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ABSTRACT
In this paper, we present SimBetAge, a delay and disrup-
tion tolerant routing protocol for highly dynamic socially
structured mobile networks. We exploit the lightweight and
ego-centric scheme of SimBet routing while at the same time
taking the strength and the gradual aging of social relations
into account and thereby increase the performance by one
order of magnitude, especially in evolving network struc-
tures. We explore the model of similarity and betweenness
over weighted graphs, and present a simulation on realistic
traces from previous experiments, comparing our approach
to the original SimBet, Epidemic Routing and Prophet.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Store and
forward networks

General Terms
Algorithms, Design, Performance

Keywords
Routing, DTN, ego networks

1. INTRODUCTION
Pocket Switched Networks [9] or more generally Disrup-

tion/Delay Tolerant Networks are a representative of a new
type of communication paradigm, in which data is delivered
over eventually transportable dynamic networks. Data bun-
dles are cached for a possibly long time before a suitable
contact to a forwarding node is made. The proliferation of
mobile devices leads us to the belief, that this paradigm will
gain significant popularity in the future. The routing of data
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in this kind of networks can be categorized in several classes
[5]. In the simplest case, a data bundle is epidemically for-
warded in the network. More refined approaches forward ei-
ther dependent on detailed plans of future contacts or some
heuristics to predict the probabilities of those.

The identification of useful heuristics is therefore the core
contribution of the majority of publications about routing
in this kind of networks. The social structure has long been
considered a good starting point for building heuristics in the
community. However, the change over time of this structure,
especially over long runs of time, has often been neglected.
The contribution of this work is therefore the adaption of a
previous social network based approach, namely SimBet [1],
to consider the progression of social networks over time. To
that end, the original definitions of similarity and between-
ness had to be significantly adapted to deal with weighted
graphs instead of binary ones. Additionally, we described a
novel metric, the directed ego flow betweenness.

The remainder of this paper is structured as follows: After
a short discussion on related work, we discuss SimBet in
its original form and identify several of its short comings.
Then, we present SimBetAge and discuss its structure and
features in depth. We conclude with a thorough evaluation,
showing that our approach performs up to 90% better than
the original SimBet.

2. BACKGROUND AND RELATED WORK
One of the simplest approaches to use aging in MANETs

is FRESH [2]. Interpreting the time of the last contact to
a destination node as a measure of the distance, FRESH is
able to discover short path in an efficient way. Although
this approach needs virtually every node to encounter the
destination at least once, it shows the importance of the age
of a contact as a parameter for efficient routing.

In [12], Lindgren et al. presented a probabilistic routing
scheme for intermittently connected networks called PRo-
PHET where each node keeps a table with probabilities for
reaching every possible destination in the network. These
probabilities depend on the frequency of observations, the
time of absence and the distance to a destination, but does
not make use of the social nature of the network.

Bubble Rap [10] explicitly discovers structural features by
processing historical contacts and computing node commu-
nities and hierarchies a priory. However, Bubble Rap re-
quires a setup period and does not adapt to dynamics in the
network very well.

Our work builds upon previous work done by Daly et al.[1]
who were one of the first to introduce social network analysis



in the context of delay tolerant networks, called SimBet. In
this approach, routing decisions are based on two common
properties of social networks, social similarity and centrality
betweenness.

In contrast to PRoPHET, SimBet relies only on an ego-
centric network view and is able to make efficient forward-
ing decisions even if the node has not encountered a path to
the destination before. Their handling of node distances in-
spired us with respect to modeling the dynamics in relations
as presented in section 3.1.

The calculation of ego betweenness in graphs with weighted
edges was introduced by Freeman et al. [7]. We describe the
approach in more detail in section 3.3. An extension for di-
rected ego flow betweenness can be found in section 3.5.

2.1 Background on SimBet Routing
The motivation on SimBet is to use social network anal-

ysis to provide an efficient routing scheme that has no need
for global knowledge about the network. Conceptually, a
node forwards messages to a node that has a higher social
similarity to the destination, i.e. it is more likely to have a
contact to the destination. If there is no such node known to
the forwarder, it instead forwards the message to nodes with
a higher betweenness, i.e. to a potentially better forwarder
to other parts/clusters in the network.

While similarity is defined on an ego-centric view, be-
tweenness is defined on geodesics, the shortest paths between
two points. Therefore, the calculation needs global knowl-
edge. In [4] however the authors showed that the calculation
of an ego-centric betweenness is still meaningful enough to
fit a global representation.

The social structure can therefore be used as the macro
structure for forwarding decisions. The similarity contributes
strongest when a message is already near to the destination
with respect to the social structure, whereas the between-
ness has stronger effects when the forwarding node is far
from the destination.

Accordingly, the similarity of u to v can be defined as the
number of common encounters between u and v:

Su(v) := |N1(u) ∩N1(v)| (1)

The definition of the global betweenness centrality of u is
therefore:

CB(u) :=
X

v 6=w 6=u
v,w∈Nodes

gv,w(u)

gv,w
(2)

Thus, Daly defines the ego betweenness centrality by tak-
ing nodes v and w only from the neighborhood of u.

θu :=
X

v 6=w 6=u
v,w∈N1(u)

gv,w(u)

gv,w
(3)

2.2 Shortcomings on SimBet
Despite the fact that SimBet performs quite well as shown

by the evaluations done by its authors [1], some weaknesses
can be pointed out.Routing decisions in SimBet are based on
comparing the social relations and roles of individual nodes
at a specific time in a binary fashion. However, some rela-
tions are stronger than others, i.e. contacts between them
are more frequent. Additionally, those relations may change

G(t) A time dependent graph
u, v, w ∈ V The vertices u, v, w
Ni(u) The i hop neighborhood of u
e ∈ E An edge e
ω(e, t) The time-dependent weight or freshness of

edge e, also abbreviated ω
ω(P, t) The freshness of a path P at time t
ω(u, v) The current weight between nodes u and v
α A renewing/growth factor
γ A aging/decay factor
∆t Time steps since a previous contact
gv,w The number of geodesics between v and w
gv,w(u) The number of geodesics between v and w

passing through u
Su(v) The similarity between u and v
CB(u) The betweenness centrality of u
θ(u) The ego betweenness centrality of u
σ(u, v) The aged similarity between u and v
ϑu The ego flow betweenness centrality of u
δu(d) The destination ego flow betweenness cen-

trality of u with respect to the destination
d

Uv(d) The utility of v for transporting a message
to d

Table 1: List of symbols and abbreviations used in
this paper

over time. Therefore, a simple statement that x knows y
without additional qualifiers is not enough.

Further, a node might have different roles: It may partic-
ipate in different clusters (different circles of friends) so one
node might be important for forwarding information from
one cluster to another but not necessarily that important
for forwarding within a cluster.

In figure 1 one can see how the network structure and the
betweenness of individual nodes varies over time. Compar-
ing its three subfigures it becomes evident, that the original
model based on the ego betweenness centrality in a network
is not adequate and will lead to inaccurate decisions for later
transmissions.

SimBet’s shortcomings can therefore be summarized as
follows:

1. Representing a social relation in a binary form is not
realistic and will lead to inconsistencies when compar-
ing such relations.

2. The macro structure of a social (dynamic) network is
changing over time, i.e. nodes enter, leave or switch
their neighborhood and so the social role will become
a different one.

3. The betweenness value calculation is meant to consider
only shortest paths, but social communication is not
limited only to the shortest possible paths.

4. The global betweenness utility of a single node be-
comes less important the closer a message comes to
the destination. If the message reaches the destina-
tion’s neighborhood, destination betweenness can be
more precise by taking only relevant directions into
account.
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(a) Using only the first third.
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(b) Using only the second third.
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(c) Using only the third third.

Figure 1: The distribution of the ego betweenness using the original SimBet algorithm processing slices of
the imote trace. The structure changes over time. Nodes with a high betweenness in subfigure (b), e.g. node
29, have a very low betweenness at a later point in time, while others display a higher betweenness only later,
e.g. node 33 in subfigure (c). The original SimBet algorithm does not reflect these changes when run on the
complete data set.

3. SIMBETAGE
In this section, we present SimBetAge. While building

upon SimBet, we deal with the dynamics of social networks
and adjust the used social network metrics significantly. Do-
ing so, we increase performance drastically.

3.1 Modelling the dynamics in relations
A binary model of a social relation, i.e. one node knows

another node or not, does not cope with the dynamics such
a network can have. Using a weighted time dependent graph
G(t) as a model of a social network will bring a more realistic
view, where G(t) = (V, E, ω(e, t)) is a fully connected graph.
This weight of an edge is what we will call the freshness of
an edge, where ω(e, t) = 0, e = (u, v) ∈ E, t ∈ T means, that
the nodes u and v have never be connected from time t0 up
to time t and ω(e, t) = 1 represents a permanent connection
between u and v.

The freshness of a single contact is influenced by two
events: The first one is a time step event that will decrease
the freshness value, i.e. the contact becomes older, which is
modeled through the use of an exponential decay function.
The second one is an encounter event that will increase the
freshness value, i.e. the contact becomes fresher which is
modeled by a logistic growth function. The equations of the
two events are shown in 4 and 5.

ωnew = ωold · γ∆t (4)

ωnew = ωold + (1− ωold) · α (5)

Figure 2 shows the exemplary development of a freshness
value over time.

After we have defined the freshness of a single edge, we
also need to define the freshness of a path P with length
l(P ) > 1. Due to the representation by logistic growth and
exponential decay for the age value of a single edge, the
freshness ω(e, t) can also be interpreted as an indicator, how
probable it is that the two nodes u and v are connected at
time t. Hence, the freshness ω(P, t) of a path P is defined
by the product of all freshness values in P.

ω (P, t) :=
Y
e∈P

ω (e, t) (6)
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Figure 2: The freshness ω of a single edge with some
encounter events over time. The higher the value,
the greater the probability of encounters in the near
future.

With these two definitions for aged edges and aged paths
we now define our calculation for similarity and betweenness
in aged graphs.

3.2 Similarity for Aged Graphs
In a binary graph the similarity Sbinary(u, v) = |N(u) ∩

N(v)| of two nodes u and v is defined by the number of
common neighbors between u and v. In a graph with aged
relations, we define the similarity of two nodes as being pro-
portional to the freshness of the concurrent neighborhood.
If node u and node v share a neighbor w with the freshness
values ω(u, w) and ω(v, w), then the similarity σw(u, v) of
node u and v with respect to neighbor w is asymptotically
equal to the product of the freshness values of their relations
to w.

The calculation of the similarity is based on the encounter
information exchanged during runtime. Therefore, we need
to consider that the encounter information at node u about
node v might be outdated proportionally to the time node u
has not heard about the encounters of node v with w either
from node v or from node w. This means, the similarity of
node u and node v concerning w needs to be rated by the
freshness of the encounter information of node v about the
common neighbor w.

σw(u, v) :=

(
ωu,w · ωv,w · ωu,v if v ∈ N1(u)

ω2
u,w · ωv,w else

(7)



Following this definition, we then define the aged simi-
larity σ(u, v) as the sum of the similarities of all common
neighbors i between node u and v.

σ(u, v) :=
X

w∈N1(u)∩N1(v)

σw(u, v) (8)

3.3 Betweenness for Aged Graphs
Analogous to the calculation of the betweenness in bi-

nary graphs, in weighted graphs only geodesics between two
nodes are taken into account. In an aged graph, those are the
paths with the highest freshness value ω(P, t). The method
for calculating stays the same as the binary betweenness
as in equation 2. However, the geodesics may change sud-
denly and significantly depending on the individual freshness
values, while for routing decisions, smoother functions are
preferable since they better model the connectivity in social
networks.

3.4 Flow Betweenness
When looking at communication characteristics in social

networks, the question arises why only shortest paths linking
two individuals should be the possible way of communication
flow. In a stochastic model of a network, you might be better
advised to use all possible paths between two nodes for a
more representative view.

According to this model, [7] defines the flow betweenness.
Instead of the number of geodesics, the calculation takes all
possible paths in a network into account, which was inspired
by [14]. As a result of their observations they came up with
a centrality measure more consistent and susceptible to dy-
namic network processes than other centrality measures.

Flow betweenness centrality is based on Ford and Fulk-
erson’s [6] model of network flows. We therefore define the
ego-centric flow betweenness value ϑu as the sum over the
age of all paths between pairs of neighbors (v, w) of u passing
through u divided by the age of all possible paths between
them, weighted with the age of the edge between u and v
and the one between u and w:

ϑu :=
X

v,w∈N1(u)

(ωu,v · ωu,w)2

ωu,v +
P

x∈{u}∪N1(u)
x6=v 6=w

ωx,v · ωx,w
(9)

Figure 3 demonstrates the influences of aging on the flow
betweenness distribution of a network evolving over time.
Comparing it with figure 1, we see that the distribution fol-
lows the dynamics and structural changes in the network
now very closely, thus making the representation more con-
sistent with the real world.

3.5 Directed Betweenness
In an ego-centric view we distinguish between three deci-

sion states when two nodes u and v compare their utilities
for a destination d:

1. Both nodes are far away from the destination
d /∈ N1(u) ∪N1(v)

2. At least one node has the destination in its two hop
proximity d ∈ (N2(u) ∪N2(v)) \ (N1(u) ∪N1(v))

3. At least one node is close to the destination
d ∈ N1(u) ∪N1(v)

In the first case the decision can easily be reached using
the betweenness value, while in the third case the higher
similarity will be the best choice. However, the second case
might be critical as the similarity might not be meaningful
enough and a high betweenness could possibly lead in the
wrong direction when reaching the proximity of the desti-
nation. Therefore, we introduce the directed betweenness
measure as a slight modification to the general ego flow be-
tweenness: Instead of all possible paths in the neighborhood
of u, only those containing d are considered.

δu(d) :=
X

v,w∈N1(u)
d∈N1(v)∨v=d

(ωu,v · ωu,w)2

ωu,v +
P

x∈{u}∪N1(u)
x6=v 6=w

ωx,v · ωx,w
(10)

3.6 Defining an Utility
Keeping in mind the considerations of the previous sec-

tion, we define an utility for the node v with a message bun-
dle for d currently in contact with node n. Depending on the
neighbor relations we weigh the similarity σv(d) strongest,
the destination betweenness δv(d) second and the general
betweenness ϑv weakest1:

A =

8>>>>>><>>>>>>:
0.9 if

(
v → d or

v → n → d

0.4 if

(
v →6 n → d or

n →6 v → d

0 else

(11)

B =

8><>:1−A if

(
d /∈ N2(v) and

d /∈ N2(n)

0 else

(12)

C = 1−A−B (13)

Uv (d) = Aσv (d) + Bδv (d) + Cϑv (14)

3.7 Update Messages
In our reference implementation of the considered routing

algorithms, routing decisions are made at the point in time
a new encounter occurs. This may result in situations where
a node will not forward a newly received bundle to a still
connected and possibly better suited neighbor because of
the absence of an encounter notification. In general, this
problem should be solved by an underlying routing layer that
transparently communicates in the temporarily connected
subnetwork using a MANET algorithm. On the other hand,
such layer is only useful if there is a meaningful number of
connected subnetworks at any time.

We overcome these drawbacks by introducing an Update
message scheme involving a lookup to the neighbor table,
and, if the node is connected to the destination, resulting in
a direct delivery to the receiver. This way of updating does
not influence the routing decisions or performance itself, but
can be interpreted as a evidence on how well a routing per-
forms on forwarding a bundle to the one hop proximity of
the destination, and shows in which situations a subnetwork
forwarding strategy might be useful.

1These constants were determined empirically. A general
method to derive these constants is still under research.
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(a) After the first third.
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(b) After two thirds.
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(c) After the whole trace.

Figure 3: Snapshots of the distribution of the ego betweenness using our algorithm for betweenness for aged
graphs described in section 3.3 in the imote trace. It closely follows the change in structure in figure 1, e.g.
in (b) node 29 has a high betweenness value, while in (c) node 33 has the highest betweenness value.

4. EVALUATION
As DTN routing algorithms are still a relatively young

research area, best practices in evaluation are still emerging.
In the following, we give a short overview over the metrics
and trace data sources we used for evaluating SimBetAge.

4.1 Metrics
As DTN algorithms are used for communication, the ar-

rival of data is a focal point. The delivery rate signifies how
many messages out of a theoretical maximum arrive. The
received messages may have taken widely different paths.
The path length and the delivery time can be used to char-
acterize these paths. Ideally, both should be minimized, but
a path with more hops might result in faster delivery.

Additionally, depending on the algorithms used, different
amounts of meta-data might be needed. This control mes-
sage overhead expresses at which additional communication
cost a certain performance can be achieved. This overhead
might make the transfer of data messages prohibitively long
or energy consuming, resulting in the need of careful evalu-
ation in a given scenario.

4.2 Traces
Connectivity over time in delay tolerant networks depend

heavily on the use case. Although simulation studies typi-
cally make use of random waypoint models (see [11] for an
overview over methods in MANET simulation studies), we
decided to use traces produced by actual experiments on
social structures to properly capture the social behavior of
participants. In the following, we elaborate on the traces
used and on some of their characteristics.

In the context of the MIT Reality mining project [3], a
group of 100 subjects at MIT over the course of the 2004/5
academic year. It is one of the most comprehensive records
of social interactions available at present and was also used
by the authors of the original SimBet paper [1].

In our experiments, we decided to use only the second half
of these traces, as the first half includes only about 4% of
the actual contact information. In the following, we call this
trace MIT50.

Another project collecting traces of human interaction is
the Haggle project [13]. A variety of users in office and
conference environments collected Bluetooth sightings. We
actually filtered these traces to only include sightings of sub-
jects actively interacting with others, while filtering out pas-

sive devices like bluetooth headsets, laptops, and so on. In
this paper, we call this trace imote.

Third, the traces generated in the Dartmouth Outdoor
experiment [8] closely resemble a random waypoint simu-
lation. A group of people were walking around an athletic
field and collecting GPS information. In the beginning and
in the end, all the subjects were meeting up at a central
location, so that we actually used only the second and third
quarter of this trace. In the following, we call this trace
darmouth.

4.3 Results
In this section we compare seven different routing strate-

gies. The first strategy is Direct Delivery. Only messages
where the sender itself meets the recipient are delivered.
This strategy is used as the base line as the minimum per-
formance a strategy should achieve.

Epidemic Forwarding represents a second strategy, where
every message is forwarded to anyone a node meets. This
results in a significant message overhead. However, it serves
as a theoretical upper bound, in terms of delivery rate.

Next, we consider the original PRoPHET algorithm, as
described in [12] and the original SimBet algorithm as de-
scribed in [1].

Finally we evaluate different variants or our proposed al-
gorithm. The first variant SimBetAge replaces the binary
representation of similarity and betweenness, but does not
include the directed betweenness, introduced in section 3.5.
The next variant, Dest2SimBetAge, follows the design
exactly as presented in the SimBetAge section, including di-
rected betweenness and strictly local knowledge. This is the
variant we propose as the best trade-off. As a final variant,
DestSimBetAge, we extend Dest2SimBetAge to consider
all known transitive links for the directed betweenness cal-
culation, similar to PRoPHET. This variant performs only
slightly better then Dest2SimBetAge, but needs more state
information.

Figure 4 compares the packet delivery rate achieved by
the different routing strategies. While our performance is
better in all traces considered, the most drastic improvement
can be seen in the MIT50 trace, which is incidentally the
longest running trace in which the most change happens. In
this trace, the delivery rate is 95% better than SimBet and
about 6% better than PRoPHET.



Figure 4: Bundle delivery rate for different routings.

Figure 5: Bundle delivery path length for the MIT50
trace.

As can be seen in 5, the hop count distribution of our ap-
proach is significantly better compared to PRoPHET, while
the delivery rate as shown in figure 6 stays comparable.

With respect to control message overhead and total mes-
sage overhead, which are not shown here, PRoPHET and
our approach are comparable, while we reduce the needed
state information, and therefore bytes transferred, signifi-
cantly, using only an ego-centric representation.

In summary, respecting the age of node relations leads to
a better performance than a binary representation. The di-
rected betweenness is a very useful addition to SimBetAge
and performs better on all traces. However, the additional
distance information introduced in DestSimBetAge does not
affect the performance in a significant positive way and sup-
ports our decision on keeping the ego-centric view instead of
producing more overhead on discovering nodes not covered
by the two hop neighborhood.

5. CONCLUSIONS AND OUTLOOK
We presented our extensions to SimBet which also take

changes in the social structure over time into account. For
that purpose, we defined similarity as well as ego flow be-
tweenness in weighted graphs. Furthermore, we evaluated
these extensions for the purpose of forwarding messages in
delay and disruption tolerant networks, specifically those
based on social networks. We showed that the performance
can be drastically improved when temporal changes are con-
sidered.

Figure 6: Bundle delivery time for the MIT50 trace.

In the near future, we plan to implement this algorithm
in the context of the RatPack project. An interesting point
we still left open in this paper is the optimal choice of de-
cay and growth parameters as well as how to best mitigate
discretization artifacts in the context of implementations in
embedded systems.
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