
A performance comparison of recent network
simulators

Elias Weingärtner, Hendrik vom Lehn and Klaus Wehrle
Distributed Systems Group
RWTH Aachen University

Aachen, Germany
Email: {weingaertner,vomlehn,wehrle}@cs.rwth-aachen.de

Abstract—A widespread methodology for performance analysis
in the field of communication systems engineering is network
simulation. While ns-2 has established itself as virtuallythe
standard network simulation tool, other network simulators have
gained more and more attention during the last years. In this
paper, we briefly survey new developments in the field of network
simulation and conduct a performance comparison study by
implementing an identical simulation set-up in five simulators,
namely ns-2, OMNet++, ns-3, SimPy and JiST/SWANS. Our
results reveal large differences according to both run-time per-
formance and memory usage.

I. I NTRODUCTION

Network simulation is without a doubt one of the most
predominant evaluation methodologies in the area of computer
networks. It is widely used for the development of new
communication architectures and network protocols. So-called
network simulators allow one to model an arbitrary computer
network by specifying both the behavior of the network nodes
and the communication channels. For example, in order to
investigate the characteristics of a new routing protocol,it is
usually implemented in a network simulator. Afterwards, the
routing behavior can be easily studied in different topologies,
given the fact that the network topology is merely a set
of simulation parameters. Most available network simulation
toolkits are based on the paradigm of discrete event-based
simulation [5] (DES). Here, the simulated network nodes
trigger events, for instance, when a packet is sent to another
node. The simulator maintains an event queue sorted by
the scheduled event execution time. The simulation itself is
performed by successively processing the events in the queue.

The first approaches where DES was applied to the simula-
tion of computer networks were published about two decades
ago [4, 8]. ns-2 [13] is a direct successor of those early
efforts and since then, it has become virtually the standard
for network simulation. This can be attributed to the fact that
numerous models, e.g. protocol models and traffic generators,
are publicly available for ns-2. They can be used off-the-
shelf, thus eliminating the need of implementing them by
hand. However, a major shortcoming of ns-2 is its limited
scalability [6, 20] in terms of memory usage and simulation
run-time. This is especially a problem as new research domains
in the field of computer networks, such as wireless sensor
networks (WSNs), peer-to-peer networks or grid architectures,
require the simulation of very large networks, potentially

with hundreds of thousands of nodes. In order to face those
challenges, a couple of enhancements of ns-2 have been
proposed, for instance the incorporation of parallelization [16].
However, ns-2 is currently undergoing a major redesign [6].
One of the main development goals of its successor, ns-3, is
the improvement of simulation performance.

Besides ns-2, over a dozen network simulators are presently
used in academia and in the industry. Prominent examples
include OMNeT++ [19], the Java-based JiST [3] and com-
mercial tools such as the OPNet modeler [14]. In addition,
specialized simulation tools, such as the WSN simulator
TOSSIM [9], serve dedicated research domains. This leaves
many researchers and graduate students with the question of
which network simulator to use, especially if one is interested
in achieving a high simulation performance.

In this paper, we focus on current developments regarding
open source simulators. In Section II, we provide a brief
overview of network simulators which have recently gained
attention in the research community. The main contribution
of this paper is a performance comparison study incorporat-
ing five different open source simulation tools, namely ns-
2 [13], ns-3 [6], OMNeT++ [19], JiST [3] and SimPy [11].
By implementing the same simulation and equal simulation
models from scratch for all of them, we are able to compare
the simulator performance itself without any distortions caused
by different implementations of simulation models. The design
and the outcome of this performance comparison study are
discussed in Section III. As a matter of fact, this is not the
first performance comparison of network simulators. However,
to our knowledge none of those studies include recent con-
tributions like ns-3. In Section IV, we discuss such related
performance evaluation studies and compare their results with
the ones presented in this paper. We conclude in Section V
with the lessons we learned from this performance comparison.

II. I NVESTIGATED SIMULATION TOOLS

In this section, we concisely introduce the network simula-
tors considered in the performance comparison. We emphasize
that ns-3, OMNeT++ and JiST are all gaining more and
more prevalence compared to the long-established ns-2. We
include ns-2 here to form a baseline. In addition, SimPy
was incorporated in the comparison as it represents a modern



implementation of a process-oriented simulator in the popular
Python language.

A. ns-2

Network simulations for ns-2 are composed of C++ code,
which is used to model the behavior of the simulation nodes,
and oTcl scripts that control the simulation and specify further
aspects, for instance the network topology. This design choice
was originally made to avoid unnecessary recompilations if
changes are made to the simulation set-up [6]. Back in
1996 when the first version of ns-2 was released, this was
a reasonable intent, as the frequent recompilation of C++
programs was indeed time-consuming and slowed down the
research cycle. However, from today’s perspective, the design
of ns-2 trades off simulation performance for the saving of
recompilations, which is questionable if one is interestedin
conducting scalable network simulations.

B. ns-3

Like its predecessor, ns-3 relies on C++ for the imple-
mentation of the simulation models. However, ns-3 no longer
uses oTcl scripts to control the simulation, thus abandoning
the problems which were introduced by the combination
of C++ and oTcl in ns-2. Instead, network simulations in
ns-3 can be implemented in pure C++, while parts of the
simulation optionally can be realized using Python as well.
Moreover, ns-3 integrates architectural concepts and codefrom
GTNetS [17], a simulator with good scalability characteristics.
These design decisions were made at expense of compatibility.
In fact, ns-2 models need to be ported to ns-3 in a manual
way. Besides performance improvements, the feature set of
the simulator is also about to be extended. For example, ns-3
is slated to support the integration of real implementations’
code by providing standard APIs, such as Berkeley sockets
or POSIX threads, which are transparently mapped to the
simulation [1].

C. OMNeT++

In contrast to ns-2 and ns-3, OMNeT++ is not a network
simulator by definition, but a general purpose discrete event-
based simulation framework. Yet it is mostly applied to the
domain of network simulation, given the fact that with its
INET package it provides a comprehensive collection of
Internet protocol models. In addition, other model packages
such as the OMNeT++ Mobility Framework and Castalia [15]
facilitate the simulation of mobile ad hoc networks or wireless
sensor networks.

OMNeT++ simulations consist of so-calledsimple modules
which realize the atomic behavior of a model, e.g. a particular
protocol. Multiple simple modules can be linked together
and form acompound module. For instance, multiple simple
modules which provide protocol models can be combined into
a compound module representing a host node. A network
simulation in OMNeT++ is implemented itself as a compound
module which comprehends other compound modules, like the
ones which model host nodes.

Like the aforementioned ns-2 and ns-3, OMNet++ rests
upon C++ for the implementation of simple modules. How-
ever, the composition of these simple modules into compound
modules and thus the set-up of network simulation takes place
in NED, the network description language of OMNeT++. NED
is transparently rendered into C++ code when the simulation
is compiled as a whole. Moreover, NED supports the specifi-
cation of variable parameters in the network description: For
example the number of nodes in a network can be marked to be
dynamic and later on be configured at runtime. In this case, the
modules representing the nodes are dynamically instantiated
by the simulator during execution. This feature is a direct
consequence of the simulator’s strict object-oriented design.

D. JiST

A fresh approach to network simulation is JiST (“Java in
Simulation Time”), which in compliance with its name allows
the implementation of network simulations in standard Java.
It is mostly used in conjunction with SWANS1, a simulator
for mobile ad hoc networks built on top of JiST.

Network simulations in JiST are made up of entities which
represent the network elements, for example nodes, with simu-
lation events being formed by method invocations among those
entities. The entities advance the simulation time indepen-
dently by notifying the simulation core. While the code inside
an entity is executed like any arbitrary Java program, only
the interactions between the individual entities are carried out
in simulation time. Thus, these interactions between entities
correspond to synchronization points and facilitate the parallel
execution of code at different entities, resulting in a potential
performance gain. In order to execute the implementation in
simulation time, JiST utilizes a custom dynamic Java class
loader which dynamically rewrites the application’s byte code.

Unfortunately, the official development of JiST has stalled,
as it is no longer maintained by its original author, Rimon Barr.
However, a couple of enhancements and improvements have
recently been released by Ulm University2. We incorporate
those enhancements in our performance analysis of JiST in
Section III.

E. SimPy

With SimPy, we include a process-oriented discrete-event
simulator in this performance comparison. Unlike the other
simulators, no public available network models exist for
SimPy. Instead, it is a bare simulation API written in Python.
In SimPy, the basic simulation entities are processes. They
are executed in parallel and may exchange Python objects
among each other. Most processes include an infinite loop
in which the main actions of the process are performed.
Besides abstractions for processes and the related exchange of
objects, SimPy provides instructions for the synchronization
of simulation processes and commands for the monitoring of
simulation data.

1JiST/SWANS Website: http://jist.ece.cornell.edu/
2Ulm University’s JiST portal: http://www.vanet.info/jist-swans/



Sender

Receiver

0

4

12

1

5

9

13

2

6

10

14

3

7

11

15

8

Fig. 1. Sample Network Topology (size=16)

III. PERFORMANCECOMPARISON

This section describes the methodology and the outcome of
the performance study which includes the simulation tools in-
troduced in the previous section. The comparison is based ona
benchmark scenario and discloses large differences according
to simulation run-time and memory usage.

With the goal of comparing the simulators’ core perfor-
mance, we first implemented a reference simulation in all
simulation toolkits from scratch3. Our benchmarking simu-
lation does not rely on any existing simulation model for
any simulator. This decision was made because a network
simulation’s performance is largely dependent on the code of
the network models and their computational complexity.

The reference simulation models a basic network, where
the nodes are arranged in a square topology as illustrated
in Figure 1. One sending node generates one packet every
second and broadcasts it to its neighbors. The neighboring
nodes relay unseen messages after a delay of one second, thus
flooding the entire network. The propagation delay is directly
implemented by delaying the simulation events’ execution,and
the nodes do not implement a explicit queueing policy. With
a fixed probability which is equal on every link, packets are
dropped on the channel. The receiver is located at the corner
opposite to the receiver. We chose this simulation scenariofor
its simplicity, not aiming at a simulation of a real network.

All simulation runs were conducted on a AMD Athlon 64
3800+ workstation with 2GB of RAM, running Ubuntu Linux
8.04 LTS. Our measurements were taken using ns-2 version
2.33, OMNeT 3.4b2, ns-3.1, SimPy 1.9.1 and JiST 1.06 with
the extensions from Ulm University. We made use of SUN
Java 1.5.0.11 for the execution of JiST, and SimPy was run
with Python 2.5.1.

A. Model equality

As we implemented the same simulation set-up in five
different simulators, we first checked if our implementations
yield results which are on par with each other. For this purpose,
we ran the simulation in all simulators for drop probabilities

3The respective source code is available at
http://ds.cs.rwth-aachen.de/research/projects/simcompare/

0
200

400
600

800
1000

1200

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

Loss

OMNeT++
ns−3
JiST

SimPy
ns−2

Network Size
Drop Probability

Loss

Fig. 2. End-to-End Packet Loss

0

200

400

600

800

1000

1200

1400

0 500 1000 1500 2000 2500 3000 3500

C
om

pu
ta

tio
n 

T
im

e 
[s

]
Network Size

OMNeT++
ns−3
JiST

SimPy
ns−2

Fig. 3. Simulation runtime vs. Network size

between 0 and 1 with the square topology size ranging from
4 to 1024 nodes. The simulation time was set to 600 seconds.
Figure 2 depicts the end-to-end packet loss retrieved from the
five simulations, given the drop probability and a network size.
Only SimPy produces slightly higher loss rates on average,
however still within the limits of tolerance. From these results,
we conclude that our independent implementations of the
reference simulation in fact produce equivalent results.

B. Performance comparison

Given the fact that our simulation set-ups produce equal
results, we now compare the individual simulation tools re-
garding two performance metrics: effectivesimulation run-
time andmemory usage. In order to evaluate the simulators’
scalability, we conducted two series of different runs using the
reference simulation. In the first series, the drop probability is
set to a fixed value of 0.10 with the network size ranging
from 4 to 3025 nodes. The second series uses a fixed network
size of 3025 nodes, given drop probabilities between 0.0 and
1.0. All results provided in the following are averages over
five executions of each simulation series. In both series, the
simulation time was set to 600 seconds.

1) Simulation run-time: Figure 3 shows the measuredsim-
ulation runtime at different network sizes for the compared
simulation tools. First of all, these results reveal that SimPy
does not scale well and hence is not applicable to large-scale
network simulations: For a network size of 3025 nodes, it
needs 1225 seconds on average to complete the simulation run.
In contrast to that, JiST finishes the same task about 14 times
faster, resulting in an average execution time of 86 seconds.



Fig. 4. Simulation run-time vs. Drop probability

The overall run-time performance of JiST is astonishing at
the first glance, given the fact that it is based on Java and
still outperforms OMNeT++ and ns-3, which are executed
in a native manner. We attribute this winning margin to the
architecture of JiST: Besides the parallel execution at different
entities, JiST performs different run-time optimizationsbased
on the analysis of the executed byte code. Moreover, it has
been shown that the slowness of Java is merely a myth, and
that recent Java run-time environments can keep up with the
execution speed of compiled C++ code [10]. According to
the run-time performance of ns-3, the architectural improve-
ments, especially the abolishment of the oTCL/C++ duality,
are clearly reflected in our results, as ns-3 is considerably
faster than its predecessor. While the run-time performance
of OMNeT++ is slightly inferior to ns-3 and JiST, all three
simulation tools exhibit almost the same scalability according
to simulation run-time.

Additional insight about the run-time behavior of the dif-
ferent simulators can be derived from the results in Figure
4. Here, we picture the averaged run-time from the second
simulation series for a fixed network size of 3025 nodes and
a varying drop probability. With increasing drop probabilities,
the simulation run-time naturally decreases in a quick fashion
for all simulators, as more and more packets are removed
from the simulation, thus resulting in fewer events to be
processed. In other words, the drop probability directly reflects
the quantity of events prevalent in the simulation. We notice
that SimPy’s simulation run-time increases much faster at low
drop probabilities than any one of the other simulators. From
our results we conclude that SimPy in fact has a lower event
throughput than the other simulation cores.

2) Memory usage: Similar to our analysis of the simulation
run-time, we measured the maximummemory usageof the
individual simulators during the two series of simulation runs.
The outcome is depicted in Figure 5. Surprisingly, JiST uses
up much more memory resources than the other simulation
tools. We first attributed this behavior to the garbage collection
mechanism, but the amount of used memory does not decrease
if the garbage collection is manually triggered at times. In
addition, the difference in memory usage between JiST and
the other tools increases at larger network sizes, and hence, the

0

20

40

60

80

100

120

140

0 500 1000 1500 2000 2500 3000 3500

M
em

or
y 

U
sa

ge
 [M

B
]

Network Size

OMNeT++
ns−3
JiST

SimPy
ns−2

Fig. 5. Memory usage vs. Network size

0

20

40

60

80

100

120

140

160

0 0.2 0.4 0.6 0.8 1
M

em
or

y 
U

sa
ge

 [M
B

]

Drop Probability

OMNeT++
ns−3
JiST

SimPy
ns−2

Fig. 6. Memory usage vs. Drop probability

additional memory requirements of the Java virtual machine
do not suffice as single explanation. The memory usage
performances of ns-2, OMNeT++ and SimPy share a similar
linear growth of memory usage, with ns-3 being the most
efficient simulation tool in this regard.

Figure 6 shows the memory usage measured during the
second simulation series. As mentioned earlier, for largerdrop
probabilities the number of events prevalent in the simulation
is considerably small and thus the memory usage here remains
almost constant. This almost “constant” memory footprint is
mostly constituted by the simulation core and a potential run-
time environment, such as the JavaVM in the case of JiST
or Python, which is required for the execution of SimPy.
According to JiST, the footprint is slightly larger than that of
ns-2 and the other simulators, but far smaller than the one of
SimPy. However, for lower drop probabilities and hence more
simulation events, the memory usage of JiST grows faster than
with any other simulation tool.

IV. RELATED WORK

A couple of network simulator performance comparisons
have been published in recent years. Most of the more recent
ones compare ns-2 with other simulation tools. One example is
the work presented in [12], where the performance of a TCP-
based reference simulation implemented in ns-2 is checked
against SSFNet and JavaSim (now known J-Sim), two older
simulators. In their work, the authors also observe large dif-
ferences regarding memory consumption and simulation run-



time, with ns-2 performing best according to computational
demands and worst according to memory consumption.

A performance comparison, which in addition to ns-2, also
includes earlier versions of SimPy and OMNeT is presented
in [2]. The authors only provide results concerning the run-
time performance in their paper, and the used simulation
is small in terms of network size. However, the outcome
is similar to ours, with OMNeT++ outperforming ns-2 and
SimPy. Regarding SimPy, the authors also note its sluggish
performance.

Two recent publications [7, 18] analyze the characteristics
of JiST/SWANS in contrast to ns-2. Unlike our work, which
focuses mainly on the performance of the simulation cores,
the authors compare ns-2 and JiST/SWANS in a complex
simulation of a mobile ad hoc network, using available imple-
mentations of routing protocols bundled with both simulators.
Given the same parameters, the authors observe that ns-2
and JiST/SWANS require about the same time to finish the
simulation run, with ns-2 exhibiting much higher memory
demands than JiST in the given scenario. At first sight,
this seems to contradict our results presented in Section III.
However, this phenomenon can be explained by the fact that
the radio models of ns-2 duplicate messages in memory, e.g.
if a packet is broadcasted to other nodes. On the contrary, the
radio models implemented in SWANS pass solely references
to static packet data among the entities, resulting in a much
smaller memory consumption. These results, in combination
with ours, affirm that the scalability of simulations and related
performance matters are in fact heavily influenced by the
simulation models.

V. CONCLUSION

In this paper, we investigated the performance requirements
and the scalability of five different simulation tools. Our results
show that three of them, ns-3, OMNeT++ and JiST are all
capable of carrying out large-scale network simulations in
an efficient way. JiST has proven to be the fastest simulator
by far in our experiments, however the exhaustive memory
consumption may limit its applicability in some simulation
scenarios. In our performance comparison, ns-3 demonstrated
the best overall performance. Although it was surpassed by
JiST in terms of simulation run-time, it still shows both low
computational and less memory demands. However, at present
ns-3 still is in the early stages, and just a few simulation
models exist which one can use off the shelf. As the rich
collection of models for ns-2 still needs to be ported from ns-
2 to ns-3, OMNeT++ can be considered as viable alternative.
While its performance is slightly inferior than that of ns-3
and JiST, over the last few years a very comprehensive set
of models has been developed for this simulator. Moreover,
OMNeT++ provides a rich graphical user interface and an
abstract modeling language, while JiST and ns-3 rely on pure
source code for the development of the entire simulation. In
conclusion, the question of which simulator to use is a difficult
one, and the answer is largely dependent on the specific use
case. However, if scalability is the main concern, JiST, ns-3
and OMNeT++ are smart choices.

REFERENCES

[1] ns-3 Overview (June 2008).
http://www.nsnam.org/docs/ns-3-overview.pdf, June 2008.

[2] D. Albeseder and M. Fuegger. Small PC-Network Simulation
- a comprehensive performance case study. Research Report
77/2005, TU Wien, Institut für Technische Informatik, 2005.

[3] R. Barr, Z. J. Haas, and R. van Renesse. JiST: an efficient
approach to simulation using virtual machines.Softw, Pract.
Exper, 35(6):539–576, 2005.

[4] A. Dupuy, J. Schwartz, Y. Yemini, and D. Bacon. Nest: a
network simulation and prototyping testbed.Commun. ACM,
33(10):63–74, 1990.

[5] G. S. Fishman.Principles of Discrete Event Simulation. John
Wiley & Sons, Inc., New York, NY, USA, 1978.

[6] T. R. Henderson, S. Roy, S. Floyd, and G. F. Riley. ns-3 project
goals. InWNS2 ’06: Proceeding from the 2006 workshop on
ns-2: the IP network simulator, page 13, New York, NY, USA,
2006. ACM.

[7] F. Kargl and E. Schoch. Simulation of manets: a qualitative
comparison between JiST/SWANS and ns-2. InMobiEval
’07: Proceedings of the 1st international workshop on System
evaluation for mobile platforms, pages 41–46, New York, NY,
USA, 2007. ACM.

[8] S. Keshav. Real: A network simulator. Technical report,
University of California at Berkeley, Berkeley, CA, USA, 1988.

[9] P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM: accurate
and scalable simulation of entire TinyOS applications. In
In Proceedings of the 1st ACM Conference on Embedded
Networked Sensor Systems (SenSys 2003)., 2003.

[10] J. Lewis and U. Neumann. Performance of Java versus C++.
http://www.idiom.com/∼zilla/Computer/javaCbenchmark.html
(accessed 08/25/2008), 2004.

[11] K. Mueller. SimPy documentation.
http://simpy.sourceforge.net/discuss.htm.

[12] D. M. Nicol. Scalability of network simulators revisited. In
Proceedings of the Communication Networks and Distributed
Systems Modeling and Simulation Conference, Orlando, FL,
February 2003.

[13] The network simulator ns-2. http://www.isi.edu/nsnam/ns/.
[14] OPNET Technologies Inc. OPNET modeler website.

http://www.opnet.com/solutions/network\ rd/modeler.html.
[15] H. N. Pham, D. Pediaditakis, and A. Boulis. From simulation

to real deployments in wsn and back.Proceedings of the 2007
IEEE International Symposium on a World of Wireless, Mobile
and Multimedia Networks (WoWMoM 2007)., pages 1–6, June
2007.

[16] G. Riley. PDNS project website.
http://www.cc.gatech.edu/computing/compass/pdns/.

[17] G. Riley. Large scale network simulations with GTNetS.In
Proceedings of the 2003 Winter Simulation Conference, 2003.

[18] E. Schoch, M. Feiri, F. Kargl, and M. Weber. Simulation of ad
hoc networks: ns-2 compared to JiST/SWANS. InProceedings
of the First International Conference on Simulation Tools and
Techniques for Communications, Networks and Systems (SIMU-
Tools 2008’), March 2008.

[19] A. Varga and R. Hornig. An overview of the OMNeT++
simulation environment. InProceedings of the First Inter-
national Conference on Simulation Tools and Techniques for
Communications, Networks and Systems (SIMUTools 2008’),
March 2008.

[20] Y. Xue, H. S. Lee, M. Yang, P. Kumarawadu, H. Ghenniwa, and
W. Shen. Performance evaluation of ns-2 simulator for wireless
sensor networks.Proceedings of the Canadian Conference on
Electrical and Computer Engineering (CCECE 2007), pages
1372–1375, April 2007.


