] I. Constandache, R. Choudhury, and I. Rhee, “Towards mobile phone
localization without war-driving,” in INFOCOM, 2010 Proceedings
IEEE, 2010, pp. 1 –9. [Online]. Available: http://ieeexplore.ieee.org/
xpls/abs all.jsp?arnumber=5462058

[8] I. Scholz and OpenStreetMap community, “Java OpenStreetMap
Editor,” March 2011. [Online]. Available: http://josm.openstreetmap.de/

[9] R. A. Wagner and M. J. Fischer, “The string-to-string correction
problem,” J. ACM, vol. 21, pp. 168–173, January 1974. [Online].
Available: http://portal.acm.org/citation.cfm?doid=321796.321811

[10] A. Abbot and A. Tsay, “Sequence analysis and optimal matching
methods in sociology,” Sociological Methods & Research, vol. 29,
no. 1, pp. 3–33, 2000. [Online]. Available: http://smr.sagepub.com/
content/29/1/3.abstract

[11] R. Barzilay and L. Lee, “Bootstrapping lexical choice via multiple-
sequence alignment,” in Proceedings of the ACL-02 conference
on Empirical methods in natural language processing - Volume
10, ser. EMNLP ’02. Stroudsburg, PA, USA: Association for
Computational Linguistics, 2002, pp. 164–171. [Online]. Available:
http://dx.doi.org/10.3115/1118693.1118715

[12] A. Prinzie and D. V. den Poel, “Incorporating sequential information
into traditional classification models by using an element/position-
sensitive sam,” Decision Support Systems, vol. 42, no. 2, pp. 508 –
526, 2006. [Online]. Available: http://www.sciencedirect.com/science/
article/B6V8S-4G0YT6D-2/2/35c336180f44a2938df02b39c8417909

http://www.openstreetmap.org/
http://wiki.openstreetmap.org/wiki/Indoor_Mapping
http://www.tik.ee.ethz.ch/~beutel/projects/picopositioning/gps_pseudolites.pdf
http://www.tik.ee.ethz.ch/~beutel/projects/picopositioning/gps_pseudolites.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1047316&tag=1
http://portal.acm.org/citation.cfm?id=1067195
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5646681
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5646681
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5462058
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5462058
http://josm.openstreetmap.de/
http://portal.acm.org/citation.cfm?doid=321796.321811
http://smr.sagepub.com/content/29/1/3.abstract
http://smr.sagepub.com/content/29/1/3.abstract
http://dx.doi.org/10.3115/1118693.1118715
http://www.sciencedirect.com/science/article/B6V8S-4G0YT6D-2/2/35c336180f44a2938df02b39c8417909
http://www.sciencedirect.com/science/article/B6V8S-4G0YT6D-2/2/35c336180f44a2938df02b39c8417909

	Introduction
	Contributions

	Related Work
	Lateration
	Fingerprinting
	Dead Reckoning

	System Design
	Generating Maps
	Step Detection
	Path Matching
	First Fit
	Best Fit

	Evaluation
	Comparison with GPS
	Indoor Path
	Map Creation for a Trade Fair
	Discussion

	Conclusions
	References

